Compare commits
62 Commits
master
...
to-models-
Author | SHA1 | Date |
---|---|---|
lyken | 9b02e144b5 | |
lyken | e62509ae67 | |
lyken | 58be4a8b09 | |
lyken | 52da6347ee | |
lyken | a1410833bc | |
lyken | b38d9000f8 | |
lyken | a6e1d354b6 | |
lyken | f698b0c1fa | |
lyken | 8eb9094d68 | |
lyken | 3f322de9a0 | |
lyken | 6528115d6a | |
lyken | b13b28cfe8 | |
lyken | 6c48adff4d | |
lyken | 7701691794 | |
lyken | bca3313ad6 | |
lyken | 6d2ac3bd8a | |
lyken | b91994fcab | |
lyken | 881cbc5142 | |
lyken | 55965dda9e | |
lyken | 6285e67f3e | |
lyken | 9200ba2521 | |
lyken | 040948543b | |
lyken | 1165ac5e90 | |
lyken | 61ea014c61 | |
lyken | fe3405f50d | |
lyken | 09875a2555 | |
lyken | 56e448a040 | |
lyken | 58178223e7 | |
lyken | 1a4a6bc5f9 | |
lyken | 19ee579226 | |
lyken | 75ba01d547 | |
lyken | 25be81cc83 | |
lyken | 34709cf076 | |
lyken | d37d0c8da4 | |
lyken | ee66cac8c2 | |
lyken | 854a3eb6f0 | |
lyken | 72c2b9d840 | |
lyken | a004703ec2 | |
lyken | 0ec4d13735 | |
lyken | dd1a19d97f | |
lyken | ea1410f9ff | |
lyken | b175409a9b | |
lyken | 7e22f09e6e | |
lyken | 494616f0d9 | |
lyken | 2bbc619151 | |
lyken | e0d1e9a007 | |
lyken | 4929dcbf79 | |
lyken | 3d4c6b6ac0 | |
lyken | c5aa1616f8 | |
lyken | 98b65cf3e2 | |
lyken | 4a26a0e222 | |
lyken | e927d1a308 | |
lyken | b6aae87bd3 | |
lyken | ff84c9bfaf | |
lyken | d75c5d460f | |
lyken | cd69fa07a5 | |
lyken | 82671a4be7 | |
lyken | 176cb992eb | |
lyken | b743603a97 | |
lyken | 27a1fc7024 | |
lyken | b69d527752 | |
lyken | 2c62b61363 |
|
@ -0,0 +1,3 @@
|
||||||
|
BasedOnStyle: Microsoft
|
||||||
|
IndentWidth: 4
|
||||||
|
ReflowComments: false
|
|
@ -1,12 +1,10 @@
|
||||||
use nac3core::{
|
use nac3core::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{
|
classes::{ListValue, UntypedArrayLikeAccessor},
|
||||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
|
expr::gen_call,
|
||||||
NDArrayValue, RangeValue, UntypedArrayLikeAccessor,
|
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
|
||||||
},
|
model::*,
|
||||||
expr::{destructure_range, gen_call},
|
object::{any::AnyObject, ndarray::NDArrayObject, range::RangeObject, str::str_model},
|
||||||
irrt::call_ndarray_calc_size,
|
|
||||||
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
|
|
||||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||||
CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
},
|
},
|
||||||
|
@ -20,7 +18,7 @@ use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
context::Context,
|
context::Context,
|
||||||
module::Linkage,
|
module::Linkage,
|
||||||
types::{BasicType, IntType},
|
types::IntType,
|
||||||
values::{BasicValueEnum, PointerValue, StructValue},
|
values::{BasicValueEnum, PointerValue, StructValue},
|
||||||
AddressSpace, IntPredicate,
|
AddressSpace, IntPredicate,
|
||||||
};
|
};
|
||||||
|
@ -456,58 +454,41 @@ fn format_rpc_arg<'ctx>(
|
||||||
// NAC3: NDArray = { usize, usize*, T* }
|
// NAC3: NDArray = { usize, usize*, T* }
|
||||||
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
||||||
|
|
||||||
let llvm_i1 = ctx.ctx.bool_type();
|
let ndarray = AnyObject { ty: arg_ty, value: arg };
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
let dtype = ctx.get_llvm_type(generator, ndarray.dtype);
|
||||||
let llvm_arg_ty =
|
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
||||||
NDArrayType::new(generator, ctx.ctx, ctx.get_llvm_type(generator, elem_ty));
|
|
||||||
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
|
|
||||||
|
|
||||||
let llvm_usize_sizeof = ctx
|
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
|
||||||
.builder
|
// the reader.
|
||||||
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
|
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
|
||||||
.unwrap();
|
|
||||||
let llvm_pdata_sizeof = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_truncate_or_bit_cast(
|
|
||||||
llvm_arg_ty.element_type().ptr_type(AddressSpace::default()).size_of(),
|
|
||||||
llvm_usize,
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let dims_buf_sz =
|
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx);
|
||||||
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
|
||||||
|
|
||||||
let buffer_size =
|
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx);
|
||||||
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
|
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
|
||||||
|
|
||||||
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
|
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
|
||||||
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
|
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata);
|
||||||
|
|
||||||
let ppdata = generator.gen_var_alloc(ctx, llvm_arg_ty.element_type(), None).unwrap();
|
// buf = { data: void*, shape: [size_t; ndims]; }
|
||||||
ctx.builder.build_store(ppdata, llvm_arg.data().base_ptr(ctx, generator)).unwrap();
|
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value);
|
||||||
|
let buf_data = buf;
|
||||||
|
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value);
|
||||||
|
|
||||||
call_memcpy_generic(
|
// Write to `buf->data`
|
||||||
ctx,
|
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any>
|
||||||
buffer.base_ptr(ctx, generator),
|
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte));
|
||||||
ppdata,
|
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value);
|
||||||
llvm_pdata_sizeof,
|
|
||||||
llvm_i1.const_zero(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let pbuffer_dims_begin =
|
// Write to `buf->shape`
|
||||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||||
call_memcpy_generic(
|
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte));
|
||||||
ctx,
|
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value);
|
||||||
pbuffer_dims_begin,
|
|
||||||
llvm_arg.dim_sizes().base_ptr(ctx, generator),
|
|
||||||
dims_buf_sz,
|
|
||||||
llvm_i1.const_zero(),
|
|
||||||
);
|
|
||||||
|
|
||||||
buffer.base_ptr(ctx, generator)
|
buf.value
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => {
|
_ => {
|
||||||
|
@ -896,12 +877,12 @@ fn polymorphic_print<'ctx>(
|
||||||
});
|
});
|
||||||
|
|
||||||
let fmt = ctx.gen_string(generator, fmt);
|
let fmt = ctx.gen_string(generator, fmt);
|
||||||
let fmt = unsafe { fmt.get_field_at_index_unchecked(0) }.into_pointer_value();
|
let fmt = fmt.get_field(generator, ctx.ctx, |f| f.base);
|
||||||
|
|
||||||
ctx.builder
|
ctx.builder
|
||||||
.build_call(
|
.build_call(
|
||||||
print_fn,
|
print_fn,
|
||||||
&once(fmt.into()).chain(args).map(BasicValueEnum::into).collect_vec(),
|
&once(fmt.value.into()).chain(args).map(BasicValueEnum::into).collect_vec(),
|
||||||
"",
|
"",
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
@ -976,20 +957,23 @@ fn polymorphic_print<'ctx>(
|
||||||
fmt.push_str("%.*s");
|
fmt.push_str("%.*s");
|
||||||
|
|
||||||
let true_str = ctx.gen_string(generator, "True");
|
let true_str = ctx.gen_string(generator, "True");
|
||||||
let true_data =
|
|
||||||
unsafe { true_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
|
||||||
let true_len = unsafe { true_str.get_field_at_index_unchecked(1) }.into_int_value();
|
|
||||||
let false_str = ctx.gen_string(generator, "False");
|
let false_str = ctx.gen_string(generator, "False");
|
||||||
let false_data =
|
|
||||||
unsafe { false_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
let true_data = true_str.get_field(generator, ctx.ctx, |f| f.base);
|
||||||
let false_len =
|
let true_len = true_str.get_field(generator, ctx.ctx, |f| f.len);
|
||||||
unsafe { false_str.get_field_at_index_unchecked(1) }.into_int_value();
|
|
||||||
|
let false_data = false_str.get_field(generator, ctx.ctx, |f| f.base);
|
||||||
|
let false_len = false_str.get_field(generator, ctx.ctx, |f| f.len);
|
||||||
|
|
||||||
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
|
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
|
||||||
|
|
||||||
args.extend([
|
args.extend([
|
||||||
ctx.builder.build_select(bool_val, true_len, false_len, "").unwrap(),
|
ctx.builder
|
||||||
ctx.builder.build_select(bool_val, true_data, false_data, "").unwrap(),
|
.build_select(bool_val, true_len.value, false_len.value, "")
|
||||||
|
.unwrap(),
|
||||||
|
ctx.builder
|
||||||
|
.build_select(bool_val, true_data.value, false_data.value, "")
|
||||||
|
.unwrap(),
|
||||||
]);
|
]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1027,11 +1011,12 @@ fn polymorphic_print<'ctx>(
|
||||||
fmt.push_str("%.*s");
|
fmt.push_str("%.*s");
|
||||||
}
|
}
|
||||||
|
|
||||||
let str = value.into_struct_value();
|
let str = str_model().check_value(generator, ctx.ctx, value).unwrap();
|
||||||
let str_data = unsafe { str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
|
||||||
let str_len = unsafe { str.get_field_at_index_unchecked(1) }.into_int_value();
|
|
||||||
|
|
||||||
args.extend(&[str_len.into(), str_data.into()]);
|
let str_data = str.get_field(generator, ctx.ctx, |f| f.base);
|
||||||
|
let str_len = str.get_field(generator, ctx.ctx, |f| f.len);
|
||||||
|
|
||||||
|
args.extend(&[str_len.value.into(), str_data.value.into()]);
|
||||||
}
|
}
|
||||||
|
|
||||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
||||||
|
@ -1091,56 +1076,46 @@ fn polymorphic_print<'ctx>(
|
||||||
}
|
}
|
||||||
|
|
||||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
|
||||||
|
|
||||||
fmt.push_str("array([");
|
fmt.push_str("array([");
|
||||||
flush(ctx, generator, &mut fmt, &mut args);
|
flush(ctx, generator, &mut fmt, &mut args);
|
||||||
|
|
||||||
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
let ndarray = AnyObject { ty, value };
|
||||||
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
let last =
|
|
||||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
|
||||||
|
|
||||||
gen_for_callback_incrementing(
|
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
None,
|
|
||||||
llvm_usize.const_zero(),
|
|
||||||
(len, false),
|
|
||||||
|generator, ctx, _, i| {
|
|
||||||
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
|
|
||||||
|
|
||||||
polymorphic_print(
|
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
|
||||||
ctx,
|
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||||
generator,
|
let i = hdl.get_index(generator, ctx);
|
||||||
&[(elem_ty, elem.into())],
|
let scalar = hdl.get_scalar(generator, ctx);
|
||||||
"",
|
|
||||||
None,
|
|
||||||
true,
|
|
||||||
as_rtio,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
|
// if (i != 0) { puts(", "); }
|
||||||
gen_if_callback(
|
gen_if_callback(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
|_, ctx| {
|
|_, ctx| {
|
||||||
Ok(ctx
|
let not_first = i.compare(ctx, IntPredicate::NE, num_0);
|
||||||
.builder
|
Ok(not_first.value)
|
||||||
.build_int_compare(IntPredicate::ULT, i, last, "")
|
|
||||||
.unwrap())
|
|
||||||
},
|
},
|
||||||
|generator, ctx| {
|
|generator, ctx| {
|
||||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
},
|
},
|
||||||
|_, _| Ok(()),
|
|_, _| Ok(()),
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
Ok(())
|
// Print element
|
||||||
},
|
polymorphic_print(
|
||||||
llvm_usize.const_int(1, false),
|
ctx,
|
||||||
|
generator,
|
||||||
|
&[(scalar.ty, scalar.value.into())],
|
||||||
|
"",
|
||||||
|
None,
|
||||||
|
true,
|
||||||
|
as_rtio,
|
||||||
)?;
|
)?;
|
||||||
|
Ok(())
|
||||||
|
})?;
|
||||||
|
|
||||||
fmt.push_str(")]");
|
fmt.push_str(")]");
|
||||||
flush(ctx, generator, &mut fmt, &mut args);
|
flush(ctx, generator, &mut fmt, &mut args);
|
||||||
|
@ -1150,9 +1125,13 @@ fn polymorphic_print<'ctx>(
|
||||||
fmt.push_str("range(");
|
fmt.push_str("range(");
|
||||||
flush(ctx, generator, &mut fmt, &mut args);
|
flush(ctx, generator, &mut fmt, &mut args);
|
||||||
|
|
||||||
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
|
let range = AnyObject { ty, value };
|
||||||
|
let range = RangeObject::from_object(generator, ctx, range);
|
||||||
|
|
||||||
let (start, stop, step) = destructure_range(ctx, val);
|
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||||
|
let start = start.value;
|
||||||
|
let stop = stop.value;
|
||||||
|
let step = step.value;
|
||||||
|
|
||||||
polymorphic_print(
|
polymorphic_print(
|
||||||
ctx,
|
ctx,
|
||||||
|
|
|
@ -33,6 +33,7 @@ use inkwell::{
|
||||||
OptimizationLevel,
|
OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
|
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||||
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
||||||
use nac3core::toplevel::builtins::get_exn_constructor;
|
use nac3core::toplevel::builtins::get_exn_constructor;
|
||||||
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
||||||
|
@ -557,6 +558,11 @@ impl Nac3 {
|
||||||
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
|
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
|
// Process IRRT
|
||||||
|
let context = inkwell::context::Context::create();
|
||||||
|
let irrt = load_irrt(&context);
|
||||||
|
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||||
|
|
||||||
let fun_signature =
|
let fun_signature =
|
||||||
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
||||||
let mut store = ConcreteTypeStore::new();
|
let mut store = ConcreteTypeStore::new();
|
||||||
|
@ -727,7 +733,7 @@ impl Nac3 {
|
||||||
membuffer.lock().push(buffer);
|
membuffer.lock().push(buffer);
|
||||||
});
|
});
|
||||||
|
|
||||||
let context = inkwell::context::Context::create();
|
// Link all modules into `main`.
|
||||||
let buffers = membuffers.lock();
|
let buffers = membuffers.lock();
|
||||||
let main = context
|
let main = context
|
||||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||||
|
@ -756,8 +762,7 @@ impl Nac3 {
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
main.link_in_module(load_irrt(&context))
|
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||||
.map_err(|err| CompileError::new_err(err.to_string()))?;
|
|
||||||
|
|
||||||
let mut function_iter = main.get_first_function();
|
let mut function_iter = main.get_first_function();
|
||||||
while let Some(func) = function_iter {
|
while let Some(func) = function_iter {
|
||||||
|
|
|
@ -1,14 +1,15 @@
|
||||||
use crate::PrimitivePythonId;
|
use crate::PrimitivePythonId;
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
module::Linkage,
|
module::Linkage,
|
||||||
types::{BasicType, BasicTypeEnum},
|
types::BasicType,
|
||||||
values::BasicValueEnum,
|
values::{BasicValue, BasicValueEnum},
|
||||||
AddressSpace,
|
AddressSpace,
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
use nac3core::{
|
use nac3core::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{NDArrayType, ProxyType},
|
model::*,
|
||||||
|
object::ndarray::{make_contiguous_strides, NDArray},
|
||||||
CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
},
|
},
|
||||||
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
||||||
|
@ -26,7 +27,7 @@ use nac3parser::ast::{self, StrRef};
|
||||||
use parking_lot::{Mutex, RwLock};
|
use parking_lot::{Mutex, RwLock};
|
||||||
use pyo3::{
|
use pyo3::{
|
||||||
types::{PyDict, PyTuple},
|
types::{PyDict, PyTuple},
|
||||||
PyAny, PyObject, PyResult, Python,
|
PyAny, PyErr, PyObject, PyResult, Python,
|
||||||
};
|
};
|
||||||
use std::{
|
use std::{
|
||||||
collections::{HashMap, HashSet},
|
collections::{HashMap, HashSet},
|
||||||
|
@ -165,7 +166,7 @@ impl StaticValue for PythonValue {
|
||||||
PrimitiveValue::Bool(val) => {
|
PrimitiveValue::Bool(val) => {
|
||||||
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
|
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
|
||||||
}
|
}
|
||||||
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(),
|
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).value.into(),
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
|
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
|
||||||
|
@ -979,7 +980,7 @@ impl InnerResolver {
|
||||||
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
|
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
|
||||||
let val: String = obj.extract().unwrap();
|
let val: String = obj.extract().unwrap();
|
||||||
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
|
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
|
||||||
Ok(Some(ctx.gen_string(generator, val).into()))
|
Ok(Some(ctx.gen_string(generator, val).value.into()))
|
||||||
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
|
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
|
||||||
let val: f64 = obj.extract().unwrap();
|
let val: f64 = obj.extract().unwrap();
|
||||||
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
|
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
|
||||||
|
@ -1086,15 +1087,12 @@ impl InnerResolver {
|
||||||
let (ndarray_dtype, ndarray_ndims) =
|
let (ndarray_dtype, ndarray_ndims) =
|
||||||
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||||
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
|
||||||
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
|
|
||||||
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
|
|
||||||
|
|
||||||
{
|
{
|
||||||
if self.global_value_ids.read().contains_key(&id) {
|
if self.global_value_ids.read().contains_key(&id) {
|
||||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||||
ctx.module.add_global(
|
ctx.module.add_global(
|
||||||
ndarray_llvm_ty.as_underlying_type(),
|
Struct(NDArray).get_type(generator, ctx.ctx),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&id_str,
|
&id_str,
|
||||||
)
|
)
|
||||||
|
@ -1114,100 +1112,138 @@ impl InnerResolver {
|
||||||
} else {
|
} else {
|
||||||
todo!("Unpacking literal of more than one element unimplemented")
|
todo!("Unpacking literal of more than one element unimplemented")
|
||||||
};
|
};
|
||||||
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
|
let Ok(ndims) = u64::try_from(ndarray_ndims) else {
|
||||||
unreachable!("Expected u64 value for ndarray_ndims")
|
unreachable!("Expected u64 value for ndarray_ndims")
|
||||||
};
|
};
|
||||||
|
|
||||||
// Obtain the shape of the ndarray
|
// Obtain the shape of the ndarray
|
||||||
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
||||||
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
|
assert_eq!(shape_tuple.len(), ndims as usize);
|
||||||
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
|
|
||||||
|
// The Rust type inferencer cannot figure this out
|
||||||
|
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple
|
||||||
.iter()
|
.iter()
|
||||||
.enumerate()
|
.enumerate()
|
||||||
.map(|(i, elem)| {
|
.map(|(i, elem)| {
|
||||||
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
|
let value = self
|
||||||
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
|
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
|
||||||
)
|
.map_err(|e| {
|
||||||
|
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||||
|
})?
|
||||||
|
.unwrap();
|
||||||
|
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap();
|
||||||
|
Ok(value)
|
||||||
})
|
})
|
||||||
.collect();
|
.collect();
|
||||||
let shape_values = shape_values?.unwrap();
|
let shape_values = shape_values?;
|
||||||
let shape_values = llvm_usize.const_array(
|
|
||||||
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
|
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
|
||||||
);
|
let shape_u64s = shape_values
|
||||||
|
.iter()
|
||||||
|
.map(|dim| {
|
||||||
|
assert!(dim.value.is_const());
|
||||||
|
dim.value.get_zero_extended_constant().unwrap()
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values);
|
||||||
|
|
||||||
// create a global for ndarray.shape and initialize it using the shape
|
// create a global for ndarray.shape and initialize it using the shape
|
||||||
let shape_global = ctx.module.add_global(
|
let shape_global = ctx.module.add_global(
|
||||||
llvm_usize.array_type(ndarray_ndims as u32),
|
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&(id_str.clone() + ".shape"),
|
&(id_str.clone() + ".shape"),
|
||||||
);
|
);
|
||||||
shape_global.set_initializer(&shape_values);
|
shape_global.set_initializer(&shape_values.value);
|
||||||
|
|
||||||
// Obtain the (flattened) elements of the ndarray
|
// Obtain the (flattened) elements of the ndarray
|
||||||
let sz: usize = obj.getattr("size")?.extract()?;
|
let sz: usize = obj.getattr("size")?.extract()?;
|
||||||
let data: Result<Option<Vec<_>>, _> = (0..sz)
|
let data_values: Vec<Instance<'ctx, Any>> = (0..sz)
|
||||||
.map(|i| {
|
.map(|i| {
|
||||||
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
||||||
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
|
let value = self
|
||||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
|
||||||
|
.map_err(|e| {
|
||||||
|
super::CompileError::new_err(format!(
|
||||||
|
"Error getting element {i}: {e}"
|
||||||
|
))
|
||||||
|
})?
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let value = dtype.check_value(generator, ctx.ctx, value).unwrap();
|
||||||
|
Ok(value)
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
})
|
.try_collect()?;
|
||||||
.collect();
|
let data = dtype.const_array(generator, ctx.ctx, &data_values);
|
||||||
let data = data?.unwrap().into_iter();
|
|
||||||
let data = match ndarray_dtype_llvm_ty {
|
|
||||||
BasicTypeEnum::ArrayType(ty) => {
|
|
||||||
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
|
|
||||||
}
|
|
||||||
|
|
||||||
BasicTypeEnum::FloatType(ty) => {
|
|
||||||
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
|
|
||||||
}
|
|
||||||
|
|
||||||
BasicTypeEnum::IntType(ty) => {
|
|
||||||
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
|
|
||||||
}
|
|
||||||
|
|
||||||
BasicTypeEnum::PointerType(ty) => {
|
|
||||||
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
|
|
||||||
}
|
|
||||||
|
|
||||||
BasicTypeEnum::StructType(ty) => {
|
|
||||||
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
|
|
||||||
}
|
|
||||||
|
|
||||||
BasicTypeEnum::VectorType(_) => unreachable!(),
|
|
||||||
};
|
|
||||||
|
|
||||||
// create a global for ndarray.data and initialize it using the elements
|
// create a global for ndarray.data and initialize it using the elements
|
||||||
|
//
|
||||||
|
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
|
||||||
|
// We will have to cast it to an `u8*` later.
|
||||||
let data_global = ctx.module.add_global(
|
let data_global = ctx.module.add_global(
|
||||||
ndarray_dtype_llvm_ty.array_type(sz as u32),
|
Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&(id_str.clone() + ".data"),
|
&(id_str.clone() + ".data"),
|
||||||
);
|
);
|
||||||
data_global.set_initializer(&data);
|
data_global.set_initializer(&data.value);
|
||||||
|
|
||||||
|
// Get the constant itemsize.
|
||||||
|
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap();
|
||||||
|
let itemsize = itemsize.get_zero_extended_constant().unwrap();
|
||||||
|
|
||||||
|
// Create the strides needed for ndarray.strides
|
||||||
|
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
|
||||||
|
let strides = strides
|
||||||
|
.into_iter()
|
||||||
|
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride))
|
||||||
|
.collect_vec();
|
||||||
|
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
|
||||||
|
|
||||||
|
// create a global for ndarray.strides and initialize it
|
||||||
|
let strides_global = ctx.module.add_global(
|
||||||
|
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx),
|
||||||
|
Some(AddressSpace::default()),
|
||||||
|
&(id_str.clone() + ".strides"),
|
||||||
|
);
|
||||||
|
strides_global.set_initializer(&strides.value);
|
||||||
|
|
||||||
// create a global for the ndarray object and initialize it
|
// create a global for the ndarray object and initialize it
|
||||||
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
|
// We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
|
||||||
llvm_usize.const_int(ndarray_ndims, false).into(),
|
|
||||||
shape_global
|
|
||||||
.as_pointer_value()
|
|
||||||
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
|
|
||||||
.into(),
|
|
||||||
data_global
|
|
||||||
.as_pointer_value()
|
|
||||||
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
|
|
||||||
.into(),
|
|
||||||
]);
|
|
||||||
|
|
||||||
let ndarray = ctx.module.add_global(
|
// NOTE: data_global is an array of dtype, we want a `u8*`.
|
||||||
ndarray_llvm_ty.as_underlying_type(),
|
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
|
||||||
|
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
|
||||||
|
|
||||||
|
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize);
|
||||||
|
|
||||||
|
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||||
|
|
||||||
|
let ndarray_shape =
|
||||||
|
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
|
||||||
|
|
||||||
|
let ndarray_strides =
|
||||||
|
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap();
|
||||||
|
|
||||||
|
let ndarray = Struct(NDArray).const_struct(
|
||||||
|
generator,
|
||||||
|
ctx.ctx,
|
||||||
|
&[
|
||||||
|
ndarray_data.value.as_basic_value_enum(),
|
||||||
|
ndarray_itemsize.value.as_basic_value_enum(),
|
||||||
|
ndarray_ndims.value.as_basic_value_enum(),
|
||||||
|
ndarray_shape.value.as_basic_value_enum(),
|
||||||
|
ndarray_strides.value.as_basic_value_enum(),
|
||||||
|
],
|
||||||
|
);
|
||||||
|
|
||||||
|
let ndarray_global = ctx.module.add_global(
|
||||||
|
Struct(NDArray).get_type(generator, ctx.ctx),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&id_str,
|
&id_str,
|
||||||
);
|
);
|
||||||
ndarray.set_initializer(&value);
|
ndarray_global.set_initializer(&ndarray.value);
|
||||||
|
|
||||||
Ok(Some(ndarray.as_pointer_value().into()))
|
Ok(Some(ndarray_global.as_pointer_value().into()))
|
||||||
} else if ty_id == self.primitive_ids.tuple {
|
} else if ty_id == self.primitive_ids.tuple {
|
||||||
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
||||||
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
||||||
|
|
|
@ -8,37 +8,50 @@ use std::{
|
||||||
};
|
};
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
const FILE: &str = "src/codegen/irrt/irrt.cpp";
|
// Define relevant directories
|
||||||
|
let out_dir = env::var("OUT_DIR").unwrap();
|
||||||
|
let out_dir = Path::new(&out_dir);
|
||||||
|
let irrt_dir = Path::new("irrt");
|
||||||
|
|
||||||
|
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||||
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
||||||
*/
|
*/
|
||||||
let flags: &[&str] = &[
|
let mut flags: Vec<&str> = vec![
|
||||||
"--target=wasm32",
|
"--target=wasm32",
|
||||||
FILE,
|
|
||||||
"-x",
|
"-x",
|
||||||
"c++",
|
"c++",
|
||||||
"-fno-discard-value-names",
|
"-fno-discard-value-names",
|
||||||
"-fno-exceptions",
|
"-fno-exceptions",
|
||||||
"-fno-rtti",
|
"-fno-rtti",
|
||||||
match env::var("PROFILE").as_deref() {
|
|
||||||
Ok("debug") => "-O0",
|
|
||||||
Ok("release") => "-O3",
|
|
||||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
|
||||||
},
|
|
||||||
"-emit-llvm",
|
"-emit-llvm",
|
||||||
"-S",
|
"-S",
|
||||||
"-Wall",
|
"-Wall",
|
||||||
"-Wextra",
|
"-Wextra",
|
||||||
"-o",
|
"-o",
|
||||||
"-",
|
"-",
|
||||||
|
"-I",
|
||||||
|
irrt_dir.to_str().unwrap(),
|
||||||
|
irrt_cpp_path.to_str().unwrap(),
|
||||||
];
|
];
|
||||||
|
|
||||||
println!("cargo:rerun-if-changed={FILE}");
|
match env::var("PROFILE").as_deref() {
|
||||||
let out_dir = env::var("OUT_DIR").unwrap();
|
Ok("debug") => {
|
||||||
let out_path = Path::new(&out_dir);
|
flags.push("-O0");
|
||||||
|
flags.push("-DIRRT_DEBUG_ASSERT");
|
||||||
|
}
|
||||||
|
Ok("release") => {
|
||||||
|
flags.push("-O3");
|
||||||
|
}
|
||||||
|
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
|
||||||
|
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||||
|
|
||||||
|
// Compile IRRT and capture the LLVM IR output
|
||||||
let output = Command::new("clang-irrt")
|
let output = Command::new("clang-irrt")
|
||||||
.args(flags)
|
.args(flags)
|
||||||
.output()
|
.output()
|
||||||
|
@ -52,7 +65,17 @@ fn main() {
|
||||||
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
||||||
let mut filtered_output = String::with_capacity(output.len());
|
let mut filtered_output = String::with_capacity(output.len());
|
||||||
|
|
||||||
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
|
// Filter out irrelevant IR
|
||||||
|
//
|
||||||
|
// Regex:
|
||||||
|
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
|
||||||
|
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
|
||||||
|
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
|
||||||
|
// - `(?m:^@.+?=.+$)` captures global constants
|
||||||
|
let regex_filter = Regex::new(
|
||||||
|
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
for f in regex_filter.captures_iter(&output) {
|
for f in regex_filter.captures_iter(&output) {
|
||||||
assert_eq!(f.len(), 1);
|
assert_eq!(f.len(), 1);
|
||||||
filtered_output.push_str(&f[0]);
|
filtered_output.push_str(&f[0]);
|
||||||
|
@ -63,18 +86,24 @@ fn main() {
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.replace_all(&filtered_output, "");
|
.replace_all(&filtered_output, "");
|
||||||
|
|
||||||
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
|
// For debugging
|
||||||
if env::var("DEBUG_DUMP_IRRT").is_ok() {
|
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
|
||||||
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
|
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
|
||||||
|
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
|
||||||
|
if env::var(DEBUG_DUMP_IRRT).is_ok() {
|
||||||
|
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
|
||||||
file.write_all(output.as_bytes()).unwrap();
|
file.write_all(output.as_bytes()).unwrap();
|
||||||
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
|
|
||||||
|
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
|
||||||
file.write_all(filtered_output.as_bytes()).unwrap();
|
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Assemble the emitted and filtered IR to .bc
|
||||||
|
// That .bc will be integrated into nac3core's codegen
|
||||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
let mut llvm_as = Command::new("llvm-as-irrt")
|
||||||
.stdin(Stdio::piped())
|
.stdin(Stdio::piped())
|
||||||
.arg("-o")
|
.arg("-o")
|
||||||
.arg(out_path.join("irrt.bc"))
|
.arg(out_dir.join("irrt.bc"))
|
||||||
.spawn()
|
.spawn()
|
||||||
.unwrap();
|
.unwrap();
|
||||||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||||
|
|
|
@ -0,0 +1,16 @@
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/list.hpp>
|
||||||
|
#include <irrt/math_util.hpp>
|
||||||
|
#include <irrt/ndarray/array.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/broadcast.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/ndarray/indexing.hpp>
|
||||||
|
#include <irrt/ndarray/iter.hpp>
|
||||||
|
#include <irrt/ndarray/matmul.hpp>
|
||||||
|
#include <irrt/ndarray/reshape.hpp>
|
||||||
|
#include <irrt/ndarray/transpose.hpp>
|
||||||
|
#include <irrt/original.hpp>
|
||||||
|
#include <irrt/range.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
|
@ -0,0 +1,9 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
|
||||||
|
template <typename SizeT> struct CSlice
|
||||||
|
{
|
||||||
|
uint8_t *base;
|
||||||
|
SizeT len;
|
||||||
|
};
|
|
@ -0,0 +1,20 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
|
||||||
|
namespace cstr
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Implementation of `strlen()`.
|
||||||
|
*/
|
||||||
|
uint32_t length(const char *str)
|
||||||
|
{
|
||||||
|
uint32_t length = 0;
|
||||||
|
while (*str != '\0')
|
||||||
|
{
|
||||||
|
length++;
|
||||||
|
str++;
|
||||||
|
}
|
||||||
|
return length;
|
||||||
|
}
|
||||||
|
} // namespace cstr
|
|
@ -0,0 +1,22 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||||
|
#else
|
||||||
|
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
|
||||||
|
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3);
|
||||||
|
|
||||||
|
#define debug_assert_eq(SizeT, lhs, rhs) \
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) \
|
||||||
|
{ \
|
||||||
|
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define debug_assert(SizeT, expr) \
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) \
|
||||||
|
{ \
|
||||||
|
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
|
||||||
|
}
|
|
@ -0,0 +1,80 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/cslice.hpp>
|
||||||
|
#include <irrt/cstr_util.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The int type of ARTIQ exception IDs.
|
||||||
|
*/
|
||||||
|
typedef int32_t ExceptionId;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set of exceptions C++ IRRT can use.
|
||||||
|
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
|
||||||
|
*/
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
ExceptionId EXN_INDEX_ERROR;
|
||||||
|
ExceptionId EXN_VALUE_ERROR;
|
||||||
|
ExceptionId EXN_ASSERTION_ERROR;
|
||||||
|
ExceptionId EXN_TYPE_ERROR;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Extern function to `__nac3_raise`
|
||||||
|
*
|
||||||
|
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||||
|
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||||
|
*/
|
||||||
|
extern "C" void __nac3_raise(void *err);
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief NAC3's Exception struct
|
||||||
|
*/
|
||||||
|
template <typename SizeT> struct Exception
|
||||||
|
{
|
||||||
|
ExceptionId id;
|
||||||
|
CSlice<SizeT> filename;
|
||||||
|
int32_t line;
|
||||||
|
int32_t column;
|
||||||
|
CSlice<SizeT> function;
|
||||||
|
CSlice<SizeT> msg;
|
||||||
|
int64_t params[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
const int64_t NO_PARAM = 0;
|
||||||
|
|
||||||
|
template <typename SizeT>
|
||||||
|
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
|
||||||
|
int64_t param0, int64_t param1, int64_t param2)
|
||||||
|
{
|
||||||
|
Exception<SizeT> e = {
|
||||||
|
.id = id,
|
||||||
|
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
|
||||||
|
.line = line,
|
||||||
|
.column = 0,
|
||||||
|
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
|
||||||
|
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
|
||||||
|
};
|
||||||
|
e.params[0] = param0;
|
||||||
|
e.params[1] = param1;
|
||||||
|
e.params[2] = param2;
|
||||||
|
__nac3_raise((void *)&e);
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||||
|
* @param SizeT The runtime `size_t` type.
|
||||||
|
* @param id The ID of the exception to raise.
|
||||||
|
* @param msg A global constant C-string of the error message.
|
||||||
|
*
|
||||||
|
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
|
||||||
|
* `NO_PARAM` to indicate they are unused.
|
||||||
|
*/
|
||||||
|
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||||
|
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
|
||||||
|
} // namespace
|
|
@ -0,0 +1,8 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
using int8_t = _BitInt(8);
|
||||||
|
using uint8_t = unsigned _BitInt(8);
|
||||||
|
using int32_t = _BitInt(32);
|
||||||
|
using uint32_t = unsigned _BitInt(32);
|
||||||
|
using int64_t = _BitInt(64);
|
||||||
|
using uint64_t = unsigned _BitInt(64);
|
|
@ -0,0 +1,59 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief A list in NAC3.
|
||||||
|
*
|
||||||
|
* The `items` field is opaque. You must rely on external contexts to
|
||||||
|
* know how to interpret it.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> struct List
|
||||||
|
{
|
||||||
|
uint8_t *items;
|
||||||
|
SizeT len;
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace list
|
||||||
|
{
|
||||||
|
template <typename SizeT> void range_assign(List<SizeT> *dst, SizeT itemsize, Range<SizeT> *range, List<SizeT> *src)
|
||||||
|
{
|
||||||
|
debug_assert(range->step != 0);
|
||||||
|
SizeT assign_len = range->len();
|
||||||
|
|
||||||
|
if (assign_len < src->len)
|
||||||
|
{
|
||||||
|
// Encountered things like
|
||||||
|
// ```
|
||||||
|
// xs = [1, 2, 3, 4, 5]
|
||||||
|
// xs[1:3] = [999, 1000, 1001, 1002] # Note that step has to be 1.
|
||||||
|
// xs = [1, 999, 1000, 1001, 1002, 4, 5] # xs is longer
|
||||||
|
// ```
|
||||||
|
//
|
||||||
|
// We do not support extending lists since that requires allocation.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"List assignment does not support list extension. Attempting to assign {0} item(s) into a "
|
||||||
|
"space of {1} item(s).",
|
||||||
|
src->len, assign_len, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (range->step == 1)
|
||||||
|
{
|
||||||
|
// Assigning into a contiguous region. Optimized with memmove.
|
||||||
|
|
||||||
|
uint8_t* p1 = dst->items + range->start * itemsize;
|
||||||
|
uint8_t* p2 = dst->items + range->start * itemsize + assign_len * itemsize;
|
||||||
|
|
||||||
|
__builtin_memmove(cursor, src->items, assign_len * itemsize);
|
||||||
|
cursor += range_len * itemsize;
|
||||||
|
|
||||||
|
__builtin_memmove(cursor, );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace list
|
||||||
|
} // namespace
|
|
@ -0,0 +1,14 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
template <typename T> const T &max(const T &a, const T &b)
|
||||||
|
{
|
||||||
|
return a > b ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T> const T &min(const T &a, const T &b)
|
||||||
|
{
|
||||||
|
return a > b ? b : a;
|
||||||
|
}
|
||||||
|
} // namespace
|
|
@ -0,0 +1,130 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/list.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace array
|
||||||
|
{
|
||||||
|
template <typename SizeT>
|
||||||
|
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||||
|
{
|
||||||
|
if (shape[axis] == -1)
|
||||||
|
{
|
||||||
|
// Dimension is unspecified. Set it.
|
||||||
|
shape[axis] = list->len;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// Dimension is specified. Check.
|
||||||
|
if (shape[axis] != list->len)
|
||||||
|
{
|
||||||
|
// Mismatch, throw an error.
|
||||||
|
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"The requested array has an inhomogenous shape "
|
||||||
|
"after {0} dimension(s).",
|
||||||
|
axis, shape[axis], list->len);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (axis + 1 == ndims)
|
||||||
|
{
|
||||||
|
// `list` has type `list[ItemType]`
|
||||||
|
// Do nothing
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// `list` has type `list[list[...]]`
|
||||||
|
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||||
|
for (SizeT i = 0; i < list->len; i++)
|
||||||
|
{
|
||||||
|
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Document me
|
||||||
|
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||||
|
{
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++)
|
||||||
|
{
|
||||||
|
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||||
|
}
|
||||||
|
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename SizeT>
|
||||||
|
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL)
|
||||||
|
{
|
||||||
|
if (!ndarray::basic::is_c_contiguous(ndarray))
|
||||||
|
{
|
||||||
|
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (axis + 1 == ndarray->ndims)
|
||||||
|
{
|
||||||
|
// `list` has type `list[ItemType]`
|
||||||
|
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||||
|
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
|
||||||
|
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||||
|
*index += list->len;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// `list` has type `list[list[...]]`
|
||||||
|
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < list->len; i++)
|
||||||
|
{
|
||||||
|
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Document me
|
||||||
|
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
SizeT index = 0;
|
||||||
|
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||||
|
}
|
||||||
|
} // namespace array
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
using namespace ndarray::array;
|
||||||
|
|
||||||
|
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
|
||||||
|
{
|
||||||
|
set_and_validate_list_shape(list, ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
|
||||||
|
{
|
||||||
|
set_and_validate_list_shape(list, ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
|
||||||
|
{
|
||||||
|
write_list_to_array(list, ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
|
||||||
|
{
|
||||||
|
write_list_to_array(list, ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,380 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace basic
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Asserts that `shape` does not contain negative dimensions.
|
||||||
|
*
|
||||||
|
* @param ndims Number of dimensions in `shape`
|
||||||
|
* @param shape The shape to check on
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
|
||||||
|
{
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++)
|
||||||
|
{
|
||||||
|
if (shape[axis] < 0)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"negative dimensions are not allowed; axis {0} "
|
||||||
|
"has dimension {1}",
|
||||||
|
axis, shape[axis], NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
|
||||||
|
*
|
||||||
|
* This function throws error messages for output shape mismatches.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
|
||||||
|
const SizeT *output_shape)
|
||||||
|
{
|
||||||
|
if (ndarray_ndims != output_ndims)
|
||||||
|
{
|
||||||
|
// There is no corresponding NumPy error message like this.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||||
|
output_ndims, ndarray_ndims, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
|
||||||
|
{
|
||||||
|
if (ndarray_shape[axis] != output_shape[axis])
|
||||||
|
{
|
||||||
|
// There is no corresponding NumPy error message like this.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"Mismatched dimensions on axis {0}, output has "
|
||||||
|
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||||
|
axis, output_shape[axis], ndarray_shape[axis]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Returns the number of elements of an ndarray given its shape.
|
||||||
|
*
|
||||||
|
* @param ndims Number of dimensions in `shape`
|
||||||
|
* @param shape The shape of the ndarray
|
||||||
|
*/
|
||||||
|
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
|
||||||
|
{
|
||||||
|
SizeT size = 1;
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++)
|
||||||
|
size *= shape[axis];
|
||||||
|
return size;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||||
|
*
|
||||||
|
* @param ndims Number of elements in `shape` and `indices`
|
||||||
|
* @param shape The shape of the ndarray
|
||||||
|
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||||
|
* @param nth The index of the element of interest.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
|
||||||
|
{
|
||||||
|
for (SizeT i = 0; i < ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT axis = ndims - i - 1;
|
||||||
|
SizeT dim = shape[axis];
|
||||||
|
|
||||||
|
indices[axis] = nth % dim;
|
||||||
|
nth /= dim;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return the number of elements of an `ndarray`
|
||||||
|
*
|
||||||
|
* This function corresponds to `<an_ndarray>.size`
|
||||||
|
*/
|
||||||
|
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return of the number of its content of an `ndarray`.
|
||||||
|
*
|
||||||
|
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
return size(ndarray) * ndarray->itemsize;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||||
|
*
|
||||||
|
* This function corresponds to `<an_ndarray>.__len__`.
|
||||||
|
*
|
||||||
|
* @param dst_length The returned result
|
||||||
|
*/
|
||||||
|
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
// numpy prohibits `__len__` on unsized objects
|
||||||
|
if (ndarray->ndims == 0)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return ndarray->shape[0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||||
|
*
|
||||||
|
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||||
|
*/
|
||||||
|
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
// Other references:
|
||||||
|
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||||
|
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||||
|
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||||
|
|
||||||
|
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||||
|
//
|
||||||
|
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||||
|
// the following must hold:
|
||||||
|
//
|
||||||
|
// strides[-1] == itemsize
|
||||||
|
// strides[i] == shape[i+1] * strides[i + 1]
|
||||||
|
// [...]
|
||||||
|
// According to these rules, a 0- or 1-dimensional array is either both
|
||||||
|
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||||
|
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||||
|
// there are exceptions for arrays with zero or one item, in the first
|
||||||
|
// case the check is relaxed up to and including the first dimension
|
||||||
|
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||||
|
// can be true for all dimensions and both flags are set.
|
||||||
|
|
||||||
|
if (ndarray->ndims == 0)
|
||||||
|
{
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT i = 1; i < ndarray->ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT axis_i = ndarray->ndims - i - 1;
|
||||||
|
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return the pointer to the element indexed by `indices`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
|
||||||
|
{
|
||||||
|
uint8_t *element = ndarray->data;
|
||||||
|
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||||
|
element += indices[dim_i] * ndarray->strides[dim_i];
|
||||||
|
return element;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Convenience function. Like `get_pelement_by_indices` but
|
||||||
|
* reinterprets the element pointer.
|
||||||
|
*/
|
||||||
|
template <typename SizeT, typename T> T *get_ptr(const NDArray<SizeT> *ndarray, const SizeT *indices)
|
||||||
|
{
|
||||||
|
return (T *)get_pelement_by_indices(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
|
||||||
|
*
|
||||||
|
* This function does no bound check.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
|
||||||
|
{
|
||||||
|
uint8_t *element = ndarray->data;
|
||||||
|
for (SizeT i = 0; i < ndarray->ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT axis = ndarray->ndims - i - 1;
|
||||||
|
SizeT dim = ndarray->shape[axis];
|
||||||
|
element += ndarray->strides[axis] * (nth % dim);
|
||||||
|
nth /= dim;
|
||||||
|
}
|
||||||
|
return element;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Update the strides of an ndarray given an ndarray `shape`
|
||||||
|
* and assuming that the ndarray is fully c-contagious.
|
||||||
|
*
|
||||||
|
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
|
||||||
|
{
|
||||||
|
SizeT stride_product = 1;
|
||||||
|
for (SizeT i = 0; i < ndarray->ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT axis = ndarray->ndims - i - 1;
|
||||||
|
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||||
|
stride_product *= ndarray->shape[axis];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Set an element in `ndarray`.
|
||||||
|
*
|
||||||
|
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||||
|
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
|
||||||
|
{
|
||||||
|
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||||
|
*
|
||||||
|
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||||
|
{
|
||||||
|
// TODO: Make this faster with memcpy
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < size(src_ndarray); i++)
|
||||||
|
{
|
||||||
|
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||||
|
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||||
|
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace basic
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
using namespace ndarray::basic;
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
|
||||||
|
{
|
||||||
|
assert_shape_no_negative(ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
|
||||||
|
{
|
||||||
|
assert_shape_no_negative(ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
|
||||||
|
int32_t output_ndims, const int32_t *output_shape)
|
||||||
|
{
|
||||||
|
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
|
||||||
|
int64_t output_ndims, const int64_t *output_shape)
|
||||||
|
{
|
||||||
|
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
|
||||||
|
{
|
||||||
|
return size(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
|
||||||
|
{
|
||||||
|
return size(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
|
||||||
|
{
|
||||||
|
return nbytes(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
|
||||||
|
{
|
||||||
|
return nbytes(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
|
||||||
|
{
|
||||||
|
return len(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
|
||||||
|
{
|
||||||
|
return len(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
|
||||||
|
{
|
||||||
|
return is_c_contiguous(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
|
||||||
|
{
|
||||||
|
return is_c_contiguous(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
|
||||||
|
{
|
||||||
|
return get_nth_pelement(ndarray, nth);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
|
||||||
|
{
|
||||||
|
return get_nth_pelement(ndarray, nth);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
|
||||||
|
{
|
||||||
|
return get_pelement_by_indices(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
|
||||||
|
{
|
||||||
|
return get_pelement_by_indices(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
|
||||||
|
{
|
||||||
|
set_strides_by_shape(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
|
||||||
|
{
|
||||||
|
set_strides_by_shape(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
|
||||||
|
{
|
||||||
|
copy_data(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
|
||||||
|
{
|
||||||
|
copy_data(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,188 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
template <typename SizeT> struct ShapeEntry
|
||||||
|
{
|
||||||
|
SizeT ndims;
|
||||||
|
SizeT *shape;
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace broadcast
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||||
|
*
|
||||||
|
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
|
||||||
|
{
|
||||||
|
if (src_ndims > target_ndims)
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < src_ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||||
|
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||||
|
if (!(src_dim == 1 || target_dim == src_dim))
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||||
|
*
|
||||||
|
* @param num_shapes Number of entries in `shapes`
|
||||||
|
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||||
|
* @param dst_ndims The length of `dst_shape`.
|
||||||
|
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||||
|
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||||
|
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||||
|
* of `np.broadcast_shapes` and write it here.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
|
||||||
|
{
|
||||||
|
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
|
||||||
|
{
|
||||||
|
dst_shape[dst_axis] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
SizeT max_ndims_found = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < num_shapes; i++)
|
||||||
|
{
|
||||||
|
ShapeEntry<SizeT> entry = shapes[i];
|
||||||
|
|
||||||
|
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||||
|
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (SizeT j = 0; j < entry.ndims; j++)
|
||||||
|
{
|
||||||
|
SizeT entry_axis = entry.ndims - j - 1;
|
||||||
|
SizeT dst_axis = dst_ndims - j - 1;
|
||||||
|
|
||||||
|
SizeT entry_dim = entry.shape[entry_axis];
|
||||||
|
SizeT dst_dim = dst_shape[dst_axis];
|
||||||
|
|
||||||
|
if (dst_dim == 1)
|
||||||
|
{
|
||||||
|
dst_shape[dst_axis] = entry_dim;
|
||||||
|
}
|
||||||
|
else if (entry_dim == 1 || entry_dim == dst_dim)
|
||||||
|
{
|
||||||
|
// Do nothing
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"shape mismatch: objects cannot be broadcast "
|
||||||
|
"to a single shape.",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||||
|
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||||
|
*
|
||||||
|
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||||
|
* and return the result by modifying `dst_ndarray`.
|
||||||
|
*
|
||||||
|
* # Notes on `dst_ndarray`
|
||||||
|
* The caller is responsible for allocating space for the resulting ndarray.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||||
|
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged.
|
||||||
|
* - `dst_ndarray->shape` is unchanged.
|
||||||
|
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||||
|
{
|
||||||
|
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||||
|
src_ndarray->shape))
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||||
|
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||||
|
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
|
||||||
|
{
|
||||||
|
// Freeze the steps in-place
|
||||||
|
dst_ndarray->strides[dst_axis] = 0;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace broadcast
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
using namespace ndarray::broadcast;
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
|
||||||
|
{
|
||||||
|
broadcast_to(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
|
||||||
|
{
|
||||||
|
broadcast_to(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
|
||||||
|
int32_t *dst_shape)
|
||||||
|
{
|
||||||
|
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
|
||||||
|
int64_t *dst_shape)
|
||||||
|
{
|
||||||
|
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,47 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief The NDArray object
|
||||||
|
*
|
||||||
|
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||||
|
*/
|
||||||
|
template <typename SizeT> struct NDArray
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief The underlying data this `ndarray` is pointing to.
|
||||||
|
*
|
||||||
|
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
|
||||||
|
*/
|
||||||
|
uint8_t *data;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The number of bytes of a single element in `data`.
|
||||||
|
*/
|
||||||
|
SizeT itemsize;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The number of dimensions of this shape.
|
||||||
|
*/
|
||||||
|
SizeT ndims;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The NDArray shape, with length equal to `ndims`.
|
||||||
|
*
|
||||||
|
* Note that it may contain 0.
|
||||||
|
*/
|
||||||
|
SizeT *shape;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Array strides, with length equal to `ndims`
|
||||||
|
*
|
||||||
|
* The stride values are in units of bytes, not number of elements.
|
||||||
|
*
|
||||||
|
* Note that `strides` can have negative values.
|
||||||
|
*/
|
||||||
|
SizeT *strides;
|
||||||
|
};
|
||||||
|
} // namespace
|
|
@ -0,0 +1,243 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/range.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
typedef uint8_t NDIndexType;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief A single element index
|
||||||
|
*
|
||||||
|
* `data` points to a `int32_t`.
|
||||||
|
*/
|
||||||
|
|
||||||
|
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||||
|
/**
|
||||||
|
* @brief A slice index
|
||||||
|
*
|
||||||
|
* `data` points to a `Slice<int32_t>`.
|
||||||
|
*/
|
||||||
|
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief `np.newaxis` / `None`
|
||||||
|
*
|
||||||
|
* `data` is unused.
|
||||||
|
*/
|
||||||
|
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief `Ellipsis` / `...`
|
||||||
|
*
|
||||||
|
* `data` is unused.
|
||||||
|
*/
|
||||||
|
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief An index used in ndarray indexing
|
||||||
|
*/
|
||||||
|
struct NDIndex
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Enum tag to specify the type of index.
|
||||||
|
*
|
||||||
|
* Please see comments of each enum constant.
|
||||||
|
*/
|
||||||
|
NDIndexType type;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The accompanying data associated with `type`.
|
||||||
|
*
|
||||||
|
* Please see comments of each enum constant.
|
||||||
|
*/
|
||||||
|
uint8_t *data;
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace indexing
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||||
|
*
|
||||||
|
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
|
||||||
|
*
|
||||||
|
* This function also does proper assertions on `indices` to check for out of bounds access.
|
||||||
|
*
|
||||||
|
* # Notes on `dst_ndarray`
|
||||||
|
* The caller is responsible for allocating space for the resulting ndarray.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||||
|
* indexing `src_ndarray` with `indices`.
|
||||||
|
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged.
|
||||||
|
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||||
|
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||||
|
*
|
||||||
|
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||||
|
* @param src_ndarray The NDArray to be indexed.
|
||||||
|
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||||
|
{
|
||||||
|
// Validate `indices`.
|
||||||
|
|
||||||
|
// Expected value of `dst_ndarray->ndims`.
|
||||||
|
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||||
|
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||||
|
SizeT num_indexed = 0;
|
||||||
|
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
|
||||||
|
SizeT num_ellipsis = 0;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < num_indices; i++)
|
||||||
|
{
|
||||||
|
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
|
||||||
|
{
|
||||||
|
expected_dst_ndims--;
|
||||||
|
num_indexed++;
|
||||||
|
}
|
||||||
|
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
|
||||||
|
{
|
||||||
|
num_indexed++;
|
||||||
|
}
|
||||||
|
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
|
||||||
|
{
|
||||||
|
expected_dst_ndims++;
|
||||||
|
}
|
||||||
|
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
|
||||||
|
{
|
||||||
|
num_ellipsis++;
|
||||||
|
if (num_ellipsis > 1)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
|
||||||
|
NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||||
|
|
||||||
|
if (src_ndarray->ndims - num_indexed < 0)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||||
|
"too many indices for array: array is {0}-dimensional, "
|
||||||
|
"but {1} were indexed",
|
||||||
|
src_ndarray->ndims, num_indices, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||||
|
SizeT src_axis = 0;
|
||||||
|
SizeT dst_axis = 0;
|
||||||
|
|
||||||
|
for (int32_t i = 0; i < num_indices; i++)
|
||||||
|
{
|
||||||
|
const NDIndex *index = &indices[i];
|
||||||
|
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
|
||||||
|
{
|
||||||
|
SizeT input = (SizeT) * ((int32_t *)index->data);
|
||||||
|
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
|
||||||
|
|
||||||
|
if (k == -1)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||||
|
"index {0} is out of bounds for axis {1} "
|
||||||
|
"with size {2}",
|
||||||
|
input, src_axis, src_ndarray->shape[src_axis]);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data += k * src_ndarray->strides[src_axis];
|
||||||
|
|
||||||
|
src_axis++;
|
||||||
|
}
|
||||||
|
else if (index->type == ND_INDEX_TYPE_SLICE)
|
||||||
|
{
|
||||||
|
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
|
||||||
|
|
||||||
|
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||||
|
|
||||||
|
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
|
||||||
|
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
|
||||||
|
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
|
||||||
|
|
||||||
|
dst_axis++;
|
||||||
|
src_axis++;
|
||||||
|
}
|
||||||
|
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
|
||||||
|
{
|
||||||
|
dst_ndarray->strides[dst_axis] = 0;
|
||||||
|
dst_ndarray->shape[dst_axis] = 1;
|
||||||
|
|
||||||
|
dst_axis++;
|
||||||
|
}
|
||||||
|
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
|
||||||
|
{
|
||||||
|
// The number of ':' entries this '...' implies.
|
||||||
|
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||||
|
|
||||||
|
for (SizeT j = 0; j < ellipsis_size; j++)
|
||||||
|
{
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||||
|
|
||||||
|
dst_axis++;
|
||||||
|
src_axis++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
|
||||||
|
{
|
||||||
|
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
}
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||||
|
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||||
|
}
|
||||||
|
} // namespace indexing
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
using namespace ndarray::indexing;
|
||||||
|
|
||||||
|
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
|
||||||
|
NDArray<int32_t> *dst_ndarray)
|
||||||
|
{
|
||||||
|
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
|
||||||
|
NDArray<int64_t> *dst_ndarray)
|
||||||
|
{
|
||||||
|
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,142 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Helper struct to enumerate through an ndarray *efficiently*.
|
||||||
|
*
|
||||||
|
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
|
||||||
|
* - `[0, 0]`
|
||||||
|
* - `[0, 1]`
|
||||||
|
* - `[1, 0]`
|
||||||
|
* - `[1, 1]`
|
||||||
|
* - `[2, 0]`
|
||||||
|
* - `[2, 1]`
|
||||||
|
* - end.
|
||||||
|
*
|
||||||
|
* Interesting cases:
|
||||||
|
* - If ndims == 0, there is one enumeration.
|
||||||
|
* - If shape contains zeroes, there are no enumerations.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> struct NDIter
|
||||||
|
{
|
||||||
|
SizeT ndims;
|
||||||
|
SizeT *shape;
|
||||||
|
SizeT *strides;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The current indices.
|
||||||
|
*
|
||||||
|
* Must be allocated by the caller.
|
||||||
|
*/
|
||||||
|
SizeT *indices;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The nth (0-based) index of the current indices.
|
||||||
|
*/
|
||||||
|
SizeT nth;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Pointer to the current element.
|
||||||
|
*/
|
||||||
|
uint8_t *element;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The product of shape.
|
||||||
|
*/
|
||||||
|
SizeT size;
|
||||||
|
|
||||||
|
// TODO:: There is something called backstrides to speedup iteration.
|
||||||
|
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||||
|
// Maybe LLVM is clever and knows how to optimize.
|
||||||
|
|
||||||
|
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
|
||||||
|
{
|
||||||
|
this->ndims = ndims;
|
||||||
|
this->shape = shape;
|
||||||
|
this->strides = strides;
|
||||||
|
|
||||||
|
this->indices = indices;
|
||||||
|
this->element = element;
|
||||||
|
|
||||||
|
// Compute size and backstrides
|
||||||
|
this->size = 1;
|
||||||
|
for (SizeT i = 0; i < ndims; i++)
|
||||||
|
{
|
||||||
|
this->size *= shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++)
|
||||||
|
indices[axis] = 0;
|
||||||
|
nth = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
|
||||||
|
{
|
||||||
|
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool has_next()
|
||||||
|
{
|
||||||
|
return nth < size;
|
||||||
|
}
|
||||||
|
|
||||||
|
void next()
|
||||||
|
{
|
||||||
|
for (SizeT i = 0; i < ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT axis = ndims - i - 1;
|
||||||
|
indices[axis]++;
|
||||||
|
if (indices[axis] >= shape[axis])
|
||||||
|
{
|
||||||
|
indices[axis] = 0;
|
||||||
|
|
||||||
|
// TODO: Can be optimized with backstrides.
|
||||||
|
element -= strides[axis] * (shape[axis] - 1);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
element += strides[axis];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
nth++;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
|
||||||
|
{
|
||||||
|
iter->initialize_by_ndarray(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
|
||||||
|
{
|
||||||
|
iter->initialize_by_ndarray(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
|
||||||
|
{
|
||||||
|
return iter->has_next();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
|
||||||
|
{
|
||||||
|
return iter->has_next();
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_nditer_next(NDIter<int32_t> *iter)
|
||||||
|
{
|
||||||
|
iter->next();
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_nditer_next64(NDIter<int64_t> *iter)
|
||||||
|
{
|
||||||
|
iter->next();
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,92 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/broadcast.hpp>
|
||||||
|
#include <irrt/ndarray/iter.hpp>
|
||||||
|
|
||||||
|
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace matmul
|
||||||
|
{
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||||
|
*
|
||||||
|
* Example:
|
||||||
|
* Suppose `a_shape == [1, 97, 4, 2]`
|
||||||
|
* and `b_shape == [99, 98, 1, 2, 5]`,
|
||||||
|
*
|
||||||
|
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||||
|
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||||
|
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||||
|
* ^^^^^^^^^^ ^^^^
|
||||||
|
* (broadcasted) (4x2 @ 2x5 => 4x5)
|
||||||
|
*
|
||||||
|
* @param a_ndims Length of `a_shape`.
|
||||||
|
* @param a_shape Shape of `a`.
|
||||||
|
* @param b_ndims Length of `b_shape`.
|
||||||
|
* @param b_shape Shape of `b`.
|
||||||
|
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
|
||||||
|
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
|
||||||
|
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
|
||||||
|
{
|
||||||
|
debug_assert(SizeT, a_ndims >= 2);
|
||||||
|
debug_assert(SizeT, b_ndims >= 2);
|
||||||
|
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||||
|
|
||||||
|
// Check that a and b are compatible for matmul
|
||||||
|
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
|
||||||
|
{
|
||||||
|
// This is a custom error message. Different from NumPy.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||||
|
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
const SizeT num_entries = 2;
|
||||||
|
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
|
||||||
|
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||||
|
|
||||||
|
// TODO: Optimize this
|
||||||
|
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
|
||||||
|
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
|
||||||
|
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
|
||||||
|
|
||||||
|
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||||
|
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||||
|
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||||
|
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||||
|
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||||
|
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||||
|
}
|
||||||
|
} // namespace matmul
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
using namespace ndarray::matmul;
|
||||||
|
|
||||||
|
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
|
||||||
|
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
|
||||||
|
int32_t *dst_shape)
|
||||||
|
{
|
||||||
|
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
|
||||||
|
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
|
||||||
|
int64_t *dst_shape)
|
||||||
|
{
|
||||||
|
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,125 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace reshape
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||||
|
*
|
||||||
|
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||||
|
* modified to contain the resolved dimension.
|
||||||
|
*
|
||||||
|
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||||
|
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||||
|
*
|
||||||
|
* @param size The `.size` of `<ndarray>`
|
||||||
|
* @param new_ndims Number of elements in `new_shape`
|
||||||
|
* @param new_shape Target shape to reshape to
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
|
||||||
|
{
|
||||||
|
// Is there a -1 in `new_shape`?
|
||||||
|
bool neg1_exists = false;
|
||||||
|
// Location of -1, only initialized if `neg1_exists` is true
|
||||||
|
SizeT neg1_axis_i;
|
||||||
|
// The computed ndarray size of `new_shape`
|
||||||
|
SizeT new_size = 1;
|
||||||
|
|
||||||
|
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
|
||||||
|
{
|
||||||
|
SizeT dim = new_shape[axis_i];
|
||||||
|
if (dim < 0)
|
||||||
|
{
|
||||||
|
if (dim == -1)
|
||||||
|
{
|
||||||
|
if (neg1_exists)
|
||||||
|
{
|
||||||
|
// Multiple `-1` found. Throw an error.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
|
||||||
|
NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
neg1_exists = true;
|
||||||
|
neg1_axis_i = axis_i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// TODO: What? In `np.reshape` any negative dimensions is
|
||||||
|
// treated like its `-1`.
|
||||||
|
//
|
||||||
|
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||||
|
//
|
||||||
|
// It is not documented by numpy.
|
||||||
|
// Throw an error for now...
|
||||||
|
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
new_size *= dim;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool can_reshape;
|
||||||
|
if (neg1_exists)
|
||||||
|
{
|
||||||
|
// Let `x` be the unknown dimension
|
||||||
|
// Solve `x * <new_size> = <size>`
|
||||||
|
if (new_size == 0 && size == 0)
|
||||||
|
{
|
||||||
|
// `x` has infinitely many solutions
|
||||||
|
can_reshape = false;
|
||||||
|
}
|
||||||
|
else if (new_size == 0 && size != 0)
|
||||||
|
{
|
||||||
|
// `x` has no solutions
|
||||||
|
can_reshape = false;
|
||||||
|
}
|
||||||
|
else if (size % new_size != 0)
|
||||||
|
{
|
||||||
|
// `x` has no integer solutions
|
||||||
|
can_reshape = false;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
can_reshape = true;
|
||||||
|
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
can_reshape = (new_size == size);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!can_reshape)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace reshape
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
|
||||||
|
{
|
||||||
|
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
|
||||||
|
{
|
||||||
|
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,155 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Notes on `np.transpose(<array>, <axes>)`
|
||||||
|
*
|
||||||
|
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||||
|
* but it is not documented in numpy.
|
||||||
|
*
|
||||||
|
* Supporting it for now.
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace ndarray
|
||||||
|
{
|
||||||
|
namespace transpose
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||||
|
*
|
||||||
|
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||||
|
* is specified but the user, use this function to do assertions on it.
|
||||||
|
*
|
||||||
|
* @param ndims The number of dimensions of `<array>`
|
||||||
|
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||||
|
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||||
|
* @param axes The user specified `<axes>`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
|
||||||
|
{
|
||||||
|
if (ndims != num_axes)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Optimize this
|
||||||
|
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims);
|
||||||
|
for (SizeT i = 0; i < ndims; i++)
|
||||||
|
axe_specified[i] = false;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < ndims; i++)
|
||||||
|
{
|
||||||
|
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||||
|
if (axis == -1)
|
||||||
|
{
|
||||||
|
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (axe_specified[axis])
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
axe_specified[axis] = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||||
|
*
|
||||||
|
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||||
|
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||||
|
*
|
||||||
|
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||||
|
*
|
||||||
|
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||||
|
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged
|
||||||
|
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||||
|
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||||
|
*
|
||||||
|
* @param src_ndarray The NDArray to build a transpose view on
|
||||||
|
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||||
|
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||||
|
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
|
||||||
|
{
|
||||||
|
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||||
|
const auto ndims = src_ndarray->ndims;
|
||||||
|
|
||||||
|
if (axes != nullptr)
|
||||||
|
assert_transpose_axes(ndims, num_axes, axes);
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||||
|
if (axes == nullptr)
|
||||||
|
{
|
||||||
|
// `np.transpose(<array>, axes=None)`
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||||
|
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||||
|
* is reversing the order of strides and shape.
|
||||||
|
*
|
||||||
|
* This is a fast implementation to handle this special (but very common) case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++)
|
||||||
|
{
|
||||||
|
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||||
|
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// `np.transpose(<array>, <axes>)`
|
||||||
|
|
||||||
|
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++)
|
||||||
|
{
|
||||||
|
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||||
|
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||||
|
|
||||||
|
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||||
|
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace transpose
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
using namespace ndarray::transpose;
|
||||||
|
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
|
||||||
|
const int32_t *axes)
|
||||||
|
{
|
||||||
|
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
|
||||||
|
int64_t num_axes, const int64_t *axes)
|
||||||
|
{
|
||||||
|
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,215 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/math_util.hpp>
|
||||||
|
|
||||||
|
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||||
|
using SliceIndex = int32_t;
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||||
|
// need to make sure `exp >= 0` before calling this function
|
||||||
|
template <typename T> T __nac3_int_exp_impl(T base, T exp)
|
||||||
|
{
|
||||||
|
T res = 1;
|
||||||
|
/* repeated squaring method */
|
||||||
|
do
|
||||||
|
{
|
||||||
|
if (exp & 1)
|
||||||
|
{
|
||||||
|
res *= base; /* for n odd */
|
||||||
|
}
|
||||||
|
exp >>= 1;
|
||||||
|
base *= base;
|
||||||
|
} while (exp);
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
#define DEF_nac3_int_exp_(T) \
|
||||||
|
T __nac3_int_exp_##T(T base, T exp) \
|
||||||
|
{ \
|
||||||
|
return __nac3_int_exp_impl(base, exp); \
|
||||||
|
}
|
||||||
|
|
||||||
|
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
|
||||||
|
|
||||||
|
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
|
||||||
|
{
|
||||||
|
if (i < 0)
|
||||||
|
{
|
||||||
|
i = len + i;
|
||||||
|
}
|
||||||
|
if (i < 0)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
else if (i > len)
|
||||||
|
{
|
||||||
|
return len;
|
||||||
|
}
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
|
||||||
|
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
|
||||||
|
{
|
||||||
|
SliceIndex diff = end - start;
|
||||||
|
if (diff > 0 && step > 0)
|
||||||
|
{
|
||||||
|
return ((diff - 1) / step) + 1;
|
||||||
|
}
|
||||||
|
else if (diff < 0 && step < 0)
|
||||||
|
{
|
||||||
|
return ((diff + 1) / step) + 1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle list assignment and dropping part of the list when
|
||||||
|
// both dest_step and src_step are +1.
|
||||||
|
// - All the index must *not* be out-of-bound or negative,
|
||||||
|
// - The end index is *inclusive*,
|
||||||
|
// - The length of src and dest slice size should already
|
||||||
|
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||||
|
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||||
|
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||||
|
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
|
||||||
|
SliceIndex src_arr_len, const SliceIndex size)
|
||||||
|
{
|
||||||
|
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||||
|
if (dest_arr_len == 0)
|
||||||
|
return dest_arr_len;
|
||||||
|
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||||
|
if (src_step == dest_step && dest_step == 1)
|
||||||
|
{
|
||||||
|
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||||
|
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||||
|
if (src_len > 0)
|
||||||
|
{
|
||||||
|
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
|
||||||
|
}
|
||||||
|
if (dest_len > 0)
|
||||||
|
{
|
||||||
|
/* dropping */
|
||||||
|
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
|
||||||
|
(dest_arr_len - dest_end - 1) * size);
|
||||||
|
}
|
||||||
|
/* shrink size */
|
||||||
|
return dest_arr_len - (dest_len - src_len);
|
||||||
|
}
|
||||||
|
/* if two range overlaps, need alloca */
|
||||||
|
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||||
|
max(src_start, src_end) < min(dest_start, dest_end));
|
||||||
|
if (need_alloca)
|
||||||
|
{
|
||||||
|
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||||
|
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||||
|
src_arr = tmp;
|
||||||
|
}
|
||||||
|
SliceIndex src_ind = src_start;
|
||||||
|
SliceIndex dest_ind = dest_start;
|
||||||
|
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
|
||||||
|
{
|
||||||
|
/* for constant optimization */
|
||||||
|
if (size == 1)
|
||||||
|
{
|
||||||
|
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||||
|
}
|
||||||
|
else if (size == 4)
|
||||||
|
{
|
||||||
|
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||||
|
}
|
||||||
|
else if (size == 8)
|
||||||
|
{
|
||||||
|
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* memcpy for var size, cannot overlap after previous alloca */
|
||||||
|
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* only dest_step == 1 can we shrink the dest list. */
|
||||||
|
/* size should be ensured prior to calling this function */
|
||||||
|
if (dest_step == 1 && dest_end >= dest_start)
|
||||||
|
{
|
||||||
|
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||||
|
(dest_arr_len - dest_end - 1) * size);
|
||||||
|
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||||
|
}
|
||||||
|
return dest_arr_len;
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t __nac3_isinf(double x)
|
||||||
|
{
|
||||||
|
return __builtin_isinf(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t __nac3_isnan(double x)
|
||||||
|
{
|
||||||
|
return __builtin_isnan(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
double tgamma(double arg);
|
||||||
|
|
||||||
|
double __nac3_gamma(double z)
|
||||||
|
{
|
||||||
|
// Handling for denormals
|
||||||
|
// | x | Python gamma(x) | C tgamma(x) |
|
||||||
|
// --- | ----------------- | --------------- | ----------- |
|
||||||
|
// (1) | nan | nan | nan |
|
||||||
|
// (2) | -inf | -inf | inf |
|
||||||
|
// (3) | inf | inf | inf |
|
||||||
|
// (4) | 0.0 | inf | inf |
|
||||||
|
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||||
|
|
||||||
|
// (1)-(3)
|
||||||
|
if (__builtin_isinf(z) || __builtin_isnan(z))
|
||||||
|
{
|
||||||
|
return z;
|
||||||
|
}
|
||||||
|
|
||||||
|
double v = tgamma(z);
|
||||||
|
|
||||||
|
// (4)-(5)
|
||||||
|
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||||
|
}
|
||||||
|
|
||||||
|
double lgamma(double arg);
|
||||||
|
|
||||||
|
double __nac3_gammaln(double x)
|
||||||
|
{
|
||||||
|
// libm's handling of value overflows differs from scipy:
|
||||||
|
// - scipy: gammaln(-inf) -> -inf
|
||||||
|
// - libm : lgamma(-inf) -> inf
|
||||||
|
|
||||||
|
if (__builtin_isinf(x))
|
||||||
|
{
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
return lgamma(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
double j0(double x);
|
||||||
|
|
||||||
|
double __nac3_j0(double x)
|
||||||
|
{
|
||||||
|
// libm's handling of value overflows differs from scipy:
|
||||||
|
// - scipy: j0(inf) -> nan
|
||||||
|
// - libm : j0(inf) -> 0.0
|
||||||
|
|
||||||
|
if (__builtin_isinf(x))
|
||||||
|
{
|
||||||
|
return __builtin_nan("");
|
||||||
|
}
|
||||||
|
|
||||||
|
return j0(x);
|
||||||
|
}
|
||||||
|
} // extern "C"
|
|
@ -0,0 +1,54 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace range
|
||||||
|
{
|
||||||
|
template <typename T> T len(T start, T stop, T step)
|
||||||
|
{
|
||||||
|
// Reference:
|
||||||
|
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
|
||||||
|
if (step > 0 && start < stop)
|
||||||
|
return 1 + (stop - 1 - start) / step;
|
||||||
|
else if (step < 0 && start > stop)
|
||||||
|
return 1 + (start - 1 - stop) / (-step);
|
||||||
|
else
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
} // namespace range
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief A Python range.
|
||||||
|
*/
|
||||||
|
template <typename T> struct Range
|
||||||
|
{
|
||||||
|
T start;
|
||||||
|
T stop;
|
||||||
|
T step;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Calculate the `len()` of this range.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> T len()
|
||||||
|
{
|
||||||
|
debug_assert(SizeT, step != 0);
|
||||||
|
return range::len(start, stop, step);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
int32_t __nac3_range_len_i32(int32_t start, int32_t stop, int32_t step)
|
||||||
|
{
|
||||||
|
return range::len(start, stop, step);
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t __nac3_range_len_i64(int64_t start, int64_t stop, int64_t step)
|
||||||
|
{
|
||||||
|
return range::len(start, stop, step);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,202 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_types.hpp>
|
||||||
|
#include <irrt/math_util.hpp>
|
||||||
|
#include <irrt/range.hpp>
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
namespace slice
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Resolve a slice index under a given length like Python indexing.
|
||||||
|
*
|
||||||
|
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
|
||||||
|
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
|
||||||
|
*
|
||||||
|
* If `length` is 0, 0 is returned for any value of `index`.
|
||||||
|
*
|
||||||
|
* If `index` is out of bounds, clamps the returned value between `0` and
|
||||||
|
* `length - 1` (inclusive).
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
template <typename T> T resolve_index_in_length_clamped(T length, T index)
|
||||||
|
{
|
||||||
|
if (index < 0)
|
||||||
|
{
|
||||||
|
return max<T>(length + index, 0);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return min<T>(length, index);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Like `resolve_index_in_length_clamped`, but returns `-1` if `index` is
|
||||||
|
* out of bounds.
|
||||||
|
*/
|
||||||
|
template <typename T> T resolve_index_in_length(T length, T index)
|
||||||
|
{
|
||||||
|
T resolved = index < 0 ? length + index : index;
|
||||||
|
if (0 <= resolved && resolved < length)
|
||||||
|
{
|
||||||
|
return resolved;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Resolve a slice as a range.
|
||||||
|
*
|
||||||
|
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||||
|
*/
|
||||||
|
template <typename T>
|
||||||
|
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
|
||||||
|
T *range_start, T *range_stop, T *range_step)
|
||||||
|
{
|
||||||
|
// Reference:
|
||||||
|
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||||
|
*range_step = step_defined ? step : 1;
|
||||||
|
bool step_is_negative = *range_step < 0;
|
||||||
|
|
||||||
|
T lower, upper;
|
||||||
|
if (step_is_negative)
|
||||||
|
{
|
||||||
|
lower = -1;
|
||||||
|
upper = length - 1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
lower = 0;
|
||||||
|
upper = length;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (start_defined)
|
||||||
|
{
|
||||||
|
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
*range_start = step_is_negative ? upper : lower;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (stop_defined)
|
||||||
|
{
|
||||||
|
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
*range_stop = step_is_negative ? lower : upper;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace slice
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief A Python-like slice with **unresolved** indices.
|
||||||
|
*/
|
||||||
|
template <typename T> struct Slice
|
||||||
|
{
|
||||||
|
bool start_defined;
|
||||||
|
T start;
|
||||||
|
|
||||||
|
bool stop_defined;
|
||||||
|
T stop;
|
||||||
|
|
||||||
|
bool step_defined;
|
||||||
|
T step;
|
||||||
|
|
||||||
|
Slice()
|
||||||
|
{
|
||||||
|
this->reset();
|
||||||
|
}
|
||||||
|
|
||||||
|
void reset()
|
||||||
|
{
|
||||||
|
this->start_defined = false;
|
||||||
|
this->stop_defined = false;
|
||||||
|
this->step_defined = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_start(T start)
|
||||||
|
{
|
||||||
|
this->start_defined = true;
|
||||||
|
this->start = start;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_stop(T stop)
|
||||||
|
{
|
||||||
|
this->stop_defined = true;
|
||||||
|
this->stop = stop;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_step(T step)
|
||||||
|
{
|
||||||
|
this->step_defined = true;
|
||||||
|
this->step = step;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Resolve this slice as a range.
|
||||||
|
*
|
||||||
|
* In Python, this would be `range(*slice(start, stop,
|
||||||
|
* step).indices(length))`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> Range<T> indices(T length)
|
||||||
|
{
|
||||||
|
// Reference:
|
||||||
|
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||||
|
debug_assert(SizeT, length >= 0);
|
||||||
|
|
||||||
|
Range<T> result;
|
||||||
|
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
|
||||||
|
&result.stop, &result.step);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Like `.indices()` but with assertions.
|
||||||
|
*/
|
||||||
|
template <typename SizeT> Range<T> indices_checked(T length)
|
||||||
|
{
|
||||||
|
// TODO: Switch to `SizeT length`
|
||||||
|
|
||||||
|
if (length < 0)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (this->step_defined && this->step == 0)
|
||||||
|
{
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
return this->indices<SizeT>(length);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
void __nac3_slice_indices_i32(bool start_defined, int32_t start, bool stop_defined, int32_t stop, bool step_defined,
|
||||||
|
int32_t step, int32_t length, int32_t *range_start, int32_t *range_stop,
|
||||||
|
int32_t *range_step)
|
||||||
|
{
|
||||||
|
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, range_start, range_stop,
|
||||||
|
range_step);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_slice_indices_i64(bool start_defined, int64_t start, bool stop_defined, int64_t stop, bool step_defined,
|
||||||
|
int64_t step, int64_t length, int64_t *range_start, int64_t *range_stop,
|
||||||
|
int64_t *range_step)
|
||||||
|
{
|
||||||
|
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, range_start, range_stop,
|
||||||
|
range_step);
|
||||||
|
}
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -1,12 +1,7 @@
|
||||||
use crate::codegen::{
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
|
|
||||||
llvm_intrinsics::call_int_umin,
|
|
||||||
stmt::gen_for_callback_incrementing,
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
use inkwell::context::Context;
|
use inkwell::context::Context;
|
||||||
use inkwell::types::{ArrayType, BasicType, StructType};
|
use inkwell::types::{BasicType, StructType};
|
||||||
use inkwell::values::{ArrayValue, BasicValue, StructValue};
|
use inkwell::values::{BasicValue, StructValue};
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType},
|
types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType},
|
||||||
values::{BasicValueEnum, IntValue, PointerValue},
|
values::{BasicValueEnum, IntValue, PointerValue},
|
||||||
|
@ -878,887 +873,3 @@ impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
|
||||||
|
|
||||||
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
|
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
|
||||||
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}
|
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}
|
||||||
|
|
||||||
/// Proxy type for a `range` type in LLVM.
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
|
||||||
pub struct RangeType<'ctx> {
|
|
||||||
ty: PointerType<'ctx>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> RangeType<'ctx> {
|
|
||||||
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
|
|
||||||
pub fn is_type(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
|
|
||||||
let llvm_range_ty = llvm_ty.get_element_type();
|
|
||||||
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
|
|
||||||
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
|
|
||||||
};
|
|
||||||
if llvm_range_ty.len() != 3 {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected 3 elements for `range` type, got {}",
|
|
||||||
llvm_range_ty.len()
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
|
|
||||||
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
|
|
||||||
));
|
|
||||||
};
|
|
||||||
if llvm_range_elem_ty.get_bit_width() != 32 {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected 32-bit int type for `range` element type, got {}",
|
|
||||||
llvm_range_elem_ty.get_bit_width()
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an instance of [`RangeType`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn new(ctx: &'ctx Context) -> Self {
|
|
||||||
let llvm_i32 = ctx.i32_type();
|
|
||||||
let llvm_range = llvm_i32.array_type(3).ptr_type(AddressSpace::default());
|
|
||||||
|
|
||||||
RangeType::from_type(llvm_range)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an [`RangeType`] from a [`PointerType`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
|
|
||||||
debug_assert!(Self::is_type(ptr_ty).is_ok());
|
|
||||||
|
|
||||||
RangeType { ty: ptr_ty }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the type of all fields of this `range` type.
|
|
||||||
#[must_use]
|
|
||||||
pub fn value_type(&self) -> IntType<'ctx> {
|
|
||||||
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
|
|
||||||
type Base = PointerType<'ctx>;
|
|
||||||
type Underlying = ArrayType<'ctx>;
|
|
||||||
type Value = RangeValue<'ctx>;
|
|
||||||
|
|
||||||
fn new_value<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self::Value {
|
|
||||||
self.create_value(
|
|
||||||
generator.gen_var_alloc(ctx, self.as_underlying_type().into(), name).unwrap(),
|
|
||||||
name,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn create_value(
|
|
||||||
&self,
|
|
||||||
value: <Self::Value as ProxyValue<'ctx>>::Base,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self::Value {
|
|
||||||
debug_assert_eq!(value.get_type(), self.as_base_type());
|
|
||||||
|
|
||||||
RangeValue { value, name }
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_base_type(&self) -> Self::Base {
|
|
||||||
self.ty
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_underlying_type(&self) -> Self::Underlying {
|
|
||||||
self.as_base_type().get_element_type().into_array_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
|
|
||||||
fn from(value: RangeType<'ctx>) -> Self {
|
|
||||||
value.as_base_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Proxy type for accessing a `range` value in LLVM.
|
|
||||||
#[derive(Copy, Clone)]
|
|
||||||
pub struct RangeValue<'ctx> {
|
|
||||||
value: PointerValue<'ctx>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> RangeValue<'ctx> {
|
|
||||||
/// Checks whether `value` is an instance of `range`, returning [Err] if `value` is not an instance.
|
|
||||||
pub fn is_instance(value: PointerValue<'ctx>) -> Result<(), String> {
|
|
||||||
RangeType::is_type(value.get_type())
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an [`RangeValue`] from a [`PointerValue`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn from_ptr_val(ptr: PointerValue<'ctx>, name: Option<&'ctx str>) -> Self {
|
|
||||||
debug_assert!(Self::is_instance(ptr).is_ok());
|
|
||||||
|
|
||||||
<Self as ProxyValue<'ctx>>::Type::from_type(ptr.get_type()).create_value(ptr, name)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ptr_to_start(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let var_name = self.name.map(|v| format!("{v}.start.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.as_base_value(),
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_int(0, false)],
|
|
||||||
var_name.as_str(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ptr_to_end(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let var_name = self.name.map(|v| format!("{v}.end.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.as_base_value(),
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
|
|
||||||
var_name.as_str(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ptr_to_step(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let var_name = self.name.map(|v| format!("{v}.step.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.as_base_value(),
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_int(2, false)],
|
|
||||||
var_name.as_str(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Stores the `start` value into this instance.
|
|
||||||
pub fn store_start(&self, ctx: &CodeGenContext<'ctx, '_>, start: IntValue<'ctx>) {
|
|
||||||
debug_assert_eq!(start.get_type().get_bit_width(), 32);
|
|
||||||
|
|
||||||
let pstart = self.ptr_to_start(ctx);
|
|
||||||
ctx.builder.build_store(pstart, start).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the `start` value of this `range`.
|
|
||||||
pub fn load_start(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
|
|
||||||
let pstart = self.ptr_to_start(ctx);
|
|
||||||
let var_name = name
|
|
||||||
.map(ToString::to_string)
|
|
||||||
.or_else(|| self.name.map(|v| format!("{v}.start")))
|
|
||||||
.unwrap_or_default();
|
|
||||||
|
|
||||||
ctx.builder
|
|
||||||
.build_load(pstart, var_name.as_str())
|
|
||||||
.map(BasicValueEnum::into_int_value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Stores the `end` value into this instance.
|
|
||||||
pub fn store_end(&self, ctx: &CodeGenContext<'ctx, '_>, end: IntValue<'ctx>) {
|
|
||||||
debug_assert_eq!(end.get_type().get_bit_width(), 32);
|
|
||||||
|
|
||||||
let pend = self.ptr_to_end(ctx);
|
|
||||||
ctx.builder.build_store(pend, end).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the `end` value of this `range`.
|
|
||||||
pub fn load_end(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
|
|
||||||
let pend = self.ptr_to_end(ctx);
|
|
||||||
let var_name = name
|
|
||||||
.map(ToString::to_string)
|
|
||||||
.or_else(|| self.name.map(|v| format!("{v}.end")))
|
|
||||||
.unwrap_or_default();
|
|
||||||
|
|
||||||
ctx.builder.build_load(pend, var_name.as_str()).map(BasicValueEnum::into_int_value).unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Stores the `step` value into this instance.
|
|
||||||
pub fn store_step(&self, ctx: &CodeGenContext<'ctx, '_>, step: IntValue<'ctx>) {
|
|
||||||
debug_assert_eq!(step.get_type().get_bit_width(), 32);
|
|
||||||
|
|
||||||
let pstep = self.ptr_to_step(ctx);
|
|
||||||
ctx.builder.build_store(pstep, step).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the `step` value of this `range`.
|
|
||||||
pub fn load_step(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
|
|
||||||
let pstep = self.ptr_to_step(ctx);
|
|
||||||
let var_name = name
|
|
||||||
.map(ToString::to_string)
|
|
||||||
.or_else(|| self.name.map(|v| format!("{v}.step")))
|
|
||||||
.unwrap_or_default();
|
|
||||||
|
|
||||||
ctx.builder
|
|
||||||
.build_load(pstep, var_name.as_str())
|
|
||||||
.map(BasicValueEnum::into_int_value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ProxyValue<'ctx> for RangeValue<'ctx> {
|
|
||||||
type Base = PointerValue<'ctx>;
|
|
||||||
type Underlying = ArrayValue<'ctx>;
|
|
||||||
type Type = RangeType<'ctx>;
|
|
||||||
|
|
||||||
fn get_type(&self) -> Self::Type {
|
|
||||||
RangeType::from_type(self.value.get_type())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_base_value(&self) -> Self::Base {
|
|
||||||
self.value
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_underlying_value(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self::Underlying {
|
|
||||||
ctx.builder
|
|
||||||
.build_load(self.as_base_value(), name.unwrap_or_default())
|
|
||||||
.map(BasicValueEnum::into_array_value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> From<RangeValue<'ctx>> for PointerValue<'ctx> {
|
|
||||||
fn from(value: RangeValue<'ctx>) -> Self {
|
|
||||||
value.as_base_value()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Proxy type for a `ndarray` type in LLVM.
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
|
||||||
pub struct NDArrayType<'ctx> {
|
|
||||||
ty: PointerType<'ctx>,
|
|
||||||
llvm_usize: IntType<'ctx>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayType<'ctx> {
|
|
||||||
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
|
|
||||||
pub fn is_type(llvm_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Result<(), String> {
|
|
||||||
let llvm_ndarray_ty = llvm_ty.get_element_type();
|
|
||||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
|
|
||||||
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
|
|
||||||
};
|
|
||||||
if llvm_ndarray_ty.count_fields() != 3 {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected 3 fields in `NDArray`, got {}",
|
|
||||||
llvm_ndarray_ty.count_fields()
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap();
|
|
||||||
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else {
|
|
||||||
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}"));
|
|
||||||
};
|
|
||||||
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
|
|
||||||
llvm_usize.get_bit_width(),
|
|
||||||
ndarray_ndims_ty.get_bit_width()
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
|
|
||||||
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
|
|
||||||
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
|
|
||||||
};
|
|
||||||
let ndarray_dims = ndarray_pdims.get_element_type();
|
|
||||||
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
|
|
||||||
));
|
|
||||||
};
|
|
||||||
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
|
|
||||||
return Err(format!(
|
|
||||||
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
|
|
||||||
llvm_usize.get_bit_width(),
|
|
||||||
ndarray_dims.get_bit_width()
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
|
|
||||||
let Ok(_) = PointerType::try_from(ndarray_data_ty) else {
|
|
||||||
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an instance of [`ListType`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn new<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
dtype: BasicTypeEnum<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
let llvm_usize = generator.get_size_type(ctx);
|
|
||||||
|
|
||||||
// struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
|
||||||
//
|
|
||||||
// * num_dims: Number of dimensions in the array
|
|
||||||
// * dims: Pointer to an array containing the size of each dimension
|
|
||||||
// * data: Pointer to an array containing the array data
|
|
||||||
let llvm_ndarray = ctx
|
|
||||||
.struct_type(
|
|
||||||
&[
|
|
||||||
llvm_usize.into(),
|
|
||||||
llvm_usize.ptr_type(AddressSpace::default()).into(),
|
|
||||||
dtype.ptr_type(AddressSpace::default()).into(),
|
|
||||||
],
|
|
||||||
false,
|
|
||||||
)
|
|
||||||
.ptr_type(AddressSpace::default());
|
|
||||||
|
|
||||||
NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an [`NDArrayType`] from a [`PointerType`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
|
||||||
debug_assert!(Self::is_type(ptr_ty, llvm_usize).is_ok());
|
|
||||||
|
|
||||||
NDArrayType { ty: ptr_ty, llvm_usize }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the type of the `size` field of this `ndarray` type.
|
|
||||||
#[must_use]
|
|
||||||
pub fn size_type(&self) -> IntType<'ctx> {
|
|
||||||
self.as_base_type()
|
|
||||||
.get_element_type()
|
|
||||||
.into_struct_type()
|
|
||||||
.get_field_type_at_index(0)
|
|
||||||
.map(BasicTypeEnum::into_int_type)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the element type of this `ndarray` type.
|
|
||||||
#[must_use]
|
|
||||||
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
|
|
||||||
self.as_base_type()
|
|
||||||
.get_element_type()
|
|
||||||
.into_struct_type()
|
|
||||||
.get_field_type_at_index(2)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
|
|
||||||
type Base = PointerType<'ctx>;
|
|
||||||
type Underlying = StructType<'ctx>;
|
|
||||||
type Value = NDArrayValue<'ctx>;
|
|
||||||
|
|
||||||
fn new_value<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self::Value {
|
|
||||||
self.create_value(
|
|
||||||
generator.gen_var_alloc(ctx, self.as_underlying_type().into(), name).unwrap(),
|
|
||||||
name,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn create_value(
|
|
||||||
&self,
|
|
||||||
value: <Self::Value as ProxyValue<'ctx>>::Base,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self::Value {
|
|
||||||
debug_assert_eq!(value.get_type(), self.as_base_type());
|
|
||||||
|
|
||||||
NDArrayValue { value, llvm_usize: self.llvm_usize, name }
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_base_type(&self) -> Self::Base {
|
|
||||||
self.ty
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_underlying_type(&self) -> Self::Underlying {
|
|
||||||
self.as_base_type().get_element_type().into_struct_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
|
|
||||||
fn from(value: NDArrayType<'ctx>) -> Self {
|
|
||||||
value.as_base_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Proxy type for accessing an `NDArray` value in LLVM.
|
|
||||||
#[derive(Copy, Clone)]
|
|
||||||
pub struct NDArrayValue<'ctx> {
|
|
||||||
value: PointerValue<'ctx>,
|
|
||||||
llvm_usize: IntType<'ctx>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayValue<'ctx> {
|
|
||||||
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
|
|
||||||
/// instance.
|
|
||||||
pub fn is_instance(value: PointerValue<'ctx>, llvm_usize: IntType<'ctx>) -> Result<(), String> {
|
|
||||||
NDArrayType::is_type(value.get_type(), llvm_usize)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn from_ptr_val(
|
|
||||||
ptr: PointerValue<'ctx>,
|
|
||||||
llvm_usize: IntType<'ctx>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self {
|
|
||||||
debug_assert!(Self::is_instance(ptr, llvm_usize).is_ok());
|
|
||||||
|
|
||||||
<Self as ProxyValue<'ctx>>::Type::from_type(ptr.get_type(), llvm_usize)
|
|
||||||
.create_value(ptr, name)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the pointer to the field storing the number of dimensions of this `NDArray`.
|
|
||||||
fn ptr_to_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let var_name = self.name.map(|v| format!("{v}.ndims.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.as_base_value(),
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
|
|
||||||
var_name.as_str(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Stores the number of dimensions `ndims` into this instance.
|
|
||||||
pub fn store_ndims<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &G,
|
|
||||||
ndims: IntValue<'ctx>,
|
|
||||||
) {
|
|
||||||
debug_assert_eq!(ndims.get_type(), generator.get_size_type(ctx.ctx));
|
|
||||||
|
|
||||||
let pndims = self.ptr_to_ndims(ctx);
|
|
||||||
ctx.builder.build_store(pndims, ndims).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the number of dimensions of this `NDArray` as a value.
|
|
||||||
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
|
||||||
let pndims = self.ptr_to_ndims(ctx);
|
|
||||||
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the double-indirection pointer to the `dims` array, as if by calling `getelementptr`
|
|
||||||
/// on the field.
|
|
||||||
fn ptr_to_dims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let var_name = self.name.map(|v| format!("{v}.dims.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.as_base_value(),
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
|
|
||||||
var_name.as_str(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Stores the array of dimension sizes `dims` into this instance.
|
|
||||||
fn store_dim_sizes(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
|
|
||||||
ctx.builder.build_store(self.ptr_to_dims(ctx), dims).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience method for creating a new array storing dimension sizes with the given `size`.
|
|
||||||
pub fn create_dim_sizes(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
llvm_usize: IntType<'ctx>,
|
|
||||||
size: IntValue<'ctx>,
|
|
||||||
) {
|
|
||||||
self.store_dim_sizes(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a proxy object to the field storing the size of each dimension of this `NDArray`.
|
|
||||||
#[must_use]
|
|
||||||
pub fn dim_sizes(&self) -> NDArrayDimsProxy<'ctx, '_> {
|
|
||||||
NDArrayDimsProxy(self)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
|
|
||||||
/// on the field.
|
|
||||||
fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.as_base_value(),
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_int(2, true)],
|
|
||||||
var_name.as_str(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Stores the array of data elements `data` into this instance.
|
|
||||||
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
|
|
||||||
ctx.builder.build_store(self.ptr_to_data(ctx), data).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience method for creating a new array storing data elements with the given element
|
|
||||||
/// type `elem_ty` and `size`.
|
|
||||||
pub fn create_data(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
elem_ty: BasicTypeEnum<'ctx>,
|
|
||||||
size: IntValue<'ctx>,
|
|
||||||
) {
|
|
||||||
self.store_data(ctx, ctx.builder.build_array_alloca(elem_ty, size, "").unwrap());
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a proxy object to the field storing the data of this `NDArray`.
|
|
||||||
#[must_use]
|
|
||||||
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
|
|
||||||
NDArrayDataProxy(self)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
|
|
||||||
type Base = PointerValue<'ctx>;
|
|
||||||
type Underlying = StructValue<'ctx>;
|
|
||||||
type Type = NDArrayType<'ctx>;
|
|
||||||
|
|
||||||
fn get_type(&self) -> Self::Type {
|
|
||||||
NDArrayType::from_type(self.as_base_value().get_type(), self.llvm_usize)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_base_value(&self) -> Self::Base {
|
|
||||||
self.value
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_underlying_value(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Self::Underlying {
|
|
||||||
ctx.builder
|
|
||||||
.build_load(self.as_base_value(), name.unwrap_or_default())
|
|
||||||
.map(BasicValueEnum::into_struct_value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
|
|
||||||
fn from(value: NDArrayValue<'ctx>) -> Self {
|
|
||||||
value.as_base_value()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
|
|
||||||
#[derive(Copy, Clone)]
|
|
||||||
pub struct NDArrayDimsProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
|
|
||||||
|
|
||||||
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDimsProxy<'ctx, '_> {
|
|
||||||
fn element_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &G,
|
|
||||||
) -> AnyTypeEnum<'ctx> {
|
|
||||||
self.0.dim_sizes().base_ptr(ctx, generator).get_type().get_element_type()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn base_ptr<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
_: &G,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
|
|
||||||
|
|
||||||
ctx.builder
|
|
||||||
.build_load(self.0.ptr_to_dims(ctx), var_name.as_str())
|
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn size<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
_: &G,
|
|
||||||
) -> IntValue<'ctx> {
|
|
||||||
self.0.load_ndims(ctx)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {
|
|
||||||
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &mut G,
|
|
||||||
idx: &IntValue<'ctx>,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &mut G,
|
|
||||||
idx: &IntValue<'ctx>,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let size = self.size(ctx, generator);
|
|
||||||
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
in_range,
|
|
||||||
"0:IndexError",
|
|
||||||
"index {0} is out of bounds for axis 0 with size {1}",
|
|
||||||
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
|
|
||||||
ctx.current_loc,
|
|
||||||
);
|
|
||||||
|
|
||||||
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {}
|
|
||||||
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {}
|
|
||||||
|
|
||||||
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {
|
|
||||||
fn downcast_to_type(
|
|
||||||
&self,
|
|
||||||
_: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
value: BasicValueEnum<'ctx>,
|
|
||||||
) -> IntValue<'ctx> {
|
|
||||||
value.into_int_value()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {
|
|
||||||
fn upcast_from_type(
|
|
||||||
&self,
|
|
||||||
_: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> BasicValueEnum<'ctx> {
|
|
||||||
value.into()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Proxy type for accessing the `data` array of an `NDArray` instance in LLVM.
|
|
||||||
#[derive(Copy, Clone)]
|
|
||||||
pub struct NDArrayDataProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
|
|
||||||
|
|
||||||
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
|
|
||||||
fn element_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &G,
|
|
||||||
) -> AnyTypeEnum<'ctx> {
|
|
||||||
self.0.data().base_ptr(ctx, generator).get_type().get_element_type()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn base_ptr<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
_: &G,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
|
|
||||||
|
|
||||||
ctx.builder
|
|
||||||
.build_load(self.0.ptr_to_data(ctx), var_name.as_str())
|
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn size<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &G,
|
|
||||||
) -> IntValue<'ctx> {
|
|
||||||
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
|
|
||||||
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &mut G,
|
|
||||||
idx: &IntValue<'ctx>,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.base_ptr(ctx, generator),
|
|
||||||
&[*idx],
|
|
||||||
name.unwrap_or_default(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &mut G,
|
|
||||||
idx: &IntValue<'ctx>,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let data_sz = self.size(ctx, generator);
|
|
||||||
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, data_sz, "").unwrap();
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
in_range,
|
|
||||||
"0:IndexError",
|
|
||||||
"index {0} is out of bounds with size {1}",
|
|
||||||
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
|
|
||||||
ctx.current_loc,
|
|
||||||
);
|
|
||||||
|
|
||||||
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
|
|
||||||
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
|
|
||||||
|
|
||||||
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
|
|
||||||
for NDArrayDataProxy<'ctx, '_>
|
|
||||||
{
|
|
||||||
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &mut G,
|
|
||||||
indices: &Index,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
|
|
||||||
let indices_elem_ty = indices
|
|
||||||
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
|
||||||
.get_type()
|
|
||||||
.get_element_type();
|
|
||||||
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
|
||||||
panic!("Expected list[int32] but got {indices_elem_ty}")
|
|
||||||
};
|
|
||||||
assert_eq!(
|
|
||||||
indices_elem_ty.get_bit_width(),
|
|
||||||
32,
|
|
||||||
"Expected list[int32] but got list[int{}]",
|
|
||||||
indices_elem_ty.get_bit_width()
|
|
||||||
);
|
|
||||||
|
|
||||||
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.base_ptr(ctx, generator),
|
|
||||||
&[index],
|
|
||||||
name.unwrap_or_default(),
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
generator: &mut G,
|
|
||||||
indices: &Index,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
|
|
||||||
let indices_size = indices.size(ctx, generator);
|
|
||||||
let nidx_leq_ndims = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_compare(IntPredicate::SLE, indices_size, self.0.load_ndims(ctx), "")
|
|
||||||
.unwrap();
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
nidx_leq_ndims,
|
|
||||||
"0:IndexError",
|
|
||||||
"invalid index to scalar variable",
|
|
||||||
[None, None, None],
|
|
||||||
ctx.current_loc,
|
|
||||||
);
|
|
||||||
|
|
||||||
let indices_len = indices.size(ctx, generator);
|
|
||||||
let ndarray_len = self.0.load_ndims(ctx);
|
|
||||||
let len = call_int_umin(ctx, indices_len, ndarray_len, None);
|
|
||||||
gen_for_callback_incrementing(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
None,
|
|
||||||
llvm_usize.const_zero(),
|
|
||||||
(len, false),
|
|
||||||
|generator, ctx, _, i| {
|
|
||||||
let (dim_idx, dim_sz) = unsafe {
|
|
||||||
(
|
|
||||||
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),
|
|
||||||
self.0.dim_sizes().get_typed_unchecked(ctx, generator, &i, None),
|
|
||||||
)
|
|
||||||
};
|
|
||||||
let dim_idx = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(dim_idx, dim_sz.get_type(), "")
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let dim_lt =
|
|
||||||
ctx.builder.build_int_compare(IntPredicate::SLT, dim_idx, dim_sz, "").unwrap();
|
|
||||||
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
dim_lt,
|
|
||||||
"0:IndexError",
|
|
||||||
"index {0} is out of bounds for axis 0 with size {1}",
|
|
||||||
[Some(dim_idx), Some(dim_sz), None],
|
|
||||||
ctx.current_loc,
|
|
||||||
);
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
},
|
|
||||||
llvm_usize.const_int(1, false),
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
unsafe { self.ptr_offset_unchecked(ctx, generator, indices, name) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeAccessor<'ctx, Index>
|
|
||||||
for NDArrayDataProxy<'ctx, '_>
|
|
||||||
{
|
|
||||||
}
|
|
||||||
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx, Index>
|
|
||||||
for NDArrayDataProxy<'ctx, '_>
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{
|
classes::{
|
||||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
|
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, ProxyType, ProxyValue,
|
||||||
ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
UntypedArrayLikeAccessor,
|
||||||
},
|
},
|
||||||
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
||||||
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
||||||
|
@ -11,7 +11,12 @@ use crate::{
|
||||||
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
|
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
|
||||||
call_int_umin, call_memcpy_generic,
|
call_int_umin, call_memcpy_generic,
|
||||||
},
|
},
|
||||||
need_sret, numpy,
|
need_sret,
|
||||||
|
object::{
|
||||||
|
exception::Exception,
|
||||||
|
ndarray::{NDArrayOut, ScalarOrNDArray},
|
||||||
|
str::str_model,
|
||||||
|
},
|
||||||
stmt::{
|
stmt::{
|
||||||
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
||||||
gen_var,
|
gen_var,
|
||||||
|
@ -19,11 +24,7 @@ use crate::{
|
||||||
CodeGenContext, CodeGenTask, CodeGenerator,
|
CodeGenContext, CodeGenTask, CodeGenerator,
|
||||||
},
|
},
|
||||||
symbol_resolver::{SymbolValue, ValueEnum},
|
symbol_resolver::{SymbolValue, ValueEnum},
|
||||||
toplevel::{
|
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
|
||||||
helper::PrimDef,
|
|
||||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
|
||||||
DefinitionId, TopLevelDef,
|
|
||||||
},
|
|
||||||
typecheck::{
|
typecheck::{
|
||||||
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
||||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
||||||
|
@ -32,7 +33,7 @@ use crate::{
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
types::{AnyType, BasicType, BasicTypeEnum},
|
types::{AnyType, BasicType, BasicTypeEnum},
|
||||||
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
|
values::{BasicValue, BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue},
|
||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::{chain, izip, Either, Itertools};
|
use itertools::{chain, izip, Either, Itertools};
|
||||||
|
@ -44,6 +45,16 @@ use std::cmp::min;
|
||||||
use std::iter::{repeat, repeat_with};
|
use std::iter::{repeat, repeat_with};
|
||||||
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
||||||
|
|
||||||
|
use super::{
|
||||||
|
model::*,
|
||||||
|
object::{
|
||||||
|
any::AnyObject,
|
||||||
|
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject},
|
||||||
|
range::RangeObject,
|
||||||
|
str::Str,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
pub fn get_subst_key(
|
pub fn get_subst_key(
|
||||||
unifier: &mut Unifier,
|
unifier: &mut Unifier,
|
||||||
obj: Option<Type>,
|
obj: Option<Type>,
|
||||||
|
@ -151,14 +162,8 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
SymbolValue::Bool(v) => self.ctx.i8_type().const_int(u64::from(*v), true).into(),
|
SymbolValue::Bool(v) => self.ctx.i8_type().const_int(u64::from(*v), true).into(),
|
||||||
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
|
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
|
||||||
SymbolValue::Str(v) => {
|
SymbolValue::Str(v) => {
|
||||||
let str_ptr = self
|
let string = self.gen_string(generator, v);
|
||||||
.builder
|
string.value.into()
|
||||||
.build_global_string_ptr(v, "const")
|
|
||||||
.map(|v| v.as_pointer_value().into())
|
|
||||||
.unwrap();
|
|
||||||
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
||||||
let ty = self.get_llvm_type(generator, self.primitives.str).into_struct_type();
|
|
||||||
ty.const_named_struct(&[str_ptr, size.into()]).into()
|
|
||||||
}
|
}
|
||||||
SymbolValue::Tuple(ls) => {
|
SymbolValue::Tuple(ls) => {
|
||||||
let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v, ty)).collect_vec();
|
let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v, ty)).collect_vec();
|
||||||
|
@ -301,21 +306,8 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
}
|
}
|
||||||
Constant::Str(v) => {
|
Constant::Str(v) => {
|
||||||
assert!(self.unifier.unioned(ty, self.primitives.str));
|
assert!(self.unifier.unioned(ty, self.primitives.str));
|
||||||
if let Some(v) = self.const_strings.get(v) {
|
let string = self.gen_string(generator, v);
|
||||||
Some(*v)
|
Some(string.value.into())
|
||||||
} else {
|
|
||||||
let str_ptr = self
|
|
||||||
.builder
|
|
||||||
.build_global_string_ptr(v, "const")
|
|
||||||
.map(|v| v.as_pointer_value().into())
|
|
||||||
.unwrap();
|
|
||||||
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
||||||
let ty = self.get_llvm_type(generator, self.primitives.str);
|
|
||||||
let val =
|
|
||||||
ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into();
|
|
||||||
self.const_strings.insert(v.to_string(), val);
|
|
||||||
Some(val)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
Constant::Ellipsis => {
|
Constant::Ellipsis => {
|
||||||
let msg = self.gen_string(generator, "NotImplementedError");
|
let msg = self.gen_string(generator, "NotImplementedError");
|
||||||
|
@ -323,7 +315,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
self.raise_exn(
|
self.raise_exn(
|
||||||
generator,
|
generator,
|
||||||
"0:NotImplementedError",
|
"0:NotImplementedError",
|
||||||
msg.into(),
|
msg,
|
||||||
[None, None, None],
|
[None, None, None],
|
||||||
self.current_loc,
|
self.current_loc,
|
||||||
);
|
);
|
||||||
|
@ -583,60 +575,59 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Helper function for generating a LLVM variable storing a [String].
|
/// Helper function for generating a LLVM variable storing a [String].
|
||||||
pub fn gen_string<G, S>(&mut self, generator: &mut G, s: S) -> StructValue<'ctx>
|
pub fn gen_string<G, S>(&mut self, generator: &mut G, string: S) -> Instance<'ctx, Str>
|
||||||
where
|
where
|
||||||
G: CodeGenerator + ?Sized,
|
G: CodeGenerator + ?Sized,
|
||||||
S: Into<String>,
|
S: Into<String>,
|
||||||
{
|
{
|
||||||
self.gen_const(generator, &Constant::Str(s.into()), self.primitives.str)
|
let string = string.into();
|
||||||
.map(BasicValueEnum::into_struct_value)
|
self.const_strings.get(&string).copied().unwrap_or_else(|| {
|
||||||
.unwrap()
|
let str_ptr = self.builder.build_global_string_ptr(&string, "const").unwrap();
|
||||||
|
let str_ptr = str_ptr.as_basic_value_enum();
|
||||||
|
|
||||||
|
let str_len = Int(SizeT).const_int(generator, self.ctx, string.len() as u64);
|
||||||
|
let str_len = str_len.value.as_basic_value_enum();
|
||||||
|
|
||||||
|
let str = str_model().const_struct(generator, self.ctx, &[str_ptr, str_len]);
|
||||||
|
self.const_strings.insert(string, str);
|
||||||
|
str
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn raise_exn<G: CodeGenerator + ?Sized>(
|
pub fn raise_exn<G: CodeGenerator + ?Sized>(
|
||||||
&mut self,
|
&mut self,
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
name: &str,
|
name: &str,
|
||||||
msg: BasicValueEnum<'ctx>,
|
msg: Instance<'ctx, Str>,
|
||||||
params: [Option<IntValue<'ctx>>; 3],
|
params: [Option<IntValue<'ctx>>; 3], // Can have any bit-width.
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
let zelf = if let Some(exception_val) = self.exception_val {
|
let exn = if let Some(exn) = self.exception_val {
|
||||||
exception_val
|
exn
|
||||||
} else {
|
} else {
|
||||||
let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type();
|
let exn = Struct(Exception).var_alloca(generator, self, Some("exn")).unwrap();
|
||||||
let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into();
|
*self.exception_val.insert(exn)
|
||||||
let zelf = generator.gen_var_alloc(self, zelf_ty, Some("exn")).unwrap();
|
|
||||||
*self.exception_val.insert(zelf)
|
|
||||||
};
|
};
|
||||||
let int32 = self.ctx.i32_type();
|
|
||||||
let zero = int32.const_zero();
|
// Set exception ID
|
||||||
unsafe {
|
|
||||||
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
|
|
||||||
let id = self.resolver.get_string_id(name);
|
let id = self.resolver.get_string_id(name);
|
||||||
self.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
|
let id = Int(Int32).const_int(generator, self.ctx, id as u64);
|
||||||
let ptr = self
|
exn.set(self, |f| f.id, id);
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
|
// Set message
|
||||||
.unwrap();
|
exn.set(self, |f| f.msg, msg);
|
||||||
self.builder.build_store(ptr, msg).unwrap();
|
|
||||||
let i64_zero = self.ctx.i64_type().const_zero();
|
// Set parameters.
|
||||||
for (i, attr_ind) in [6, 7, 8].iter().enumerate() {
|
let num_0 = Int(Int64).const_0(generator, self.ctx);
|
||||||
let ptr = self
|
for (i, param) in params.iter().enumerate() {
|
||||||
.builder
|
// Param can be of any bit-width. We need to cast them.
|
||||||
.build_in_bounds_gep(
|
// Defaults to 0 if not provided
|
||||||
zelf,
|
let param = param
|
||||||
&[zero, int32.const_int(*attr_ind, false)],
|
.map_or(num_0, |param| Int(Int64).s_extend_or_bit_cast(generator, self, param));
|
||||||
"exn.param",
|
|
||||||
)
|
exn.set(self, |f| f.params[i], param);
|
||||||
.unwrap();
|
|
||||||
let val = params[i].map_or(i64_zero, |v| {
|
|
||||||
self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext").unwrap()
|
|
||||||
});
|
|
||||||
self.builder.build_store(ptr, val).unwrap();
|
|
||||||
}
|
}
|
||||||
}
|
gen_raise(generator, self, Some(exn), loc);
|
||||||
gen_raise(generator, self, Some(&zelf.into()), loc);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn make_assert<G: CodeGenerator + ?Sized>(
|
pub fn make_assert<G: CodeGenerator + ?Sized>(
|
||||||
|
@ -649,7 +640,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
let err_msg = self.gen_string(generator, err_msg);
|
let err_msg = self.gen_string(generator, err_msg);
|
||||||
self.make_assert_impl(generator, cond, err_name, err_msg.into(), params, loc);
|
self.make_assert_impl(generator, cond, err_name, err_msg, params, loc);
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn make_assert_impl<G: CodeGenerator + ?Sized>(
|
pub fn make_assert_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
@ -657,7 +648,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
cond: IntValue<'ctx>,
|
cond: IntValue<'ctx>,
|
||||||
err_name: &str,
|
err_name: &str,
|
||||||
err_msg: BasicValueEnum<'ctx>,
|
err_msg: Instance<'ctx, Str>,
|
||||||
params: [Option<IntValue<'ctx>>; 3],
|
params: [Option<IntValue<'ctx>>; 3],
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
|
@ -1072,18 +1063,6 @@ pub fn gen_call<'ctx, G: CodeGenerator>(
|
||||||
Ok(ctx.build_call_or_invoke(fun_val, ¶m_vals, "call"))
|
Ok(ctx.build_call_or_invoke(fun_val, ¶m_vals, "call"))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates three LLVM variables representing the start, stop, and step values of a [range] class
|
|
||||||
/// respectively.
|
|
||||||
pub fn destructure_range<'ctx>(
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
range: RangeValue<'ctx>,
|
|
||||||
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
|
|
||||||
let start = range.load_start(ctx, None);
|
|
||||||
let end = range.load_end(ctx, None);
|
|
||||||
let step = range.load_step(ctx, None);
|
|
||||||
(start, end, step)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
|
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
|
||||||
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
|
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
|
||||||
///
|
///
|
||||||
|
@ -1158,8 +1137,14 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
|
||||||
TypeEnum::TObj { obj_id, .. }
|
TypeEnum::TObj { obj_id, .. }
|
||||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||||
{
|
{
|
||||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
let range = AnyObject { value: iter_val, ty: iter_ty };
|
||||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
let range = RangeObject::from_object(generator, ctx, range);
|
||||||
|
|
||||||
|
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||||
|
let start = start.value;
|
||||||
|
let stop = stop.value;
|
||||||
|
let step = step.value;
|
||||||
|
|
||||||
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
|
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
|
||||||
// add 1 to the length as the value is rounded to zero
|
// add 1 to the length as the value is rounded to zero
|
||||||
// the length may be 1 more than the actual length if the division is exact, but the
|
// the length may be 1 more than the actual length if the division is exact, but the
|
||||||
|
@ -1540,99 +1525,75 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
{
|
{
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let left =
|
||||||
|
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty1, value: left_val });
|
||||||
|
let right =
|
||||||
|
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty2, value: right_val });
|
||||||
|
|
||||||
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
// Inhomogeneous binary operations are not supported.
|
||||||
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
assert!(ctx.unifier.unioned(left.get_dtype(), right.get_dtype()));
|
||||||
|
|
||||||
if is_ndarray1 && is_ndarray2 {
|
let common_dtype = left.get_dtype();
|
||||||
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
|
|
||||||
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
|
|
||||||
|
|
||||||
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
let out = match op.variant {
|
||||||
|
BinopVariant::Normal => NDArrayOut::NewNDArray { dtype: common_dtype },
|
||||||
let left_val =
|
BinopVariant::AugAssign => {
|
||||||
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None);
|
// If this is an augmented assignment.
|
||||||
let right_val =
|
// `left` has to be an ndarray. If it were a scalar then NAC3 simply doesn't support it.
|
||||||
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None);
|
if let ScalarOrNDArray::NDArray(out_ndarray) = left {
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray: out_ndarray }
|
||||||
let res = if op.base == Operator::MatMult {
|
|
||||||
// MatMult is the only binop which is not an elementwise op
|
|
||||||
numpy::ndarray_matmul_2d(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
ndarray_dtype1,
|
|
||||||
match op.variant {
|
|
||||||
BinopVariant::Normal => None,
|
|
||||||
BinopVariant::AugAssign => Some(left_val),
|
|
||||||
},
|
|
||||||
left_val,
|
|
||||||
right_val,
|
|
||||||
)?
|
|
||||||
} else {
|
} else {
|
||||||
numpy::ndarray_elementwise_binop_impl(
|
panic!("left must be an ndarray")
|
||||||
generator,
|
}
|
||||||
ctx,
|
}
|
||||||
ndarray_dtype1,
|
|
||||||
match op.variant {
|
|
||||||
BinopVariant::Normal => None,
|
|
||||||
BinopVariant::AugAssign => Some(left_val),
|
|
||||||
},
|
|
||||||
(left_val.as_base_value().into(), false),
|
|
||||||
(right_val.as_base_value().into(), false),
|
|
||||||
|generator, ctx, (lhs, rhs)| {
|
|
||||||
gen_binop_expr_with_values(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
(&Some(ndarray_dtype1), lhs),
|
|
||||||
op,
|
|
||||||
(&Some(ndarray_dtype2), rhs),
|
|
||||||
ctx.current_loc,
|
|
||||||
)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ndarray_dtype1,
|
|
||||||
)
|
|
||||||
},
|
|
||||||
)?
|
|
||||||
};
|
};
|
||||||
|
|
||||||
Ok(Some(res.as_base_value().into()))
|
if op.base == Operator::MatMult {
|
||||||
|
// Handle matrix multiplication.
|
||||||
|
let left = left.to_ndarray(generator, ctx);
|
||||||
|
let right = right.to_ndarray(generator, ctx);
|
||||||
|
let result = NDArrayObject::matmul(generator, ctx, left, right, out)
|
||||||
|
.split_unsized(generator, ctx);
|
||||||
|
Ok(Some(ValueEnum::Dynamic(result.to_basic_value_enum())))
|
||||||
} else {
|
} else {
|
||||||
let (ndarray_dtype, _) =
|
// For other operations, they are all elementwise operations.
|
||||||
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
|
|
||||||
let ndarray_val = NDArrayValue::from_ptr_val(
|
// There are only three cases:
|
||||||
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
|
// - LHS is a scalar, RHS is an ndarray.
|
||||||
llvm_usize,
|
// - LHS is an ndarray, RHS is a scalar.
|
||||||
None,
|
// - LHS is an ndarray, RHS is an ndarray.
|
||||||
);
|
//
|
||||||
let res = numpy::ndarray_elementwise_binop_impl(
|
// For all cases, the scalar operand is promoted to an ndarray,
|
||||||
|
// the two are then broadcasted, and starmapped through.
|
||||||
|
|
||||||
|
let left = left.to_ndarray(generator, ctx);
|
||||||
|
let right = right.to_ndarray(generator, ctx);
|
||||||
|
|
||||||
|
let result = NDArrayObject::broadcast_starmap(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
ndarray_dtype,
|
&[left, right],
|
||||||
match op.variant {
|
out,
|
||||||
BinopVariant::Normal => None,
|
|generator, ctx, scalars| {
|
||||||
BinopVariant::AugAssign => Some(ndarray_val),
|
let left_value = scalars[0];
|
||||||
},
|
let right_value = scalars[1];
|
||||||
(left_val, !is_ndarray1),
|
|
||||||
(right_val, !is_ndarray2),
|
let result = gen_binop_expr_with_values(
|
||||||
|generator, ctx, (lhs, rhs)| {
|
|
||||||
gen_binop_expr_with_values(
|
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
(&Some(ndarray_dtype), lhs),
|
(&Some(left.dtype), left_value),
|
||||||
op,
|
op,
|
||||||
(&Some(ndarray_dtype), rhs),
|
(&Some(right.dtype), right_value),
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
)?
|
)?
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
.to_basic_value_enum(ctx, generator, common_dtype)?;
|
||||||
},
|
|
||||||
)?;
|
|
||||||
|
|
||||||
Ok(Some(res.as_base_value().into()))
|
Ok(result)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
Ok(Some(ValueEnum::Dynamic(result.instance.value.as_basic_value_enum())))
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
||||||
|
@ -1790,14 +1751,12 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
_ => val.into(),
|
_ => val.into(),
|
||||||
}
|
}
|
||||||
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let ndarray = AnyObject { value: val, ty };
|
||||||
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
let val = NDArrayValue::from_ptr_val(val.into_pointer_value(), llvm_usize, None);
|
|
||||||
|
|
||||||
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
||||||
// passing it to the elementwise codegen function
|
// passing it to the elementwise codegen function
|
||||||
let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
let op = if ndarray.dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
||||||
if op == ast::Unaryop::Invert {
|
if op == ast::Unaryop::Invert {
|
||||||
ast::Unaryop::Not
|
ast::Unaryop::Not
|
||||||
} else {
|
} else {
|
||||||
|
@ -1810,20 +1769,18 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
op
|
op
|
||||||
};
|
};
|
||||||
|
|
||||||
let res = numpy::ndarray_elementwise_unaryop_impl(
|
let mapped_ndarray = ndarray.map(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
ndarray_dtype,
|
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|
||||||
None,
|
|generator, ctx, scalar| {
|
||||||
val,
|
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray.dtype), scalar))?
|
||||||
|generator, ctx, val| {
|
|
||||||
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
|
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
.to_basic_value_enum(ctx, generator, ndarray.dtype)
|
||||||
},
|
},
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
res.as_base_value().into()
|
ValueEnum::Dynamic(mapped_ndarray.instance.value.as_basic_value_enum())
|
||||||
} else {
|
} else {
|
||||||
unimplemented!()
|
unimplemented!()
|
||||||
}))
|
}))
|
||||||
|
@ -1866,39 +1823,33 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
{
|
{
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let (Some(left_ty), left) = left else { unreachable!() };
|
||||||
|
let (Some(right_ty), right) = comparators[0] else { unreachable!() };
|
||||||
let (Some(left_ty), lhs) = left else { unreachable!() };
|
|
||||||
let (Some(right_ty), rhs) = comparators[0] else { unreachable!() };
|
|
||||||
let op = ops[0];
|
let op = ops[0];
|
||||||
|
|
||||||
let is_ndarray1 =
|
let left = AnyObject { value: left, ty: left_ty };
|
||||||
left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
let left =
|
||||||
let is_ndarray2 =
|
ScalarOrNDArray::split_object(generator, ctx, left).to_ndarray(generator, ctx);
|
||||||
right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
|
||||||
|
|
||||||
return if is_ndarray1 && is_ndarray2 {
|
let right = AnyObject { value: right, ty: right_ty };
|
||||||
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, left_ty);
|
let right =
|
||||||
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, right_ty);
|
ScalarOrNDArray::split_object(generator, ctx, right).to_ndarray(generator, ctx);
|
||||||
|
|
||||||
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
let result_ndarray = NDArrayObject::broadcast_starmap(
|
||||||
|
|
||||||
let left_val =
|
|
||||||
NDArrayValue::from_ptr_val(lhs.into_pointer_value(), llvm_usize, None);
|
|
||||||
let res = numpy::ndarray_elementwise_binop_impl(
|
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
ctx.primitives.bool,
|
&[left, right],
|
||||||
None,
|
NDArrayOut::NewNDArray { dtype: ctx.primitives.bool },
|
||||||
(left_val.as_base_value().into(), false),
|
|generator, ctx, scalars| {
|
||||||
(rhs, false),
|
let left_scalar = scalars[0];
|
||||||
|generator, ctx, (lhs, rhs)| {
|
let right_scalar = scalars[1];
|
||||||
|
|
||||||
let val = gen_cmpop_expr_with_values(
|
let val = gen_cmpop_expr_with_values(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
(Some(ndarray_dtype1), lhs),
|
(Some(left.dtype), left_scalar),
|
||||||
&[op],
|
&[op],
|
||||||
&[(Some(ndarray_dtype2), rhs)],
|
&[(Some(right.dtype), right_scalar)],
|
||||||
)?
|
)?
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(
|
.to_basic_value_enum(
|
||||||
|
@ -1911,40 +1862,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
},
|
},
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
Ok(Some(res.as_base_value().into()))
|
return Ok(Some(result_ndarray.instance.value.into()));
|
||||||
} else {
|
|
||||||
let (ndarray_dtype, _) = unpack_ndarray_var_tys(
|
|
||||||
&mut ctx.unifier,
|
|
||||||
if is_ndarray1 { left_ty } else { right_ty },
|
|
||||||
);
|
|
||||||
let res = numpy::ndarray_elementwise_binop_impl(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
ctx.primitives.bool,
|
|
||||||
None,
|
|
||||||
(lhs, !is_ndarray1),
|
|
||||||
(rhs, !is_ndarray2),
|
|
||||||
|generator, ctx, (lhs, rhs)| {
|
|
||||||
let val = gen_cmpop_expr_with_values(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
(Some(ndarray_dtype), lhs),
|
|
||||||
&[op],
|
|
||||||
&[(Some(ndarray_dtype), rhs)],
|
|
||||||
)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ctx.primitives.bool,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
|
|
||||||
},
|
|
||||||
)?;
|
|
||||||
|
|
||||||
Ok(Some(res.as_base_value().into()))
|
|
||||||
};
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2492,338 +2410,6 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates code for a subscript expression on an `ndarray`.
|
|
||||||
///
|
|
||||||
/// * `ty` - The `Type` of the `NDArray` elements.
|
|
||||||
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
|
|
||||||
/// * `v` - The `NDArray` value.
|
|
||||||
/// * `slice` - The slice expression used to subscript into the `ndarray`.
|
|
||||||
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ty: Type,
|
|
||||||
ndims: Type,
|
|
||||||
v: NDArrayValue<'ctx>,
|
|
||||||
slice: &Expr<Option<Type>>,
|
|
||||||
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
||||||
let llvm_i1 = ctx.ctx.bool_type();
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
|
|
||||||
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
|
|
||||||
unreachable!()
|
|
||||||
};
|
|
||||||
|
|
||||||
let ndims = values
|
|
||||||
.iter()
|
|
||||||
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
|
|
||||||
.collect::<Result<Vec<_>, _>>()
|
|
||||||
.map_err(|val| {
|
|
||||||
format!(
|
|
||||||
"Expected non-negative literal for ndarray.ndims, got {}",
|
|
||||||
i128::try_from(val).unwrap()
|
|
||||||
)
|
|
||||||
})?;
|
|
||||||
|
|
||||||
assert!(!ndims.is_empty());
|
|
||||||
|
|
||||||
// The number of dimensions subscripted by the index expression.
|
|
||||||
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
|
|
||||||
// dimension will remove a dimension.
|
|
||||||
let subscripted_dims = match &slice.node {
|
|
||||||
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
|
|
||||||
if let ExprKind::Slice { .. } = &value_subexpr.node {
|
|
||||||
acc
|
|
||||||
} else {
|
|
||||||
acc + 1
|
|
||||||
}
|
|
||||||
}),
|
|
||||||
|
|
||||||
ExprKind::Slice { .. } => 0,
|
|
||||||
_ => 1,
|
|
||||||
};
|
|
||||||
|
|
||||||
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
|
|
||||||
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
let ndarray_ty =
|
|
||||||
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
|
|
||||||
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
|
||||||
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
|
||||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
|
|
||||||
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
|
|
||||||
|
|
||||||
// Check that len is non-zero
|
|
||||||
let len = v.load_ndims(ctx);
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
|
|
||||||
"0:IndexError",
|
|
||||||
"too many indices for array: array is {0}-dimensional but 1 were indexed",
|
|
||||||
[Some(len), None, None],
|
|
||||||
slice.location,
|
|
||||||
);
|
|
||||||
|
|
||||||
// Normalizes a possibly-negative index to its corresponding positive index
|
|
||||||
let normalize_index = |generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
index: IntValue<'ctx>,
|
|
||||||
dim: u64| {
|
|
||||||
gen_if_else_expr_callback(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
|_, ctx| {
|
|
||||||
Ok(ctx
|
|
||||||
.builder
|
|
||||||
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
|
|
||||||
.unwrap())
|
|
||||||
},
|
|
||||||
|_, _| Ok(Some(index)),
|
|
||||||
|generator, ctx| {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
|
|
||||||
let len = unsafe {
|
|
||||||
v.dim_sizes().get_typed_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(dim, true),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
let index = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_add(
|
|
||||||
len,
|
|
||||||
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
|
|
||||||
},
|
|
||||||
)
|
|
||||||
.map(|v| v.map(BasicValueEnum::into_int_value))
|
|
||||||
};
|
|
||||||
|
|
||||||
// Converts a slice expression into a slice-range tuple
|
|
||||||
let expr_to_slice = |generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
node: &ExprKind<Option<Type>>,
|
|
||||||
dim: u64| {
|
|
||||||
match node {
|
|
||||||
ExprKind::Constant { value: Constant::Int(v), .. } => {
|
|
||||||
let Some(index) =
|
|
||||||
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
|
|
||||||
else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
|
||||||
}
|
|
||||||
|
|
||||||
ExprKind::Slice { lower, upper, step } => {
|
|
||||||
let dim_sz = unsafe {
|
|
||||||
v.dim_sizes().get_typed_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(dim, false),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
|
|
||||||
}
|
|
||||||
|
|
||||||
_ => {
|
|
||||||
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
|
|
||||||
let index = index
|
|
||||||
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
|
||||||
.into_int_value();
|
|
||||||
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
let make_indices_arr = |generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>|
|
|
||||||
-> Result<_, String> {
|
|
||||||
Ok(if let ExprKind::Tuple { elts, .. } = &slice.node {
|
|
||||||
let llvm_int_ty = ctx.get_llvm_type(generator, elts[0].custom.unwrap());
|
|
||||||
let index_addr = generator.gen_array_var_alloc(
|
|
||||||
ctx,
|
|
||||||
llvm_int_ty,
|
|
||||||
llvm_usize.const_int(elts.len() as u64, false),
|
|
||||||
None,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
for (i, elt) in elts.iter().enumerate() {
|
|
||||||
let Some(index) = generator.gen_expr(ctx, elt)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
let index = index
|
|
||||||
.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?
|
|
||||||
.into_int_value();
|
|
||||||
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
let store_ptr = unsafe {
|
|
||||||
index_addr.ptr_offset_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(i as u64, false),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
ctx.builder.build_store(store_ptr, index).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
Some(index_addr)
|
|
||||||
} else if let Some(index) = generator.gen_expr(ctx, slice)? {
|
|
||||||
let llvm_int_ty = ctx.get_llvm_type(generator, slice.custom.unwrap());
|
|
||||||
let index_addr = generator.gen_array_var_alloc(
|
|
||||||
ctx,
|
|
||||||
llvm_int_ty,
|
|
||||||
llvm_usize.const_int(1u64, false),
|
|
||||||
None,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let index =
|
|
||||||
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
|
|
||||||
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
|
|
||||||
|
|
||||||
let store_ptr = unsafe {
|
|
||||||
index_addr.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
|
||||||
};
|
|
||||||
ctx.builder.build_store(store_ptr, index).unwrap();
|
|
||||||
|
|
||||||
Some(index_addr)
|
|
||||||
} else {
|
|
||||||
None
|
|
||||||
})
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some(if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
|
|
||||||
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
|
||||||
|
|
||||||
v.data().get(ctx, generator, &index_addr, None).into()
|
|
||||||
} else {
|
|
||||||
match &slice.node {
|
|
||||||
ExprKind::Tuple { elts, .. } => {
|
|
||||||
let slices = elts
|
|
||||||
.iter()
|
|
||||||
.enumerate()
|
|
||||||
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
|
|
||||||
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
|
|
||||||
.collect::<Result<Vec<_>, _>>()?;
|
|
||||||
if slices.len() < elts.len() {
|
|
||||||
return Ok(None);
|
|
||||||
}
|
|
||||||
|
|
||||||
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
|
|
||||||
|
|
||||||
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
|
|
||||||
}
|
|
||||||
|
|
||||||
ExprKind::Slice { .. } => {
|
|
||||||
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
|
|
||||||
}
|
|
||||||
|
|
||||||
_ => {
|
|
||||||
// Accessing an element from a multi-dimensional `ndarray`
|
|
||||||
|
|
||||||
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
|
||||||
|
|
||||||
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
|
||||||
// elements over
|
|
||||||
let subscripted_ndarray =
|
|
||||||
generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
|
|
||||||
let ndarray = NDArrayValue::from_ptr_val(subscripted_ndarray, llvm_usize, None);
|
|
||||||
|
|
||||||
let num_dims = v.load_ndims(ctx);
|
|
||||||
ndarray.store_ndims(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
|
|
||||||
.unwrap(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
||||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(
|
|
||||||
ndarray.load_ndims(ctx),
|
|
||||||
llvm_usize.size_of().get_type(),
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
let v_dims_src_ptr = unsafe {
|
|
||||||
v.dim_sizes().ptr_offset_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(1, false),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
call_memcpy_generic(
|
|
||||||
ctx,
|
|
||||||
ndarray.dim_sizes().base_ptr(ctx, generator),
|
|
||||||
v_dims_src_ptr,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
|
|
||||||
.map(Into::into)
|
|
||||||
.unwrap(),
|
|
||||||
llvm_i1.const_zero(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_num_elems = call_ndarray_calc_size(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
|
||||||
(None, None),
|
|
||||||
);
|
|
||||||
let ndarray_num_elems = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
|
|
||||||
.unwrap();
|
|
||||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
|
||||||
|
|
||||||
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
|
|
||||||
call_memcpy_generic(
|
|
||||||
ctx,
|
|
||||||
ndarray.data().base_ptr(ctx, generator),
|
|
||||||
v_data_src_ptr,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_mul(
|
|
||||||
ndarray_num_elems,
|
|
||||||
llvm_ndarray_data_t.size_of().unwrap(),
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.map(Into::into)
|
|
||||||
.unwrap(),
|
|
||||||
llvm_i1.const_zero(),
|
|
||||||
);
|
|
||||||
|
|
||||||
ndarray.as_base_value().into()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// See [`CodeGenerator::gen_expr`].
|
/// See [`CodeGenerator::gen_expr`].
|
||||||
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
|
@ -3295,7 +2881,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
ctx.raise_exn(
|
ctx.raise_exn(
|
||||||
generator,
|
generator,
|
||||||
"0:UnwrapNoneError",
|
"0:UnwrapNoneError",
|
||||||
err_msg.into(),
|
err_msg,
|
||||||
[None, None, None],
|
[None, None, None],
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
);
|
);
|
||||||
|
@ -3463,18 +3049,26 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
v.data().get(ctx, generator, &index, None).into()
|
v.data().get(ctx, generator, &index, None).into()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
let Some(ndarray) = generator.gen_expr(ctx, value)? else {
|
||||||
|
|
||||||
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
|
||||||
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
|
||||||
.into_pointer_value()
|
|
||||||
} else {
|
|
||||||
return Ok(None);
|
return Ok(None);
|
||||||
};
|
};
|
||||||
let v = NDArrayValue::from_ptr_val(v, usize, None);
|
|
||||||
|
|
||||||
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
|
let ndarray_ty = value.custom.unwrap();
|
||||||
|
let ndarray = ndarray.to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::from_object(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
AnyObject { ty: ndarray_ty, value: ndarray },
|
||||||
|
);
|
||||||
|
|
||||||
|
let indices = gen_ndarray_subscript_ndindices(generator, ctx, slice)?;
|
||||||
|
let result = ndarray
|
||||||
|
.index(generator, ctx, &indices)
|
||||||
|
.split_unsized(generator, ctx)
|
||||||
|
.to_basic_value_enum();
|
||||||
|
return Ok(Some(ValueEnum::Dynamic(result)));
|
||||||
}
|
}
|
||||||
TypeEnum::TTuple { .. } => {
|
TypeEnum::TTuple { .. } => {
|
||||||
let index: u32 =
|
let index: u32 =
|
||||||
|
|
|
@ -1,414 +0,0 @@
|
||||||
using int8_t = _BitInt(8);
|
|
||||||
using uint8_t = unsigned _BitInt(8);
|
|
||||||
using int32_t = _BitInt(32);
|
|
||||||
using uint32_t = unsigned _BitInt(32);
|
|
||||||
using int64_t = _BitInt(64);
|
|
||||||
using uint64_t = unsigned _BitInt(64);
|
|
||||||
|
|
||||||
// NDArray indices are always `uint32_t`.
|
|
||||||
using NDIndex = uint32_t;
|
|
||||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
|
||||||
using SliceIndex = int32_t;
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
template <typename T>
|
|
||||||
const T& max(const T& a, const T& b) {
|
|
||||||
return a > b ? a : b;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
const T& min(const T& a, const T& b) {
|
|
||||||
return a > b ? b : a;
|
|
||||||
}
|
|
||||||
|
|
||||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
|
||||||
// need to make sure `exp >= 0` before calling this function
|
|
||||||
template <typename T>
|
|
||||||
T __nac3_int_exp_impl(T base, T exp) {
|
|
||||||
T res = 1;
|
|
||||||
/* repeated squaring method */
|
|
||||||
do {
|
|
||||||
if (exp & 1) {
|
|
||||||
res *= base; /* for n odd */
|
|
||||||
}
|
|
||||||
exp >>= 1;
|
|
||||||
base *= base;
|
|
||||||
} while (exp);
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename SizeT>
|
|
||||||
SizeT __nac3_ndarray_calc_size_impl(
|
|
||||||
const SizeT* list_data,
|
|
||||||
SizeT list_len,
|
|
||||||
SizeT begin_idx,
|
|
||||||
SizeT end_idx
|
|
||||||
) {
|
|
||||||
__builtin_assume(end_idx <= list_len);
|
|
||||||
|
|
||||||
SizeT num_elems = 1;
|
|
||||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
|
||||||
SizeT val = list_data[i];
|
|
||||||
__builtin_assume(val > 0);
|
|
||||||
num_elems *= val;
|
|
||||||
}
|
|
||||||
return num_elems;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename SizeT>
|
|
||||||
void __nac3_ndarray_calc_nd_indices_impl(
|
|
||||||
SizeT index,
|
|
||||||
const SizeT* dims,
|
|
||||||
SizeT num_dims,
|
|
||||||
NDIndex* idxs
|
|
||||||
) {
|
|
||||||
SizeT stride = 1;
|
|
||||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
|
||||||
SizeT i = num_dims - dim - 1;
|
|
||||||
__builtin_assume(dims[i] > 0);
|
|
||||||
idxs[i] = (index / stride) % dims[i];
|
|
||||||
stride *= dims[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename SizeT>
|
|
||||||
SizeT __nac3_ndarray_flatten_index_impl(
|
|
||||||
const SizeT* dims,
|
|
||||||
SizeT num_dims,
|
|
||||||
const NDIndex* indices,
|
|
||||||
SizeT num_indices
|
|
||||||
) {
|
|
||||||
SizeT idx = 0;
|
|
||||||
SizeT stride = 1;
|
|
||||||
for (SizeT i = 0; i < num_dims; ++i) {
|
|
||||||
SizeT ri = num_dims - i - 1;
|
|
||||||
if (ri < num_indices) {
|
|
||||||
idx += stride * indices[ri];
|
|
||||||
}
|
|
||||||
|
|
||||||
__builtin_assume(dims[i] > 0);
|
|
||||||
stride *= dims[ri];
|
|
||||||
}
|
|
||||||
return idx;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename SizeT>
|
|
||||||
void __nac3_ndarray_calc_broadcast_impl(
|
|
||||||
const SizeT* lhs_dims,
|
|
||||||
SizeT lhs_ndims,
|
|
||||||
const SizeT* rhs_dims,
|
|
||||||
SizeT rhs_ndims,
|
|
||||||
SizeT* out_dims
|
|
||||||
) {
|
|
||||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
|
||||||
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
|
||||||
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
|
||||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
|
||||||
|
|
||||||
if (lhs_dim_sz == nullptr) {
|
|
||||||
*out_dim = *rhs_dim_sz;
|
|
||||||
} else if (rhs_dim_sz == nullptr) {
|
|
||||||
*out_dim = *lhs_dim_sz;
|
|
||||||
} else if (*lhs_dim_sz == 1) {
|
|
||||||
*out_dim = *rhs_dim_sz;
|
|
||||||
} else if (*rhs_dim_sz == 1) {
|
|
||||||
*out_dim = *lhs_dim_sz;
|
|
||||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
|
||||||
*out_dim = *lhs_dim_sz;
|
|
||||||
} else {
|
|
||||||
__builtin_unreachable();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename SizeT>
|
|
||||||
void __nac3_ndarray_calc_broadcast_idx_impl(
|
|
||||||
const SizeT* src_dims,
|
|
||||||
SizeT src_ndims,
|
|
||||||
const NDIndex* in_idx,
|
|
||||||
NDIndex* out_idx
|
|
||||||
) {
|
|
||||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
|
||||||
SizeT src_i = src_ndims - i - 1;
|
|
||||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
#define DEF_nac3_int_exp_(T) \
|
|
||||||
T __nac3_int_exp_##T(T base, T exp) {\
|
|
||||||
return __nac3_int_exp_impl(base, exp);\
|
|
||||||
}
|
|
||||||
|
|
||||||
DEF_nac3_int_exp_(int32_t)
|
|
||||||
DEF_nac3_int_exp_(int64_t)
|
|
||||||
DEF_nac3_int_exp_(uint32_t)
|
|
||||||
DEF_nac3_int_exp_(uint64_t)
|
|
||||||
|
|
||||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
|
||||||
if (i < 0) {
|
|
||||||
i = len + i;
|
|
||||||
}
|
|
||||||
if (i < 0) {
|
|
||||||
return 0;
|
|
||||||
} else if (i > len) {
|
|
||||||
return len;
|
|
||||||
}
|
|
||||||
return i;
|
|
||||||
}
|
|
||||||
|
|
||||||
SliceIndex __nac3_range_slice_len(
|
|
||||||
const SliceIndex start,
|
|
||||||
const SliceIndex end,
|
|
||||||
const SliceIndex step
|
|
||||||
) {
|
|
||||||
SliceIndex diff = end - start;
|
|
||||||
if (diff > 0 && step > 0) {
|
|
||||||
return ((diff - 1) / step) + 1;
|
|
||||||
} else if (diff < 0 && step < 0) {
|
|
||||||
return ((diff + 1) / step) + 1;
|
|
||||||
} else {
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Handle list assignment and dropping part of the list when
|
|
||||||
// both dest_step and src_step are +1.
|
|
||||||
// - All the index must *not* be out-of-bound or negative,
|
|
||||||
// - The end index is *inclusive*,
|
|
||||||
// - The length of src and dest slice size should already
|
|
||||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
|
||||||
SliceIndex __nac3_list_slice_assign_var_size(
|
|
||||||
SliceIndex dest_start,
|
|
||||||
SliceIndex dest_end,
|
|
||||||
SliceIndex dest_step,
|
|
||||||
uint8_t* dest_arr,
|
|
||||||
SliceIndex dest_arr_len,
|
|
||||||
SliceIndex src_start,
|
|
||||||
SliceIndex src_end,
|
|
||||||
SliceIndex src_step,
|
|
||||||
uint8_t* src_arr,
|
|
||||||
SliceIndex src_arr_len,
|
|
||||||
const SliceIndex size
|
|
||||||
) {
|
|
||||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
|
||||||
if (dest_arr_len == 0) return dest_arr_len;
|
|
||||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
|
||||||
if (src_step == dest_step && dest_step == 1) {
|
|
||||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
|
||||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
|
||||||
if (src_len > 0) {
|
|
||||||
__builtin_memmove(
|
|
||||||
dest_arr + dest_start * size,
|
|
||||||
src_arr + src_start * size,
|
|
||||||
src_len * size
|
|
||||||
);
|
|
||||||
}
|
|
||||||
if (dest_len > 0) {
|
|
||||||
/* dropping */
|
|
||||||
__builtin_memmove(
|
|
||||||
dest_arr + (dest_start + src_len) * size,
|
|
||||||
dest_arr + (dest_end + 1) * size,
|
|
||||||
(dest_arr_len - dest_end - 1) * size
|
|
||||||
);
|
|
||||||
}
|
|
||||||
/* shrink size */
|
|
||||||
return dest_arr_len - (dest_len - src_len);
|
|
||||||
}
|
|
||||||
/* if two range overlaps, need alloca */
|
|
||||||
uint8_t need_alloca =
|
|
||||||
(dest_arr == src_arr)
|
|
||||||
&& !(
|
|
||||||
max(dest_start, dest_end) < min(src_start, src_end)
|
|
||||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
|
||||||
);
|
|
||||||
if (need_alloca) {
|
|
||||||
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
|
||||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
|
||||||
src_arr = tmp;
|
|
||||||
}
|
|
||||||
SliceIndex src_ind = src_start;
|
|
||||||
SliceIndex dest_ind = dest_start;
|
|
||||||
for (;
|
|
||||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
|
||||||
src_ind += src_step, dest_ind += dest_step
|
|
||||||
) {
|
|
||||||
/* for constant optimization */
|
|
||||||
if (size == 1) {
|
|
||||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
|
||||||
} else if (size == 4) {
|
|
||||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
|
||||||
} else if (size == 8) {
|
|
||||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
|
||||||
} else {
|
|
||||||
/* memcpy for var size, cannot overlap after previous alloca */
|
|
||||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/* only dest_step == 1 can we shrink the dest list. */
|
|
||||||
/* size should be ensured prior to calling this function */
|
|
||||||
if (dest_step == 1 && dest_end >= dest_start) {
|
|
||||||
__builtin_memmove(
|
|
||||||
dest_arr + dest_ind * size,
|
|
||||||
dest_arr + (dest_end + 1) * size,
|
|
||||||
(dest_arr_len - dest_end - 1) * size
|
|
||||||
);
|
|
||||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
|
||||||
}
|
|
||||||
return dest_arr_len;
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t __nac3_isinf(double x) {
|
|
||||||
return __builtin_isinf(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t __nac3_isnan(double x) {
|
|
||||||
return __builtin_isnan(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
double tgamma(double arg);
|
|
||||||
|
|
||||||
double __nac3_gamma(double z) {
|
|
||||||
// Handling for denormals
|
|
||||||
// | x | Python gamma(x) | C tgamma(x) |
|
|
||||||
// --- | ----------------- | --------------- | ----------- |
|
|
||||||
// (1) | nan | nan | nan |
|
|
||||||
// (2) | -inf | -inf | inf |
|
|
||||||
// (3) | inf | inf | inf |
|
|
||||||
// (4) | 0.0 | inf | inf |
|
|
||||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
|
||||||
|
|
||||||
// (1)-(3)
|
|
||||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
|
||||||
return z;
|
|
||||||
}
|
|
||||||
|
|
||||||
double v = tgamma(z);
|
|
||||||
|
|
||||||
// (4)-(5)
|
|
||||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
|
||||||
}
|
|
||||||
|
|
||||||
double lgamma(double arg);
|
|
||||||
|
|
||||||
double __nac3_gammaln(double x) {
|
|
||||||
// libm's handling of value overflows differs from scipy:
|
|
||||||
// - scipy: gammaln(-inf) -> -inf
|
|
||||||
// - libm : lgamma(-inf) -> inf
|
|
||||||
|
|
||||||
if (__builtin_isinf(x)) {
|
|
||||||
return x;
|
|
||||||
}
|
|
||||||
|
|
||||||
return lgamma(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
double j0(double x);
|
|
||||||
|
|
||||||
double __nac3_j0(double x) {
|
|
||||||
// libm's handling of value overflows differs from scipy:
|
|
||||||
// - scipy: j0(inf) -> nan
|
|
||||||
// - libm : j0(inf) -> 0.0
|
|
||||||
|
|
||||||
if (__builtin_isinf(x)) {
|
|
||||||
return __builtin_nan("");
|
|
||||||
}
|
|
||||||
|
|
||||||
return j0(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t __nac3_ndarray_calc_size(
|
|
||||||
const uint32_t* list_data,
|
|
||||||
uint32_t list_len,
|
|
||||||
uint32_t begin_idx,
|
|
||||||
uint32_t end_idx
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint64_t __nac3_ndarray_calc_size64(
|
|
||||||
const uint64_t* list_data,
|
|
||||||
uint64_t list_len,
|
|
||||||
uint64_t begin_idx,
|
|
||||||
uint64_t end_idx
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_calc_nd_indices(
|
|
||||||
uint32_t index,
|
|
||||||
const uint32_t* dims,
|
|
||||||
uint32_t num_dims,
|
|
||||||
NDIndex* idxs
|
|
||||||
) {
|
|
||||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_calc_nd_indices64(
|
|
||||||
uint64_t index,
|
|
||||||
const uint64_t* dims,
|
|
||||||
uint64_t num_dims,
|
|
||||||
NDIndex* idxs
|
|
||||||
) {
|
|
||||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t __nac3_ndarray_flatten_index(
|
|
||||||
const uint32_t* dims,
|
|
||||||
uint32_t num_dims,
|
|
||||||
const NDIndex* indices,
|
|
||||||
uint32_t num_indices
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint64_t __nac3_ndarray_flatten_index64(
|
|
||||||
const uint64_t* dims,
|
|
||||||
uint64_t num_dims,
|
|
||||||
const NDIndex* indices,
|
|
||||||
uint64_t num_indices
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast(
|
|
||||||
const uint32_t* lhs_dims,
|
|
||||||
uint32_t lhs_ndims,
|
|
||||||
const uint32_t* rhs_dims,
|
|
||||||
uint32_t rhs_ndims,
|
|
||||||
uint32_t* out_dims
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast64(
|
|
||||||
const uint64_t* lhs_dims,
|
|
||||||
uint64_t lhs_ndims,
|
|
||||||
const uint64_t* rhs_dims,
|
|
||||||
uint64_t rhs_ndims,
|
|
||||||
uint64_t* out_dims
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast_idx(
|
|
||||||
const uint32_t* src_dims,
|
|
||||||
uint32_t src_ndims,
|
|
||||||
const NDIndex* in_idx,
|
|
||||||
NDIndex* out_idx
|
|
||||||
) {
|
|
||||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast_idx64(
|
|
||||||
const uint64_t* src_dims,
|
|
||||||
uint64_t src_ndims,
|
|
||||||
const NDIndex* in_idx,
|
|
||||||
NDIndex* out_idx
|
|
||||||
) {
|
|
||||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
|
||||||
}
|
|
||||||
} // extern "C"
|
|
|
@ -1,21 +1,22 @@
|
||||||
use crate::typecheck::typedef::Type;
|
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||||
|
|
||||||
use super::{
|
use super::{
|
||||||
classes::{
|
classes::{ArrayLikeValue, ListValue},
|
||||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
|
model::*,
|
||||||
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
object::{
|
||||||
|
list::List,
|
||||||
|
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
|
||||||
},
|
},
|
||||||
llvm_intrinsics, CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
};
|
};
|
||||||
use crate::codegen::classes::TypedArrayLikeAccessor;
|
use function::CallFunction;
|
||||||
use crate::codegen::stmt::gen_for_callback_incrementing;
|
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
context::Context,
|
context::Context,
|
||||||
memory_buffer::MemoryBuffer,
|
memory_buffer::MemoryBuffer,
|
||||||
module::Module,
|
module::Module,
|
||||||
types::{BasicTypeEnum, IntType},
|
types::BasicTypeEnum,
|
||||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||||
AddressSpace, IntPredicate,
|
AddressSpace, IntPredicate,
|
||||||
};
|
};
|
||||||
use itertools::Either;
|
use itertools::Either;
|
||||||
|
@ -563,369 +564,383 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
|
||||||
.unwrap()
|
.unwrap()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
|
||||||
/// calculated total size.
|
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
|
||||||
///
|
#[must_use]
|
||||||
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
|
||||||
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
generator: &mut G,
|
||||||
/// or [`None`] if starting from the first dimension and ending at the last dimension
|
ctx: &CodeGenContext<'_, '_>,
|
||||||
/// respectively.
|
name: &str,
|
||||||
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
) -> String {
|
||||||
generator: &G,
|
let mut name = name.to_owned();
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
match generator.get_size_type(ctx.ctx).get_bit_width() {
|
||||||
dims: &Dims,
|
32 => {}
|
||||||
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
64 => name.push_str("64"),
|
||||||
) -> IntValue<'ctx>
|
bit_width => {
|
||||||
where
|
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||||
G: CodeGenerator + ?Sized,
|
}
|
||||||
Dims: ArrayLikeIndexer<'ctx>,
|
}
|
||||||
{
|
name
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
|
||||||
|
|
||||||
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
|
||||||
32 => "__nac3_ndarray_calc_size",
|
|
||||||
64 => "__nac3_ndarray_calc_size64",
|
|
||||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
|
||||||
};
|
|
||||||
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
|
||||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
let ndarray_calc_size_fn =
|
|
||||||
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
|
||||||
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
|
||||||
});
|
|
||||||
|
|
||||||
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
|
||||||
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
|
||||||
ctx.builder
|
|
||||||
.build_call(
|
|
||||||
ndarray_calc_size_fn,
|
|
||||||
&[
|
|
||||||
dims.base_ptr(ctx, generator).into(),
|
|
||||||
dims.size(ctx, generator).into(),
|
|
||||||
begin.into(),
|
|
||||||
end.into(),
|
|
||||||
],
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.map(CallSiteValue::try_as_basic_value)
|
|
||||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
|
||||||
.map(Either::unwrap_left)
|
|
||||||
.unwrap()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
|
||||||
/// containing `i32` indices of the flattened index.
|
pub fn setup_irrt_exceptions<'ctx>(
|
||||||
///
|
ctx: &'ctx Context,
|
||||||
/// * `index` - The index to compute the multidimensional index for.
|
module: &Module<'ctx>,
|
||||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
symbol_resolver: &dyn SymbolResolver,
|
||||||
/// `NDArray`.
|
) {
|
||||||
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
let exn_id_type = ctx.i32_type();
|
||||||
generator: &G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
index: IntValue<'ctx>,
|
|
||||||
ndarray: NDArrayValue<'ctx>,
|
|
||||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
|
||||||
let llvm_void = ctx.ctx.void_type();
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
|
||||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
|
||||||
|
|
||||||
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
let errors = &[
|
||||||
32 => "__nac3_ndarray_calc_nd_indices",
|
("EXN_INDEX_ERROR", "0:IndexError"),
|
||||||
64 => "__nac3_ndarray_calc_nd_indices64",
|
("EXN_VALUE_ERROR", "0:ValueError"),
|
||||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
("EXN_ASSERTION_ERROR", "0:AssertionError"),
|
||||||
};
|
("EXN_TYPE_ERROR", "0:TypeError"),
|
||||||
let ndarray_calc_nd_indices_fn =
|
];
|
||||||
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
|
||||||
let fn_type = llvm_void.fn_type(
|
|
||||||
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
|
|
||||||
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
for (irrt_name, symbol_name) in errors {
|
||||||
|
let exn_id = symbol_resolver.get_string_id(symbol_name);
|
||||||
|
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
|
||||||
|
|
||||||
|
let global = module.get_global(irrt_name).unwrap_or_else(|| {
|
||||||
|
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
|
||||||
});
|
});
|
||||||
|
global.set_initializer(&exn_id);
|
||||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
}
|
||||||
let ndarray_dims = ndarray.dim_sizes();
|
|
||||||
|
|
||||||
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
|
||||||
|
|
||||||
ctx.builder
|
|
||||||
.build_call(
|
|
||||||
ndarray_calc_nd_indices_fn,
|
|
||||||
&[
|
|
||||||
index.into(),
|
|
||||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
|
||||||
ndarray_num_dims.into(),
|
|
||||||
indices.into(),
|
|
||||||
],
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
TypedArrayLikeAdapter::from(
|
|
||||||
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
|
||||||
Box::new(|_, v| v.into_int_value()),
|
|
||||||
Box::new(|_, v| v.into()),
|
|
||||||
)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
pub fn call_nac3_range_len<'ctx, G: CodeGenerator + ?Sized, N: IntKind<'ctx>>(
|
||||||
generator: &G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: NDArrayValue<'ctx>,
|
|
||||||
indices: &Indices,
|
|
||||||
) -> IntValue<'ctx>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
Indices: ArrayLikeIndexer<'ctx>,
|
|
||||||
{
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
|
|
||||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
|
||||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
|
||||||
|
|
||||||
debug_assert_eq!(
|
|
||||||
IntType::try_from(indices.element_type(ctx, generator))
|
|
||||||
.map(IntType::get_bit_width)
|
|
||||||
.unwrap_or_default(),
|
|
||||||
llvm_i32.get_bit_width(),
|
|
||||||
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
|
||||||
);
|
|
||||||
debug_assert_eq!(
|
|
||||||
indices.size(ctx, generator).get_type().get_bit_width(),
|
|
||||||
llvm_usize.get_bit_width(),
|
|
||||||
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
|
||||||
32 => "__nac3_ndarray_flatten_index",
|
|
||||||
64 => "__nac3_ndarray_flatten_index64",
|
|
||||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
|
||||||
};
|
|
||||||
let ndarray_flatten_index_fn =
|
|
||||||
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
|
||||||
let fn_type = llvm_usize.fn_type(
|
|
||||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
|
|
||||||
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
|
||||||
});
|
|
||||||
|
|
||||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
||||||
let ndarray_dims = ndarray.dim_sizes();
|
|
||||||
|
|
||||||
let index = ctx
|
|
||||||
.builder
|
|
||||||
.build_call(
|
|
||||||
ndarray_flatten_index_fn,
|
|
||||||
&[
|
|
||||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
|
||||||
ndarray_num_dims.into(),
|
|
||||||
indices.base_ptr(ctx, generator).into(),
|
|
||||||
indices.size(ctx, generator).into(),
|
|
||||||
],
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.map(CallSiteValue::try_as_basic_value)
|
|
||||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
|
||||||
.map(Either::unwrap_left)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
index
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
|
||||||
/// multidimensional index.
|
|
||||||
///
|
|
||||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
|
||||||
/// `NDArray`.
|
|
||||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
|
||||||
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
ndarray: NDArrayValue<'ctx>,
|
int_kind: N,
|
||||||
indices: &Index,
|
start: Instance<'ctx, Int<N>>,
|
||||||
) -> IntValue<'ctx>
|
stop: Instance<'ctx, Int<N>>,
|
||||||
where
|
step: Instance<'ctx, Int<N>>,
|
||||||
G: CodeGenerator + ?Sized,
|
) -> Instance<'ctx, Int<N>> {
|
||||||
Index: ArrayLikeIndexer<'ctx>,
|
let bit_width = int_kind.get_int_type(generator, ctx.ctx).get_bit_width();
|
||||||
{
|
let func_name = match bit_width {
|
||||||
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
32 => "__nac3_range_len_i32",
|
||||||
|
64 => "__nac3_range_len_i64",
|
||||||
|
_ => panic!("{bit_width}-bits ints not supported"), // We could add more variants when necessary.
|
||||||
|
};
|
||||||
|
|
||||||
|
CallFunction::begin(generator, ctx, func_name)
|
||||||
|
.arg(start)
|
||||||
|
.arg(stop)
|
||||||
|
.arg(step)
|
||||||
|
.returning("range_len", Int(int_kind))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
#[allow(clippy::too_many_arguments)]
|
||||||
/// dimension and size of each dimension of the resultant `ndarray`.
|
pub fn call_nac3_slice_indices<'ctx, G: CodeGenerator + ?Sized, N: IntKind<'ctx>>(
|
||||||
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
lhs: NDArrayValue<'ctx>,
|
int_kind: N,
|
||||||
rhs: NDArrayValue<'ctx>,
|
start_defined: Instance<'ctx, Int<Bool>>,
|
||||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
start: Instance<'ctx, Int<N>>,
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
stop_defined: Instance<'ctx, Int<Bool>>,
|
||||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
stop: Instance<'ctx, Int<N>>,
|
||||||
|
step_defined: Instance<'ctx, Int<Bool>>,
|
||||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
step: Instance<'ctx, Int<N>>,
|
||||||
32 => "__nac3_ndarray_calc_broadcast",
|
length: Instance<'ctx, Int<N>>,
|
||||||
64 => "__nac3_ndarray_calc_broadcast64",
|
range_start: Instance<'ctx, Ptr<Int<N>>>,
|
||||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
range_stop: Instance<'ctx, Ptr<Int<N>>>,
|
||||||
|
range_step: Instance<'ctx, Ptr<Int<N>>>,
|
||||||
|
) -> Instance<'ctx, Int<N>> {
|
||||||
|
let bit_width = int_kind.get_int_type(generator, ctx.ctx).get_bit_width();
|
||||||
|
let func_name = match bit_width {
|
||||||
|
32 => "__nac3_slice_indices_i32",
|
||||||
|
64 => "__nac3_slice_indices_i64",
|
||||||
|
_ => panic!("{bit_width}-bits ints not supported"), // We could add more variants when necessary.
|
||||||
};
|
};
|
||||||
let ndarray_calc_broadcast_fn =
|
|
||||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
|
||||||
let fn_type = llvm_usize.fn_type(
|
|
||||||
&[
|
|
||||||
llvm_pusize.into(),
|
|
||||||
llvm_usize.into(),
|
|
||||||
llvm_pusize.into(),
|
|
||||||
llvm_usize.into(),
|
|
||||||
llvm_pusize.into(),
|
|
||||||
],
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
|
|
||||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
CallFunction::begin(generator, ctx, func_name)
|
||||||
});
|
.arg(start_defined)
|
||||||
|
.arg(start)
|
||||||
|
.arg(stop_defined)
|
||||||
|
.arg(stop)
|
||||||
|
.arg(step_defined)
|
||||||
|
.arg(step)
|
||||||
|
.arg(length)
|
||||||
|
.arg(range_start)
|
||||||
|
.arg(range_stop)
|
||||||
|
.arg(range_step)
|
||||||
|
.returning("range_len", Int(int_kind))
|
||||||
|
}
|
||||||
|
|
||||||
let lhs_ndims = lhs.load_ndims(ctx);
|
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
let rhs_ndims = rhs.load_ndims(ctx);
|
generator: &mut G,
|
||||||
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
gen_for_callback_incrementing(
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
None,
|
"__nac3_ndarray_util_assert_shape_no_negative",
|
||||||
llvm_usize.const_zero(),
|
|
||||||
(min_ndims, false),
|
|
||||||
|generator, ctx, _, idx| {
|
|
||||||
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
|
||||||
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
|
||||||
(
|
|
||||||
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
|
||||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
|
||||||
let lhs_eqz = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
|
||||||
.unwrap();
|
|
||||||
let rhs_eqz = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
|
||||||
.unwrap();
|
|
||||||
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
|
||||||
|
|
||||||
let lhs_eq_rhs = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
|
||||||
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
is_compatible,
|
|
||||||
"0:ValueError",
|
|
||||||
"operands could not be broadcast together",
|
|
||||||
[None, None, None],
|
|
||||||
ctx.current_loc,
|
|
||||||
);
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
|
||||||
Ok(())
|
|
||||||
},
|
|
||||||
llvm_usize.const_int(1, false),
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
|
||||||
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
|
||||||
let lhs_ndims = lhs.load_ndims(ctx);
|
|
||||||
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
|
||||||
let rhs_ndims = rhs.load_ndims(ctx);
|
|
||||||
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
|
||||||
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
|
||||||
|
|
||||||
ctx.builder
|
|
||||||
.build_call(
|
|
||||||
ndarray_calc_broadcast_fn,
|
|
||||||
&[
|
|
||||||
lhs_dims.into(),
|
|
||||||
lhs_ndims.into(),
|
|
||||||
rhs_dims.into(),
|
|
||||||
rhs_ndims.into(),
|
|
||||||
out_dims.base_ptr(ctx, generator).into(),
|
|
||||||
],
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
TypedArrayLikeAdapter::from(
|
|
||||||
out_dims,
|
|
||||||
Box::new(|_, v| v.into_int_value()),
|
|
||||||
Box::new(|_, v| v.into()),
|
|
||||||
)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
|
||||||
/// array `broadcast_idx`.
|
|
||||||
pub fn call_ndarray_calc_broadcast_index<
|
|
||||||
'ctx,
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
|
||||||
>(
|
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
array: NDArrayValue<'ctx>,
|
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
broadcast_idx: &BroadcastIdx,
|
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
output_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
) {
|
||||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
let name = get_sizet_dependent_function_name(
|
||||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
generator,
|
||||||
|
ctx,
|
||||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
"__nac3_ndarray_util_assert_output_shape_same",
|
||||||
32 => "__nac3_ndarray_calc_broadcast_idx",
|
|
||||||
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
|
||||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
|
||||||
};
|
|
||||||
let ndarray_calc_broadcast_fn =
|
|
||||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
|
||||||
let fn_type = llvm_usize.fn_type(
|
|
||||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
|
||||||
false,
|
|
||||||
);
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
.arg(ndarray_ndims)
|
||||||
});
|
.arg(ndarray_shape)
|
||||||
|
.arg(output_ndims)
|
||||||
let broadcast_size = broadcast_idx.size(ctx, generator);
|
.arg(output_shape)
|
||||||
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
.returning_void();
|
||||||
|
}
|
||||||
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
|
||||||
let array_ndims = array.load_ndims(ctx);
|
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
let broadcast_idx_ptr = unsafe {
|
generator: &mut G,
|
||||||
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
};
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
ctx.builder
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
|
||||||
.build_call(
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
|
||||||
ndarray_calc_broadcast_fn,
|
}
|
||||||
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
|
||||||
"",
|
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
)
|
generator: &mut G,
|
||||||
.unwrap();
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
TypedArrayLikeAdapter::from(
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
|
||||||
Box::new(|_, v| v.into_int_value()),
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
|
||||||
Box::new(|_, v| v.into()),
|
}
|
||||||
)
|
|
||||||
|
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
index: Instance<'ctx, Int<SizeT>>,
|
||||||
|
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||||
|
let name =
|
||||||
|
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) {
|
||||||
|
let name =
|
||||||
|
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||||
|
) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
num_indices: Instance<'ctx, Int<SizeT>>,
|
||||||
|
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
||||||
|
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(num_indices)
|
||||||
|
.arg(indices)
|
||||||
|
.arg(src_ndarray)
|
||||||
|
.arg(dst_ndarray)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||||
|
ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_array_set_and_validate_list_shape",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||||
|
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_array_write_list_to_array",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
size: Instance<'ctx, Int<SizeT>>,
|
||||||
|
new_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(size)
|
||||||
|
.arg(new_ndims)
|
||||||
|
.arg(new_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
num_shape_entries: Instance<'ctx, Int<SizeT>>,
|
||||||
|
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
|
||||||
|
dst_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(num_shape_entries)
|
||||||
|
.arg(shape_entries)
|
||||||
|
.arg(dst_ndims)
|
||||||
|
.arg(dst_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
num_axes: Instance<'ctx, Int<SizeT>>,
|
||||||
|
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(src_ndarray)
|
||||||
|
.arg(dst_ndarray)
|
||||||
|
.arg(num_axes)
|
||||||
|
.arg(axes)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
|
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
a_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
b_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
final_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name =
|
||||||
|
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(a_ndims)
|
||||||
|
.arg(a_shape)
|
||||||
|
.arg(b_ndims)
|
||||||
|
.arg(b_shape)
|
||||||
|
.arg(final_ndims)
|
||||||
|
.arg(new_a_shape)
|
||||||
|
.arg(new_b_shape)
|
||||||
|
.arg(dst_shape)
|
||||||
|
.returning_void();
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
|
codegen::classes::{ListType, ProxyType},
|
||||||
symbol_resolver::{StaticValue, SymbolResolver},
|
symbol_resolver::{StaticValue, SymbolResolver},
|
||||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
|
||||||
typecheck::{
|
typecheck::{
|
||||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||||
|
@ -24,7 +24,14 @@ use inkwell::{
|
||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
|
use model::*;
|
||||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||||
|
use object::{
|
||||||
|
exception::Exception,
|
||||||
|
ndarray::NDArray,
|
||||||
|
range::range_model,
|
||||||
|
str::{str_model, Str},
|
||||||
|
};
|
||||||
use parking_lot::{Condvar, Mutex};
|
use parking_lot::{Condvar, Mutex};
|
||||||
use std::collections::{HashMap, HashSet};
|
use std::collections::{HashMap, HashSet};
|
||||||
use std::sync::{
|
use std::sync::{
|
||||||
|
@ -41,7 +48,9 @@ pub mod extern_fns;
|
||||||
mod generator;
|
mod generator;
|
||||||
pub mod irrt;
|
pub mod irrt;
|
||||||
pub mod llvm_intrinsics;
|
pub mod llvm_intrinsics;
|
||||||
|
pub mod model;
|
||||||
pub mod numpy;
|
pub mod numpy;
|
||||||
|
pub mod object;
|
||||||
pub mod stmt;
|
pub mod stmt;
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
|
@ -168,11 +177,11 @@ pub struct CodeGenContext<'ctx, 'a> {
|
||||||
pub registry: &'a WorkerRegistry,
|
pub registry: &'a WorkerRegistry,
|
||||||
|
|
||||||
/// Cache for constant strings.
|
/// Cache for constant strings.
|
||||||
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>,
|
pub const_strings: HashMap<String, Instance<'ctx, Str>>,
|
||||||
|
|
||||||
/// [`BasicBlock`] containing all `alloca` statements for the current function.
|
/// [`BasicBlock`] containing all `alloca` statements for the current function.
|
||||||
pub init_bb: BasicBlock<'ctx>,
|
pub init_bb: BasicBlock<'ctx>,
|
||||||
pub exception_val: Option<PointerValue<'ctx>>,
|
pub exception_val: Option<Instance<'ctx, Ptr<Struct<Exception>>>>,
|
||||||
|
|
||||||
/// The header and exit basic blocks of a loop in this context. See
|
/// The header and exit basic blocks of a loop in this context. See
|
||||||
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
|
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
|
||||||
|
@ -489,12 +498,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
}
|
}
|
||||||
|
|
||||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
|
||||||
let element_type = get_llvm_type(
|
|
||||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
|
||||||
);
|
|
||||||
|
|
||||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => unreachable!(
|
_ => unreachable!(
|
||||||
|
@ -707,36 +711,9 @@ pub fn gen_func_impl<
|
||||||
(primitives.uint64, context.i64_type().into()),
|
(primitives.uint64, context.i64_type().into()),
|
||||||
(primitives.float, context.f64_type().into()),
|
(primitives.float, context.f64_type().into()),
|
||||||
(primitives.bool, context.i8_type().into()),
|
(primitives.bool, context.i8_type().into()),
|
||||||
(primitives.str, {
|
(primitives.str, str_model().get_type(generator, context).into()),
|
||||||
let name = "str";
|
(primitives.range, Ptr(range_model()).get_type(generator, context).into()),
|
||||||
match module.get_struct_type(name) {
|
(primitives.exception, { Ptr(Struct(Exception)).get_type(generator, context).into() }),
|
||||||
None => {
|
|
||||||
let str_type = context.opaque_struct_type("str");
|
|
||||||
let fields = [
|
|
||||||
context.i8_type().ptr_type(AddressSpace::default()).into(),
|
|
||||||
generator.get_size_type(context).into(),
|
|
||||||
];
|
|
||||||
str_type.set_body(&fields, false);
|
|
||||||
str_type.into()
|
|
||||||
}
|
|
||||||
Some(t) => t.as_basic_type_enum(),
|
|
||||||
}
|
|
||||||
}),
|
|
||||||
(primitives.range, RangeType::new(context).as_base_type().into()),
|
|
||||||
(primitives.exception, {
|
|
||||||
let name = "Exception";
|
|
||||||
if let Some(t) = module.get_struct_type(name) {
|
|
||||||
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
|
|
||||||
} else {
|
|
||||||
let exception = context.opaque_struct_type("Exception");
|
|
||||||
let int32 = context.i32_type().into();
|
|
||||||
let int64 = context.i64_type().into();
|
|
||||||
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
|
|
||||||
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
|
|
||||||
exception.set_body(&fields, false);
|
|
||||||
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
|
|
||||||
}
|
|
||||||
}),
|
|
||||||
]
|
]
|
||||||
.iter()
|
.iter()
|
||||||
.copied()
|
.copied()
|
||||||
|
|
|
@ -0,0 +1,42 @@
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, BasicTypeEnum},
|
||||||
|
values::BasicValueEnum,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::CodeGenerator;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// A [`Model`] of any [`BasicTypeEnum`].
|
||||||
|
///
|
||||||
|
/// Use this when you don't need/cannot have any static types to escape from the [`Model`] abstraction.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> Model<'ctx> for Any<'ctx> {
|
||||||
|
type Value = BasicValueEnum<'ctx>;
|
||||||
|
type Type = BasicTypeEnum<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
) -> Self::Type {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &mut G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
if ty == self.0 {
|
||||||
|
Ok(())
|
||||||
|
} else {
|
||||||
|
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,141 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{ArrayType, BasicType, BasicTypeEnum},
|
||||||
|
values::{ArrayValue, IntValue},
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// Traits for a Rust struct that describes a length value for [`Array`].
|
||||||
|
pub trait LenKind: fmt::Debug + Clone + Copy {
|
||||||
|
fn get_length(&self) -> u32;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A statically known length.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Len<const N: u32>;
|
||||||
|
|
||||||
|
/// A dynamically known length.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyLen(pub u32);
|
||||||
|
|
||||||
|
impl<const N: u32> LenKind for Len<N> {
|
||||||
|
fn get_length(&self) -> u32 {
|
||||||
|
N
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl LenKind for AnyLen {
|
||||||
|
fn get_length(&self) -> u32 {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A Model for an [`ArrayType`].
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Array<Len, Item> {
|
||||||
|
/// Length of this array.
|
||||||
|
pub len: Len,
|
||||||
|
/// [`Model`] of an array item.
|
||||||
|
pub item: Item,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
|
||||||
|
type Value = ArrayValue<'ctx>;
|
||||||
|
type Type = ArrayType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.item.get_type(generator, ctx).array_type(self.len.get_length())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let BasicTypeEnum::ArrayType(ty) = ty else {
|
||||||
|
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
if ty.len() != self.len.get_length() {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
|
||||||
|
ty.len(),
|
||||||
|
self.len.get_length()
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
self.item
|
||||||
|
.check_type(generator, ctx, ty.get_element_type())
|
||||||
|
.map_err(|err| err.under_context("an ArrayType"))?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
|
||||||
|
/// Get the pointer to the `i`-th (0-based) array element.
|
||||||
|
pub fn gep(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
i: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Ptr<Item>> {
|
||||||
|
let zero = ctx.ctx.i32_type().const_zero();
|
||||||
|
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
|
||||||
|
|
||||||
|
Ptr(self.model.0.item).believe_value(ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like `gep` but `i` is a constant.
|
||||||
|
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
|
||||||
|
assert!(
|
||||||
|
i < u64::from(self.model.0.len.get_length()),
|
||||||
|
"Index {i} is out of bounds. Array length = {}",
|
||||||
|
self.model.0.len.get_length()
|
||||||
|
);
|
||||||
|
|
||||||
|
let i = ctx.ctx.i32_type().const_int(i, false);
|
||||||
|
self.gep(ctx, i)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||||
|
pub fn get<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
i: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Item> {
|
||||||
|
self.gep(ctx, i).load(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like `get` but `i` is a constant.
|
||||||
|
pub fn get_const<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
i: u64,
|
||||||
|
) -> Instance<'ctx, Item> {
|
||||||
|
self.gep_const(ctx, i).load(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||||
|
pub fn set(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
i: IntValue<'ctx>,
|
||||||
|
value: Instance<'ctx, Item>,
|
||||||
|
) {
|
||||||
|
self.gep(ctx, i).store(ctx, value);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like `set` but `i` is a constant.
|
||||||
|
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
|
||||||
|
self.gep_const(ctx, i).store(ctx, value);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,212 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{context::Context, types::*, values::*};
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
/// A error type for reporting any [`Model`]-related error (e.g., a [`BasicType`] mismatch).
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct ModelError(pub String);
|
||||||
|
|
||||||
|
impl ModelError {
|
||||||
|
// Append a context message to the error.
|
||||||
|
pub(super) fn under_context(mut self, context: &str) -> Self {
|
||||||
|
self.0.push_str(" ... in ");
|
||||||
|
self.0.push_str(context);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Trait for Rust structs identifying [`BasicType`]s in the context of a known [`CodeGenerator`] and [`CodeGenContext`].
|
||||||
|
///
|
||||||
|
/// For instance,
|
||||||
|
/// - [`Int<Int32>`] identifies an [`IntType`] with 32-bits.
|
||||||
|
/// - [`Int<SizeT>`] identifies an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
|
||||||
|
/// - [`Ptr<Int<SizeT>>`] identifies a [`PointerType`] that points to an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
|
||||||
|
/// - [`Int<AnyInt>`] identifies an [`IntType`] with bit-width of whatever is set in the [`AnyInt`] object.
|
||||||
|
/// - [`Any`] identifies a [`BasicType`] set in the [`Any`] object itself.
|
||||||
|
///
|
||||||
|
/// You can get the [`BasicType`] out of a model with [`Model::get_type`].
|
||||||
|
///
|
||||||
|
/// Furthermore, [`Instance<'ctx, M>`] is a simple structure that carries a [`BasicValue`] with a [`BasicType`] identified by model `M`.
|
||||||
|
///
|
||||||
|
/// The main purpose of this abstraction is to have a more Rust type-safe way to use Inkwell and give type-hints
|
||||||
|
/// for programmers.
|
||||||
|
///
|
||||||
|
/// ### Notes on `Default` trait
|
||||||
|
///
|
||||||
|
/// For some models like [`Int<Int32>`] or [`Int<SizeT>`], they have a [`Default`] trait since just by looking at the type, it is possible
|
||||||
|
/// to tell which [`BasicType`] they are identifying.
|
||||||
|
///
|
||||||
|
/// This can be used to create strongly-typed interfaces accepting only values of a specific [`BasicType`] without having to worry about
|
||||||
|
/// writing debug assertions to check if the programmer has passed in an [`IntValue`] with the wrong bit-width.
|
||||||
|
/// ```ignore
|
||||||
|
/// fn give_me_i32_and_get_a_size_t_back<'ctx>(i32: Instance<'ctx, Int<Int32>>) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
/// // code...
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// ### Notes on converting between Inkwell and model.
|
||||||
|
///
|
||||||
|
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
|
||||||
|
/// [`Model::check_value`] or [`Model::believe_value`].
|
||||||
|
/// ```ignore
|
||||||
|
/// let my_value: IntValue<'ctx>;
|
||||||
|
///
|
||||||
|
/// let my_value = Int(Int32).check_value(my_value).unwrap(); // Panics if `my_value` is not 32-bit with a descriptive error message.
|
||||||
|
///
|
||||||
|
/// // or, if you are absolutely certain that `my_value` is 32-bit and doing extra checks is a waste of time:
|
||||||
|
/// let my_value = Int(Int32).believe_value(my_value);
|
||||||
|
/// ```
|
||||||
|
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
/// The [`BasicType`] *variant* this model is identifying.
|
||||||
|
///
|
||||||
|
/// For [`Int<Int32>`], [`Int<SizeT>`], [`Int<Any>`], etc, this is [`IntValue`];
|
||||||
|
///
|
||||||
|
/// For [`Ptr<???>`], etc, this is [`PointerValue`];
|
||||||
|
///
|
||||||
|
/// For [`Any`], this is just [`BasicValueEnum`];
|
||||||
|
///
|
||||||
|
/// and so on.
|
||||||
|
type Type: BasicType<'ctx>;
|
||||||
|
|
||||||
|
/// The [`BasicValue`] type of the [`BasicType`] of this model.
|
||||||
|
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
|
||||||
|
|
||||||
|
/// Return the [`BasicType`] of this model.
|
||||||
|
#[must_use]
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
|
||||||
|
|
||||||
|
/// Get the number of bytes of the [`BasicType`] of this model.
|
||||||
|
fn sizeof<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
self.get_type(generator, ctx).size_of().unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError>;
|
||||||
|
|
||||||
|
/// Create an instance from a value with [`Instance::model`] being this model.
|
||||||
|
///
|
||||||
|
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
|
||||||
|
#[must_use]
|
||||||
|
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
|
||||||
|
Instance { model: *self, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
|
||||||
|
/// Wrap it into an [`Instance`] if it is.
|
||||||
|
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
value: V,
|
||||||
|
) -> Result<Instance<'ctx, Self>, ModelError> {
|
||||||
|
let value = value.as_basic_value_enum();
|
||||||
|
self.check_type(generator, ctx, value.get_type())
|
||||||
|
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
|
||||||
|
|
||||||
|
let Ok(value) = Self::Value::try_from(value) else {
|
||||||
|
unreachable!("check_type() has bad implementation")
|
||||||
|
};
|
||||||
|
Ok(self.believe_value(value))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allocate a value on the stack and return its pointer.
|
||||||
|
fn alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Ptr<Self>> {
|
||||||
|
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
|
||||||
|
Ptr(*self).believe_value(p)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allocate an array on the stack and return its pointer.
|
||||||
|
fn array_alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
len: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Ptr<Self>> {
|
||||||
|
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
|
||||||
|
Ptr(*self).believe_value(p)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn var_alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
||||||
|
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||||
|
let p = generator.gen_var_alloc(ctx, ty, name)?;
|
||||||
|
Ok(Ptr(*self).believe_value(p))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn array_var_alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
len: IntValue<'ctx>,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
||||||
|
// TODO: Remove ArraySliceValue
|
||||||
|
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||||
|
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
|
||||||
|
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Allocate a constant array.
|
||||||
|
fn const_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
values: &[Instance<'ctx, Self>],
|
||||||
|
) -> Instance<'ctx, Array<AnyLen, Self>> {
|
||||||
|
macro_rules! make {
|
||||||
|
($t:expr, $into_value:expr) => {
|
||||||
|
$t.const_array(
|
||||||
|
&values
|
||||||
|
.iter()
|
||||||
|
.map(|x| $into_value(x.value.as_basic_value_enum()))
|
||||||
|
.collect_vec(),
|
||||||
|
)
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
|
||||||
|
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
|
||||||
|
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
|
||||||
|
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
|
||||||
|
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
|
||||||
|
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
|
||||||
|
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
|
||||||
|
};
|
||||||
|
|
||||||
|
Array { len: AnyLen(values.len() as u32), item: *self }
|
||||||
|
.check_value(generator, ctx, value)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct Instance<'ctx, M: Model<'ctx>> {
|
||||||
|
/// The model of this instance.
|
||||||
|
pub model: M,
|
||||||
|
/// The value of this instance.
|
||||||
|
///
|
||||||
|
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
|
||||||
|
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
|
||||||
|
pub value: M::Value,
|
||||||
|
}
|
|
@ -0,0 +1,86 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{context::Context, types::FloatType, values::FloatValue};
|
||||||
|
|
||||||
|
use crate::codegen::CodeGenerator;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx>;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Float32;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Float64;
|
||||||
|
|
||||||
|
impl<'ctx> FloatKind<'ctx> for Float32 {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx> {
|
||||||
|
ctx.f32_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> FloatKind<'ctx> for Float64 {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx> {
|
||||||
|
ctx.f64_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx> {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Float<N>(pub N);
|
||||||
|
|
||||||
|
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
|
||||||
|
type Value = FloatValue<'ctx>;
|
||||||
|
type Type = FloatType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_float_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = FloatType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let exp_ty = self.0.get_float_type(generator, ctx);
|
||||||
|
|
||||||
|
// TODO: Inkwell does not have get_bit_width for FloatType?
|
||||||
|
if ty != exp_ty {
|
||||||
|
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,103 @@
|
||||||
|
use inkwell::{
|
||||||
|
attributes::{Attribute, AttributeLoc},
|
||||||
|
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
|
||||||
|
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
|
||||||
|
};
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
struct Arg<'ctx> {
|
||||||
|
ty: BasicMetadataTypeEnum<'ctx>,
|
||||||
|
val: BasicMetadataValueEnum<'ctx>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A convenience structure to construct & call an LLVM function.
|
||||||
|
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
|
||||||
|
generator: &'d mut G,
|
||||||
|
ctx: &'b CodeGenContext<'ctx, 'a>,
|
||||||
|
/// Function name
|
||||||
|
name: &'c str,
|
||||||
|
/// Call arguments
|
||||||
|
args: Vec<Arg<'ctx>>,
|
||||||
|
/// LLVM function Attributes
|
||||||
|
attrs: Vec<&'static str>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
|
||||||
|
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
|
||||||
|
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Push a list of LLVM function attributes to the function declaration.
|
||||||
|
#[must_use]
|
||||||
|
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
|
||||||
|
self.attrs = attrs;
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Push a call argument to the function call.
|
||||||
|
#[allow(clippy::needless_pass_by_value)]
|
||||||
|
#[must_use]
|
||||||
|
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
|
||||||
|
let arg = Arg {
|
||||||
|
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
|
||||||
|
val: arg.value.as_basic_value_enum().into(),
|
||||||
|
};
|
||||||
|
self.args.push(arg);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call the function and expect the function to return a value of type of `return_model`.
|
||||||
|
#[must_use]
|
||||||
|
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
|
||||||
|
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
|
||||||
|
|
||||||
|
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
|
||||||
|
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
|
||||||
|
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
|
||||||
|
ret
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
|
||||||
|
#[must_use]
|
||||||
|
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
|
||||||
|
self.returning(name, M::default())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call the function and expect the function to return a void-type.
|
||||||
|
pub fn returning_void(self) {
|
||||||
|
let ret_ty = self.ctx.ctx.void_type();
|
||||||
|
|
||||||
|
let _ = self.call(|tys| ret_ty.fn_type(tys, false), "");
|
||||||
|
}
|
||||||
|
|
||||||
|
fn call<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
|
||||||
|
where
|
||||||
|
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
|
||||||
|
{
|
||||||
|
// Get the LLVM function.
|
||||||
|
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
|
||||||
|
// Declare the function if it doesn't exist.
|
||||||
|
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
|
||||||
|
|
||||||
|
let func_type = make_fn_type(&tys);
|
||||||
|
let func = self.ctx.module.add_function(self.name, func_type, None);
|
||||||
|
|
||||||
|
for attr in &self.attrs {
|
||||||
|
func.add_attribute(
|
||||||
|
AttributeLoc::Function,
|
||||||
|
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
func
|
||||||
|
});
|
||||||
|
|
||||||
|
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
|
||||||
|
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,417 @@
|
||||||
|
use std::{cmp::Ordering, fmt};
|
||||||
|
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, IntType},
|
||||||
|
values::IntValue,
|
||||||
|
IntPredicate,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx>;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Bool;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Byte;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Int32;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Int64;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct SizeT;
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Bool {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.bool_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Byte {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.i8_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Int32 {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.i32_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Int64 {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.i64_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for SizeT {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
generator.get_size_type(ctx)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Int<N>(pub N);
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
|
||||||
|
type Value = IntValue<'ctx>;
|
||||||
|
type Type = IntType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_int_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = IntType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let exp_ty = self.0.get_int_type(generator, ctx);
|
||||||
|
if ty.get_bit_width() != exp_ty.get_bit_width() {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting IntType to have {} bit(s), but got {} bit(s)",
|
||||||
|
exp_ty.get_bit_width(),
|
||||||
|
ty.get_bit_width()
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> Int<N> {
|
||||||
|
pub fn const_int<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
value: u64,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
let value = self.get_type(generator, ctx).const_int(value, false);
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn const_0<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
let value = self.get_type(generator, ctx).const_zero();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn const_1<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
self.const_int(generator, ctx, 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
let value = self.get_type(generator, ctx).const_all_ones();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
assert!(
|
||||||
|
value.get_type().get_bit_width()
|
||||||
|
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
||||||
|
);
|
||||||
|
let value = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||||
|
.unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn s_extend<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
assert!(
|
||||||
|
value.get_type().get_bit_width()
|
||||||
|
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
||||||
|
);
|
||||||
|
let value =
|
||||||
|
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
assert!(
|
||||||
|
value.get_type().get_bit_width()
|
||||||
|
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
||||||
|
);
|
||||||
|
let value = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||||
|
.unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn z_extend<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
assert!(
|
||||||
|
value.get_type().get_bit_width()
|
||||||
|
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
||||||
|
);
|
||||||
|
let value =
|
||||||
|
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
assert!(
|
||||||
|
value.get_type().get_bit_width()
|
||||||
|
>= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
||||||
|
);
|
||||||
|
let value = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||||
|
.unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn truncate<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
assert!(
|
||||||
|
value.get_type().get_bit_width()
|
||||||
|
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
||||||
|
);
|
||||||
|
let value =
|
||||||
|
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
|
||||||
|
pub fn s_extend_or_truncate<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
let their_width = value.get_type().get_bit_width();
|
||||||
|
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
|
||||||
|
match their_width.cmp(&our_width) {
|
||||||
|
Ordering::Less => self.s_extend(generator, ctx, value),
|
||||||
|
Ordering::Equal => self.believe_value(value),
|
||||||
|
Ordering::Greater => self.truncate(generator, ctx, value),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// `zext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
|
||||||
|
pub fn z_extend_or_truncate<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
let their_width = value.get_type().get_bit_width();
|
||||||
|
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
|
||||||
|
match their_width.cmp(&our_width) {
|
||||||
|
Ordering::Less => self.z_extend(generator, ctx, value),
|
||||||
|
Ordering::Equal => self.believe_value(value),
|
||||||
|
Ordering::Greater => self.truncate(generator, ctx, value),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Int<Bool> {
|
||||||
|
#[must_use]
|
||||||
|
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
self.const_int(generator, ctx, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
self.const_int(generator, ctx, 1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
|
||||||
|
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).s_extend(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).z_extend(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).truncate(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn s_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).s_extend_or_truncate(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn z_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
) -> Instance<'ctx, Int<NewN>> {
|
||||||
|
Int(to_int_kind).z_extend_or_truncate(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||||
|
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
|
||||||
|
self.model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||||
|
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
|
||||||
|
self.model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||||
|
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
|
||||||
|
self.model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn compare(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
op: IntPredicate,
|
||||||
|
other: Self,
|
||||||
|
) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
|
||||||
|
Int(Bool).believe_value(value)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,17 @@
|
||||||
|
mod any;
|
||||||
|
mod array;
|
||||||
|
mod core;
|
||||||
|
mod float;
|
||||||
|
pub mod function;
|
||||||
|
mod int;
|
||||||
|
mod ptr;
|
||||||
|
mod structure;
|
||||||
|
pub mod util;
|
||||||
|
|
||||||
|
pub use any::*;
|
||||||
|
pub use array::*;
|
||||||
|
pub use core::*;
|
||||||
|
pub use float::*;
|
||||||
|
pub use int::*;
|
||||||
|
pub use ptr::*;
|
||||||
|
pub use structure::*;
|
|
@ -0,0 +1,207 @@
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, BasicTypeEnum, PointerType},
|
||||||
|
values::{IntValue, PointerValue},
|
||||||
|
AddressSpace,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// A model for [`PointerType`].
|
||||||
|
// TODO: LLVM 15: `Item` is a Rust type-hint for the LLVM type of value the `.store()/.load()` family
|
||||||
|
// of functions return. If a truly opaque pointer is needed, tell the programmer to use `OpaquePtr`.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Ptr<Item>(pub Item);
|
||||||
|
|
||||||
|
/// An opaque pointer. Like [`Ptr`] but without any Rust type-hints about its element type.
|
||||||
|
///
|
||||||
|
/// `.load()/.store()` is not available for [`Instance`]s of opaque pointers.
|
||||||
|
pub type OpaquePtr = Ptr<()>;
|
||||||
|
|
||||||
|
// TODO: LLVM 15: `Item: Model<'ctx>` don't even need to be a model anymore. It will only be
|
||||||
|
// a type-hint for the `.load()/.store()` functions for the `pointee_ty`.
|
||||||
|
//
|
||||||
|
// See https://thedan64.github.io/inkwell/inkwell/builder/struct.Builder.html#method.build_load.
|
||||||
|
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
|
||||||
|
type Value = PointerValue<'ctx>;
|
||||||
|
type Type = PointerType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
|
||||||
|
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = PointerType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let elem_ty = ty.get_element_type();
|
||||||
|
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
|
||||||
|
)));
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: inkwell `get_element_type()` will be deprecated.
|
||||||
|
// Remove the check for `get_element_type()` when the time comes.
|
||||||
|
self.0
|
||||||
|
.check_type(generator, ctx, elem_ty)
|
||||||
|
.map_err(|err| err.under_context("a PointerType"))?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
|
||||||
|
/// Return a ***constant*** nullptr.
|
||||||
|
pub fn nullptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Ptr<Item>> {
|
||||||
|
let ptr = self.get_type(generator, ctx).const_null();
|
||||||
|
self.believe_value(ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
|
||||||
|
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
ptr: PointerValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Ptr<Item>> {
|
||||||
|
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
|
||||||
|
// TODO: LLVM 15: This function will only have to be:
|
||||||
|
// ```
|
||||||
|
// return self.believe_value(ptr);
|
||||||
|
// ```
|
||||||
|
let t = self.get_type(generator, ctx.ctx);
|
||||||
|
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
|
||||||
|
self.believe_value(ptr)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
|
||||||
|
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn offset(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
offset: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Ptr<Item>> {
|
||||||
|
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
|
||||||
|
self.model.believe_value(p)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
|
||||||
|
#[must_use]
|
||||||
|
pub fn offset_const(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
offset: u64,
|
||||||
|
) -> Instance<'ctx, Ptr<Item>> {
|
||||||
|
let offset = ctx.ctx.i32_type().const_int(offset, false);
|
||||||
|
self.offset(ctx, offset)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn set_index(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
index: IntValue<'ctx>,
|
||||||
|
value: Instance<'ctx, Item>,
|
||||||
|
) {
|
||||||
|
self.offset(ctx, index).store(ctx, value);
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn set_index_const(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
index: u64,
|
||||||
|
value: Instance<'ctx, Item>,
|
||||||
|
) {
|
||||||
|
self.offset_const(ctx, index).store(ctx, value);
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
index: IntValue<'ctx>,
|
||||||
|
) -> Instance<'ctx, Item> {
|
||||||
|
self.offset(ctx, index).load(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn get_index_const<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
index: u64,
|
||||||
|
) -> Instance<'ctx, Item> {
|
||||||
|
self.offset_const(ctx, index).load(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Load the value with [`inkwell::builder::Builder::build_load`].
|
||||||
|
pub fn load<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Item> {
|
||||||
|
let value = ctx.builder.build_load(self.value, "").unwrap();
|
||||||
|
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store a value with [`inkwell::builder::Builder::build_store`].
|
||||||
|
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
|
||||||
|
ctx.builder.build_store(self.value, value.value).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
|
||||||
|
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
new_item: NewItem,
|
||||||
|
) -> Instance<'ctx, Ptr<NewItem>> {
|
||||||
|
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
|
||||||
|
Ptr(new_item).pointer_cast(generator, ctx, self.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
||||||
|
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
let value = ctx.builder.build_is_null(self.value, "").unwrap();
|
||||||
|
Int(Bool).believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
|
||||||
|
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
|
||||||
|
Int(Bool).believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// `memcpy` from another pointer.
|
||||||
|
pub fn copy_from<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
source: Self,
|
||||||
|
num_items: IntValue<'ctx>,
|
||||||
|
) {
|
||||||
|
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
|
||||||
|
let itemsize = self.model.sizeof(generator, ctx.ctx);
|
||||||
|
let itemsize = Int(Int64).z_extend_or_truncate(generator, ctx, itemsize);
|
||||||
|
let num_items = Int(Int64).z_extend_or_truncate(generator, ctx, num_items);
|
||||||
|
let totalsize = itemsize.mul(ctx, num_items);
|
||||||
|
|
||||||
|
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
|
||||||
|
call_memcpy_generic(ctx, self.value, source.value, totalsize.value, is_volatile);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,345 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, BasicTypeEnum, StructType},
|
||||||
|
values::{BasicValueEnum, StructValue},
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
|
||||||
|
pub trait FieldTraversal<'ctx> {
|
||||||
|
/// Output type of [`FieldTraversal::add`].
|
||||||
|
type Out<M>;
|
||||||
|
|
||||||
|
/// Traverse through the type of a declared field and do something with it.
|
||||||
|
///
|
||||||
|
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
|
||||||
|
/// * `model` - The [`Model`] representing the LLVM type of this field.
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
|
||||||
|
|
||||||
|
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
|
||||||
|
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
|
||||||
|
self.add(name, M::default())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Descriptor of an LLVM struct field.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct GepField<M> {
|
||||||
|
/// The GEP index of this field. This is the index to use with `build_gep`.
|
||||||
|
pub gep_index: u64,
|
||||||
|
/// The cosmetic name of this field.
|
||||||
|
pub name: &'static str,
|
||||||
|
/// The [`Model`] of this field's type.
|
||||||
|
pub model: M,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A traversal to get the GEP index of fields.
|
||||||
|
pub struct GepFieldTraversal {
|
||||||
|
/// The current GEP index.
|
||||||
|
gep_index_counter: u64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
|
||||||
|
type Out<M> = GepField<M>;
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||||
|
let gep_index = self.gep_index_counter;
|
||||||
|
self.gep_index_counter += 1;
|
||||||
|
Self::Out { gep_index, name, model }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A traversal to collect the field types of a struct.
|
||||||
|
///
|
||||||
|
/// This is used to collect the field types for [`Context::struct_type`].
|
||||||
|
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||||
|
generator: &'a G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
/// The collected field types so far, in order.
|
||||||
|
field_types: Vec<BasicTypeEnum<'ctx>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
|
||||||
|
type Out<M> = (); // Checking types return nothing.
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
|
||||||
|
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
|
||||||
|
self.field_types.push(t);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A traversal to check the field types of a [`StructType`].
|
||||||
|
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||||
|
generator: &'a mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
/// The current GEP index, so we can tell the index of the field we are checking
|
||||||
|
/// and report the GEP index.
|
||||||
|
index: u32,
|
||||||
|
/// The [`StructType`] to check.
|
||||||
|
scrutinee: StructType<'ctx>,
|
||||||
|
/// The list of collected errors so far.
|
||||||
|
errors: Vec<ModelError>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
|
||||||
|
for CheckTypeFieldTraversal<'ctx, 'a, G>
|
||||||
|
{
|
||||||
|
type Out<M> = (); // Checking types return nothing.
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||||
|
let i = self.index;
|
||||||
|
self.index += 1;
|
||||||
|
|
||||||
|
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
|
||||||
|
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
|
||||||
|
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
|
||||||
|
}
|
||||||
|
} // Otherwise, it will be caught by Struct's `check_type`.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A trait for Rust structs identifying LLVM structures.
|
||||||
|
///
|
||||||
|
/// ### Example
|
||||||
|
///
|
||||||
|
/// Suppose you want to define this structure:
|
||||||
|
/// ```c
|
||||||
|
/// template <typename T>
|
||||||
|
/// struct ContiguousNDArray {
|
||||||
|
/// size_t ndims;
|
||||||
|
/// size_t* shape;
|
||||||
|
/// T* data;
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// This is how it should be done:
|
||||||
|
/// ```ignore
|
||||||
|
/// pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||||
|
/// pub ndims: F::Out<Int<SizeT>>,
|
||||||
|
/// pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
/// pub data: F::Out<Ptr<Item>>,
|
||||||
|
/// }
|
||||||
|
///
|
||||||
|
/// /// An ndarray without strides and non-opaque `data` field in NAC3.
|
||||||
|
/// #[derive(Debug, Clone, Copy)]
|
||||||
|
/// pub struct ContiguousNDArray<M> {
|
||||||
|
/// /// [`Model`] of the items.
|
||||||
|
/// pub item: M,
|
||||||
|
/// }
|
||||||
|
///
|
||||||
|
/// impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
|
||||||
|
/// type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
|
||||||
|
///
|
||||||
|
/// fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
/// // The order of `traversal.add*` is important
|
||||||
|
/// Self::Fields {
|
||||||
|
/// ndims: traversal.add_auto("ndims"),
|
||||||
|
/// shape: traversal.add_auto("shape"),
|
||||||
|
/// data: traversal.add("data", Ptr(self.item)),
|
||||||
|
/// }
|
||||||
|
/// }
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// The [`FieldTraversal`] here is a mechanism to allow the fields of `ContiguousNDArrayFields` to be
|
||||||
|
/// traversed to do useful work such as:
|
||||||
|
///
|
||||||
|
/// - To create the [`StructType`] of `ContiguousNDArray` by collecting [`BasicType`]s of the fields.
|
||||||
|
/// - To enable the `.gep(ctx, |f| f.ndims).store(ctx, ...)` syntax.
|
||||||
|
///
|
||||||
|
/// Suppose now that you have defined `ContiguousNDArray` and you want to allocate a `ContiguousNDArray`
|
||||||
|
/// with dtype `float64` in LLVM, this is how you do it:
|
||||||
|
/// ```rust
|
||||||
|
/// type F64NDArray = ContiguousNDArray<Float<Float64>>; // Type alias for leaner documentation
|
||||||
|
/// let model: Struct<F64NDArray> = Struct(ContigousNDArray { item: Float(Float64) });
|
||||||
|
/// // In fact you may even do `let model = Struct<F64NDArray>::default()`.
|
||||||
|
/// let ndarray: Instance<'ctx, Ptr<F64NDArray>> = model.alloca(generator, ctx);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// ...and here is how you may manipulate/access `ndarray`:
|
||||||
|
///
|
||||||
|
/// (NOTE: some arguments have been omitted)
|
||||||
|
///
|
||||||
|
/// ```rust
|
||||||
|
/// // Get `&ndarray->data`
|
||||||
|
/// ndarray.gep(|f| f.data); // type: Instance<'ctx, Ptr<Float<Float64>>>
|
||||||
|
///
|
||||||
|
/// // Get `ndarray->ndims`
|
||||||
|
/// ndarray.get(|f| f.ndims); // type: Instance<'ctx, Int<SizeT>>
|
||||||
|
///
|
||||||
|
/// // Get `&ndarray->ndims`
|
||||||
|
/// ndarray.gep(|f| f.ndims); // type: Instance<'ctx, Ptr<Int<SizeT>>>
|
||||||
|
///
|
||||||
|
/// // Get `ndarray->shape[0]`
|
||||||
|
/// ndarray.get(|f| f.shape).get_index_const(0); // Instance<'ctx, Int<SizeT>>
|
||||||
|
///
|
||||||
|
/// // Get `&ndarray->shape[2]`
|
||||||
|
/// ndarray.get(|f| f.shape).offset_const(2); // Instance<'ctx, Ptr<Int<SizeT>>>
|
||||||
|
///
|
||||||
|
/// // Do `ndarray->ndims = 3;`
|
||||||
|
/// let num_3 = Int(SizeT).const_int(3);
|
||||||
|
/// ndarray.set(|f| f.ndims, num_3);
|
||||||
|
/// ```
|
||||||
|
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
/// The associated fields of this struct.
|
||||||
|
type Fields<F: FieldTraversal<'ctx>>;
|
||||||
|
|
||||||
|
/// Traverse map through all fields of this [`StructKind`].
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
|
||||||
|
|
||||||
|
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
|
||||||
|
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
|
||||||
|
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the LLVM [`StructType`] of this [`StructKind`].
|
||||||
|
fn get_struct_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> StructType<'ctx> {
|
||||||
|
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
|
||||||
|
self.traverse_fields(&mut traversal);
|
||||||
|
|
||||||
|
ctx.struct_type(&traversal.field_types, false)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Struct<S>(pub S);
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
|
||||||
|
/// Create a constant struct value.
|
||||||
|
///
|
||||||
|
/// This function also validates `fields` and panics types don't match.
|
||||||
|
pub fn const_struct<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
fields: &[BasicValueEnum<'ctx>],
|
||||||
|
) -> Instance<'ctx, Self> {
|
||||||
|
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
|
||||||
|
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
|
||||||
|
// and if you try doing that Rust would force you put lifetimes everywhere.
|
||||||
|
let val = ctx.const_struct(fields, false);
|
||||||
|
self.check_value(generator, ctx, val).unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
|
||||||
|
type Value = StructValue<'ctx>;
|
||||||
|
type Type = StructType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_struct_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = StructType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut traversal =
|
||||||
|
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
|
||||||
|
self.0.traverse_fields(&mut traversal);
|
||||||
|
|
||||||
|
let exp_num_fields = traversal.index;
|
||||||
|
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
|
||||||
|
if exp_num_fields != got_num_fields {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
if !traversal.errors.is_empty() {
|
||||||
|
// Currently, only the first error is reported.
|
||||||
|
return Err(traversal.errors[0].clone());
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
|
||||||
|
/// Get a field with [`StructValue::get_field_at_index`].
|
||||||
|
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
get_field: GetField,
|
||||||
|
) -> Instance<'ctx, M>
|
||||||
|
where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
let field = get_field(self.model.0.fields());
|
||||||
|
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
|
||||||
|
field.model.check_value(generator, ctx, val).unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
|
||||||
|
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
|
||||||
|
pub fn gep<M, GetField>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
get_field: GetField,
|
||||||
|
) -> Instance<'ctx, Ptr<M>>
|
||||||
|
where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
let field = get_field(self.model.0 .0.fields());
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
|
||||||
|
let ptr = unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.value,
|
||||||
|
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
|
||||||
|
field.name,
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
};
|
||||||
|
|
||||||
|
Ptr(field.model).believe_value(ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||||
|
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
get_field: GetField,
|
||||||
|
) -> Instance<'ctx, M>
|
||||||
|
where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
self.gep(ctx, get_field).load(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||||
|
pub fn set<M, GetField>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
get_field: GetField,
|
||||||
|
value: Instance<'ctx, M>,
|
||||||
|
) where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
self.gep(ctx, get_field).store(ctx, value);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,40 @@
|
||||||
|
use crate::codegen::{
|
||||||
|
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
|
||||||
|
pub fn gen_for_model<'ctx, 'a, G, F, N>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
start: Instance<'ctx, Int<N>>,
|
||||||
|
stop: Instance<'ctx, Int<N>>,
|
||||||
|
step: Instance<'ctx, Int<N>>,
|
||||||
|
body: F,
|
||||||
|
) -> Result<(), String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
F: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BreakContinueHooks<'ctx>,
|
||||||
|
Instance<'ctx, Int<N>>,
|
||||||
|
) -> Result<(), String>,
|
||||||
|
N: IntKind<'ctx> + Default,
|
||||||
|
{
|
||||||
|
let int_model = Int(N::default());
|
||||||
|
gen_for_callback_incrementing(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
None,
|
||||||
|
start.value,
|
||||||
|
(stop.value, false),
|
||||||
|
|g, ctx, hooks, i| {
|
||||||
|
let i = int_model.believe_value(i);
|
||||||
|
body(g, ctx, hooks, i)
|
||||||
|
},
|
||||||
|
step.value,
|
||||||
|
)
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,12 @@
|
||||||
|
use inkwell::values::BasicValueEnum;
|
||||||
|
|
||||||
|
use crate::typecheck::typedef::Type;
|
||||||
|
|
||||||
|
/// An NAC3 LLVM Python object.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyObject<'ctx> {
|
||||||
|
/// Typechecker type of the object.
|
||||||
|
pub ty: Type,
|
||||||
|
/// LLVM value of the object.
|
||||||
|
pub value: BasicValueEnum<'ctx>,
|
||||||
|
}
|
|
@ -0,0 +1,24 @@
|
||||||
|
use crate::codegen::model::*;
|
||||||
|
|
||||||
|
/// Fields of [`CSlice`]
|
||||||
|
pub struct CSliceFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||||
|
/// Pointer to items
|
||||||
|
pub base: F::Out<Ptr<Item>>,
|
||||||
|
/// Number of items (not bytes)
|
||||||
|
pub len: F::Out<Int<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// See <https://docs.rs/cslice/0.3.0/cslice/struct.CSlice.html>.
|
||||||
|
///
|
||||||
|
/// Additionally, see <https://github.com/m-labs/artiq/blob/b0d2705c385f64b6e6711c1726cd9178f40b598e/artiq/firmware/libeh/eh_artiq.rs>)
|
||||||
|
/// for ARTIQ-specific notes.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct CSlice<Item>(pub Item);
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for CSlice<Item> {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = CSliceFields<'ctx, F, Item>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
CSliceFields { base: traversal.add("base", Ptr(self.0)), len: traversal.add_auto("len") }
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,41 @@
|
||||||
|
use crate::codegen::model::*;
|
||||||
|
|
||||||
|
use super::str::Str;
|
||||||
|
|
||||||
|
/// Fields of [`Exception<'ctx>`]
|
||||||
|
///
|
||||||
|
/// The definition came from `pub struct Exception<'a>` in
|
||||||
|
/// <https://github.com/m-labs/artiq/blob/master/artiq/firmware/libeh/eh_artiq.rs>.
|
||||||
|
pub struct ExceptionFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub id: F::Out<Int<Int32>>,
|
||||||
|
pub filename: F::Out<Str>,
|
||||||
|
pub line: F::Out<Int<Int32>>,
|
||||||
|
pub column: F::Out<Int<Int32>>,
|
||||||
|
pub function: F::Out<Str>,
|
||||||
|
pub msg: F::Out<Str>,
|
||||||
|
pub params: [F::Out<Int<Int64>>; 3],
|
||||||
|
}
|
||||||
|
|
||||||
|
/// nac3core & ARTIQ's Exception
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Exception;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for Exception {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ExceptionFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
id: traversal.add_auto("id"),
|
||||||
|
filename: traversal.add_auto("filename"),
|
||||||
|
line: traversal.add_auto("line"),
|
||||||
|
column: traversal.add_auto("column"),
|
||||||
|
function: traversal.add_auto("function"),
|
||||||
|
msg: traversal.add_auto("msg"),
|
||||||
|
params: [
|
||||||
|
traversal.add_auto("params[0]"),
|
||||||
|
traversal.add_auto("params[1]"),
|
||||||
|
traversal.add_auto("params[2]"),
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,107 @@
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::any::AnyObject;
|
||||||
|
|
||||||
|
/// Fields of [`List`]
|
||||||
|
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||||
|
/// Array pointer to content
|
||||||
|
pub items: F::Out<Ptr<Item>>,
|
||||||
|
/// Number of items in the array
|
||||||
|
pub len: F::Out<Int<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A list in NAC3.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct List<Item> {
|
||||||
|
/// Model of the list items
|
||||||
|
pub item: Item,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
items: traversal.add("items", Ptr(self.item)),
|
||||||
|
len: traversal.add_auto("len"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A NAC3 Python List object.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct ListObject<'ctx> {
|
||||||
|
/// Typechecker type of the list items
|
||||||
|
pub item_type: Type,
|
||||||
|
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ListObject<'ctx> {
|
||||||
|
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
|
||||||
|
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// Check typechecker type and extract `item_type`
|
||||||
|
let item_type = match &*ctx.unifier.get_ty(object.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, params, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
|
||||||
|
}
|
||||||
|
_ => {
|
||||||
|
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let plist = Ptr(Struct(List { item: Any(ctx.get_llvm_type(generator, item_type)) }));
|
||||||
|
|
||||||
|
// Create object
|
||||||
|
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||||
|
ListObject { item_type, instance: value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this list.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
self.instance.get(generator, ctx, |f| f.len)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `items` field as an opaque pointer.
|
||||||
|
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||||
|
self.instance.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the value of this [`ListObject`] as a list with opaque items.
|
||||||
|
///
|
||||||
|
/// This function allocates on the stack to create the list, but the
|
||||||
|
/// reference to the `items` are preserved.
|
||||||
|
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
|
||||||
|
let opaque_list = Struct(List { item: Int(Byte) }).alloca(generator, ctx);
|
||||||
|
|
||||||
|
// Copy items pointer
|
||||||
|
let items = self.get_opaque_items_ptr(generator, ctx);
|
||||||
|
opaque_list.set(ctx, |f| f.items, items);
|
||||||
|
|
||||||
|
// Copy len
|
||||||
|
let len = self.instance.get(generator, ctx, |f| f.len);
|
||||||
|
opaque_list.set(ctx, |f| f.len, len);
|
||||||
|
|
||||||
|
opaque_list
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,9 @@
|
||||||
|
pub mod any;
|
||||||
|
pub mod cslice;
|
||||||
|
pub mod exception;
|
||||||
|
pub mod list;
|
||||||
|
pub mod ndarray;
|
||||||
|
pub mod range;
|
||||||
|
pub mod slice;
|
||||||
|
pub mod str;
|
||||||
|
pub mod tuple;
|
|
@ -0,0 +1,178 @@
|
||||||
|
use super::NDArrayObject;
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::{
|
||||||
|
call_nac3_ndarray_array_set_and_validate_list_shape,
|
||||||
|
call_nac3_ndarray_array_write_list_to_array,
|
||||||
|
},
|
||||||
|
model::*,
|
||||||
|
object::{any::AnyObject, list::ListObject},
|
||||||
|
stmt::gen_if_else_expr_callback,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
fn get_list_object_dtype_and_ndims<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
) -> (Type, u64) {
|
||||||
|
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
||||||
|
|
||||||
|
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
||||||
|
let ndims = ndims + 1; // To count `list` itself.
|
||||||
|
|
||||||
|
(dtype, ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
fn make_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
||||||
|
let list_value = list.get_opaque_list_ptr(generator, ctx);
|
||||||
|
|
||||||
|
// Validate `list` has a consistent shape.
|
||||||
|
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||||
|
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||||
|
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||||
|
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||||
|
call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||||
|
generator, ctx, list_value, ndims, shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
|
||||||
|
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
|
||||||
|
// Copy all contents from the list.
|
||||||
|
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
fn make_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// np_array without copying is only possible `list` is not nested.
|
||||||
|
//
|
||||||
|
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||||
|
// to the array pointer of `list`.
|
||||||
|
//
|
||||||
|
// If `list` is `list[list[T]]` or worse, copy.
|
||||||
|
|
||||||
|
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||||
|
if ndims == 1 {
|
||||||
|
// `list` is not nested
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
|
||||||
|
|
||||||
|
// Set data
|
||||||
|
let data = list.get_opaque_items_ptr(generator, ctx);
|
||||||
|
ndarray.instance.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
// ndarray->shape[0] = list->len;
|
||||||
|
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
let list_len = list.instance.get(generator, ctx, |f| f.len);
|
||||||
|
shape.set_index_const(ctx, 0, list_len);
|
||||||
|
|
||||||
|
// Set strides, the `data` is contiguous
|
||||||
|
ndarray.set_strides_contiguous(generator, ctx);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
} else {
|
||||||
|
// `list` is nested, copy
|
||||||
|
NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
copy: Instance<'ctx, Int<Bool>>,
|
||||||
|
) -> Self {
|
||||||
|
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||||
|
|
||||||
|
let ndarray = gen_if_else_expr_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|_generator, _ctx| Ok(copy.value),
|
||||||
|
|generator, ctx| {
|
||||||
|
let ndarray = NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list);
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
|generator, ctx| {
|
||||||
|
let ndarray =
|
||||||
|
NDArrayObject::make_np_array_list_try_no_copy_impl(generator, ctx, list);
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: NDArrayObject<'ctx>,
|
||||||
|
copy: Instance<'ctx, Int<Bool>>,
|
||||||
|
) -> Self {
|
||||||
|
let ndarray_val = gen_if_else_expr_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|_generator, _ctx| Ok(copy.value),
|
||||||
|
|generator, ctx| {
|
||||||
|
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
|_generator, _ctx| {
|
||||||
|
// No need to copy. Return `ndarray` itself.
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
NDArrayObject::from_value_and_unpacked_types(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ndarray_val,
|
||||||
|
ndarray.dtype,
|
||||||
|
ndarray.ndims,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a new ndarray like `np.array()`.
|
||||||
|
///
|
||||||
|
/// NOTE: The `ndmin` argument is not here. You may want to
|
||||||
|
/// do [`NDArrayObject::atleast_nd`] to achieve that.
|
||||||
|
pub fn make_np_array<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
copy: Instance<'ctx, Int<Bool>>,
|
||||||
|
) -> Self {
|
||||||
|
match &*ctx.unifier.get_ty(object.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let list = ListObject::from_object(generator, ctx, object);
|
||||||
|
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||||
|
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
||||||
|
}
|
||||||
|
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,135 @@
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
|
||||||
|
model::*,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
/// Fields of [`ShapeEntry`]
|
||||||
|
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub ndims: F::Out<Int<SizeT>>,
|
||||||
|
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT structure used in broadcasting.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct ShapeEntry;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create a broadcast view on this ndarray with a target shape.
|
||||||
|
///
|
||||||
|
/// The input shape will be checked to make sure that it contains no negative values.
|
||||||
|
///
|
||||||
|
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||||
|
/// The caller has to figure this out for this function.
|
||||||
|
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||||
|
#[must_use]
|
||||||
|
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
target_ndims: u64,
|
||||||
|
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
|
||||||
|
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
||||||
|
|
||||||
|
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
||||||
|
broadcast_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/// A result produced by [`broadcast_all_ndarrays`]
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct BroadcastAllResult<'ctx> {
|
||||||
|
/// The statically known `ndims` of the broadcast result.
|
||||||
|
pub ndims: u64,
|
||||||
|
/// The broadcasting shape.
|
||||||
|
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
/// Broadcasted views on the inputs.
|
||||||
|
///
|
||||||
|
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||||
|
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||||
|
/// is the same as the input.
|
||||||
|
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
|
||||||
|
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
|
||||||
|
broadcast_ndims: u64,
|
||||||
|
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
|
||||||
|
let num_shape_entries =
|
||||||
|
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
|
||||||
|
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
|
||||||
|
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
|
||||||
|
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
|
||||||
|
|
||||||
|
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
|
||||||
|
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
||||||
|
|
||||||
|
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
|
||||||
|
call_nac3_ndarray_broadcast_shapes(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
num_shape_entries,
|
||||||
|
shape_entries,
|
||||||
|
broadcast_ndims,
|
||||||
|
broadcast_shape,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
|
||||||
|
/// containing all the information of the result of the broadcast operation.
|
||||||
|
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarrays: &[Self],
|
||||||
|
) -> BroadcastAllResult<'ctx> {
|
||||||
|
assert!(!ndarrays.is_empty());
|
||||||
|
|
||||||
|
// Infer the broadcast output ndims.
|
||||||
|
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
||||||
|
|
||||||
|
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
|
||||||
|
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
|
||||||
|
|
||||||
|
let shape_entries = ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
|
||||||
|
.collect_vec();
|
||||||
|
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
||||||
|
|
||||||
|
// Broadcast all the inputs to shape `dst_shape`.
|
||||||
|
let broadcast_ndarrays: Vec<_> = ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| {
|
||||||
|
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
|
||||||
|
BroadcastAllResult {
|
||||||
|
ndims: broadcast_ndims_int,
|
||||||
|
shape: broadcast_shape,
|
||||||
|
ndarrays: broadcast_ndarrays,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,134 @@
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
/// Fields of [`ContiguousNDArray`]
|
||||||
|
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||||
|
pub ndims: F::Out<Int<SizeT>>,
|
||||||
|
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
pub data: F::Out<Ptr<Item>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An ndarray without strides and non-opaque `data` field in NAC3.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct ContiguousNDArray<M> {
|
||||||
|
/// [`Model`] of the items.
|
||||||
|
pub item: M,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
ndims: traversal.add_auto("ndims"),
|
||||||
|
shape: traversal.add_auto("shape"),
|
||||||
|
data: traversal.add("data", Ptr(self.item)),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
|
||||||
|
///
|
||||||
|
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
||||||
|
///
|
||||||
|
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
|
||||||
|
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
|
||||||
|
///
|
||||||
|
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
|
||||||
|
/// will share memory with this ndarray.
|
||||||
|
///
|
||||||
|
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
|
||||||
|
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
|
||||||
|
/// if you don't care/cannot know the [`Model`] in advance.
|
||||||
|
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
item_model: Item,
|
||||||
|
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
|
||||||
|
// Sanity check on `self.dtype` and `item_model`.
|
||||||
|
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||||
|
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||||
|
|
||||||
|
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
|
||||||
|
|
||||||
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||||
|
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||||
|
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||||
|
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||||
|
|
||||||
|
// Allocate and setup the resulting [`ContiguousNDArray`].
|
||||||
|
let result = cdarray_model.alloca(generator, ctx);
|
||||||
|
|
||||||
|
// Set ndims and shape.
|
||||||
|
let ndims = self.ndims_llvm(generator, ctx.ctx);
|
||||||
|
result.set(ctx, |f| f.ndims, ndims);
|
||||||
|
|
||||||
|
let shape = self.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
result.set(ctx, |f| f.shape, shape);
|
||||||
|
|
||||||
|
let is_contiguous = self.is_c_contiguous(generator, ctx);
|
||||||
|
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into then_bb; This ndarray is contiguous.
|
||||||
|
ctx.builder.position_at_end(then_bb);
|
||||||
|
let data = self.instance.get(generator, ctx, |f| f.data);
|
||||||
|
let data = data.pointer_cast(generator, ctx, item_model);
|
||||||
|
result.set(ctx, |f| f.data, data);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
|
||||||
|
// `make_copy` produces an ndarray with contiguous `data`.
|
||||||
|
ctx.builder.position_at_end(else_bb);
|
||||||
|
let copied_ndarray = self.make_copy(generator, ctx);
|
||||||
|
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
|
||||||
|
let data = data.pointer_cast(generator, ctx, item_model);
|
||||||
|
result.set(ctx, |f| f.data, data);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Reposition to end_bb for continuation
|
||||||
|
ctx.builder.position_at_end(end_bb);
|
||||||
|
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
|
||||||
|
///
|
||||||
|
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
|
||||||
|
/// same memory as the [`ContiguousNDArray`].
|
||||||
|
///
|
||||||
|
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
|
||||||
|
/// the fact that the information should be contained within the [`ContiguousNDArray`].
|
||||||
|
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
) -> Self {
|
||||||
|
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
|
||||||
|
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||||
|
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||||
|
|
||||||
|
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
|
||||||
|
|
||||||
|
// Allocate the resulting ndarray.
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
||||||
|
|
||||||
|
// Copy shape and update strides
|
||||||
|
let shape = carray.get(generator, ctx, |f| f.shape);
|
||||||
|
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
ndarray.set_strides_contiguous(generator, ctx);
|
||||||
|
|
||||||
|
// Share data
|
||||||
|
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
|
||||||
|
ndarray.instance.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,176 @@
|
||||||
|
use inkwell::{values::BasicValueEnum, IntPredicate};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
|
||||||
|
CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||||
|
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
) -> BasicValueEnum<'ctx> {
|
||||||
|
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
ctx.ctx.i32_type().const_zero().into()
|
||||||
|
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
ctx.ctx.i64_type().const_zero().into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||||
|
ctx.ctx.f64_type().const_zero().into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||||
|
ctx.ctx.bool_type().const_zero().into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||||
|
ctx.gen_string(generator, "").value.into()
|
||||||
|
} else {
|
||||||
|
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the one value in `np.ones()` of a `dtype`.
|
||||||
|
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
) -> BasicValueEnum<'ctx> {
|
||||||
|
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||||
|
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||||
|
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||||
|
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||||
|
ctx.ctx.f64_type().const_float(1.0).into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||||
|
ctx.ctx.bool_type().const_int(1, false).into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||||
|
ctx.gen_string(generator, "1").value.into()
|
||||||
|
} else {
|
||||||
|
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create an ndarray like `np.empty`.
|
||||||
|
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
// Validate `shape`
|
||||||
|
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||||
|
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
||||||
|
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.full`.
|
||||||
|
pub fn make_np_full<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
fill_value: BasicValueEnum<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
|
||||||
|
ndarray.fill(generator, ctx, fill_value);
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.zero`.
|
||||||
|
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||||
|
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.ones`.
|
||||||
|
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||||
|
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.eye`.
|
||||||
|
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
nrows: Instance<'ctx, Int<SizeT>>,
|
||||||
|
ncols: Instance<'ctx, Int<SizeT>>,
|
||||||
|
offset: Instance<'ctx, Int<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||||
|
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
|
||||||
|
|
||||||
|
// Create data and make the matrix like look np.eye()
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
ndarray
|
||||||
|
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||||
|
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||||
|
// and this loop would not execute.
|
||||||
|
|
||||||
|
// Load up `row_i` and `col_i` from indices.
|
||||||
|
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
|
||||||
|
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
|
||||||
|
|
||||||
|
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
|
||||||
|
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
|
||||||
|
|
||||||
|
let p = nditer.get_pointer(generator, ctx);
|
||||||
|
ctx.builder.build_store(p, value).unwrap();
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.identity`.
|
||||||
|
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
size: Instance<'ctx, Int<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
// Convenient implementation
|
||||||
|
let offset = Int(SizeT).const_0(generator, ctx.ctx);
|
||||||
|
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,223 @@
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::call_nac3_ndarray_index,
|
||||||
|
model::*,
|
||||||
|
object::slice::{RustSlice, Slice},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
pub type NDIndexType = Byte;
|
||||||
|
|
||||||
|
/// Fields of [`NDIndex`]
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
|
||||||
|
pub data: F::Out<Ptr<Int<Byte>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT representation of an ndarray subscript index.
|
||||||
|
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||||
|
pub struct NDIndex;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for NDIndex {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A convenience enum to prepare an [`NDIndex`].
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub enum RustNDIndex<'ctx> {
|
||||||
|
SingleElement(Instance<'ctx, Int<Int32>>), // TODO: To be SizeT
|
||||||
|
Slice(RustSlice<'ctx, Int32>), // TODO: To be SizeT
|
||||||
|
NewAxis,
|
||||||
|
Ellipsis,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> RustNDIndex<'ctx> {
|
||||||
|
/// Get the value to set `NDIndex::type` for this variant.
|
||||||
|
fn get_type_id(&self) -> u64 {
|
||||||
|
// Defined in IRRT, must be in sync
|
||||||
|
match self {
|
||||||
|
RustNDIndex::SingleElement(_) => 0,
|
||||||
|
RustNDIndex::Slice(_) => 1,
|
||||||
|
RustNDIndex::NewAxis => 2,
|
||||||
|
RustNDIndex::Ellipsis => 3,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Write the contents to an LLVM [`NDIndex`].
|
||||||
|
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
||||||
|
) {
|
||||||
|
// Set `dst_ndindex_ptr->type`
|
||||||
|
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
|
||||||
|
ctx,
|
||||||
|
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
|
||||||
|
);
|
||||||
|
|
||||||
|
// Set `dst_ndindex_ptr->data`
|
||||||
|
match self {
|
||||||
|
RustNDIndex::SingleElement(in_index) => {
|
||||||
|
let index_ptr = Int(Int32).alloca(generator, ctx);
|
||||||
|
index_ptr.store(ctx, *in_index);
|
||||||
|
|
||||||
|
dst_ndindex_ptr
|
||||||
|
.gep(ctx, |f| f.data)
|
||||||
|
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
||||||
|
}
|
||||||
|
RustNDIndex::Slice(in_rust_slice) => {
|
||||||
|
let user_slice_ptr = Struct(Slice(Int32)).alloca(generator, ctx);
|
||||||
|
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
|
||||||
|
|
||||||
|
dst_ndindex_ptr
|
||||||
|
.gep(ctx, |f| f.data)
|
||||||
|
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
||||||
|
}
|
||||||
|
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
|
||||||
|
pub fn alloca_ndindices<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
in_ndindices: &[RustNDIndex<'ctx>],
|
||||||
|
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
|
||||||
|
let ndindex_model = Struct(NDIndex);
|
||||||
|
|
||||||
|
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
|
||||||
|
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
|
||||||
|
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
|
||||||
|
let pndindex = ndindices.offset_const(ctx, i as u64);
|
||||||
|
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
|
||||||
|
}
|
||||||
|
|
||||||
|
(num_ndindices, ndindices)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Get the ndims [`Type`] after indexing with a given slice.
|
||||||
|
#[must_use]
|
||||||
|
pub fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
|
||||||
|
let mut ndims = self.ndims;
|
||||||
|
for index in indices {
|
||||||
|
match index {
|
||||||
|
RustNDIndex::SingleElement(_) => {
|
||||||
|
ndims -= 1; // Single elements decrements ndims
|
||||||
|
}
|
||||||
|
RustNDIndex::NewAxis => {
|
||||||
|
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
||||||
|
}
|
||||||
|
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ndims
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||||
|
///
|
||||||
|
/// This function behaves like NumPy's ndarray indexing, but if the indices index
|
||||||
|
/// into a single element, an unsized ndarray is returned.
|
||||||
|
#[must_use]
|
||||||
|
pub fn index<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
indices: &[RustNDIndex<'ctx>],
|
||||||
|
) -> Self {
|
||||||
|
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
|
||||||
|
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
|
||||||
|
|
||||||
|
let (num_indices, indices) = RustNDIndex::alloca_ndindices(generator, ctx, indices);
|
||||||
|
call_nac3_ndarray_index(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
num_indices,
|
||||||
|
indices,
|
||||||
|
self.instance,
|
||||||
|
dst_ndarray.instance,
|
||||||
|
);
|
||||||
|
|
||||||
|
dst_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub mod util {
|
||||||
|
use itertools::Itertools;
|
||||||
|
use nac3parser::ast::{Expr, ExprKind};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, object::slice::util::gen_slice, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::RustNDIndex;
|
||||||
|
|
||||||
|
/// Generate LLVM code to transform an ndarray subscript expression to
|
||||||
|
/// its list of [`RustNDIndex`]
|
||||||
|
///
|
||||||
|
/// i.e.,
|
||||||
|
/// ```python
|
||||||
|
/// my_ndarray[::3, 1, :2:]
|
||||||
|
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
||||||
|
/// ```
|
||||||
|
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
subscript: &Expr<Option<Type>>,
|
||||||
|
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
||||||
|
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||||
|
|
||||||
|
// Annoying notes about `slice`
|
||||||
|
// - `my_array[5]`
|
||||||
|
// - slice is a `Constant`
|
||||||
|
// - `my_array[:5]`
|
||||||
|
// - slice is a `Slice`
|
||||||
|
// - `my_array[:]`
|
||||||
|
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||||
|
// - `my_array[:, :]`
|
||||||
|
// - slice is now a `Tuple` of two `Slice`-s
|
||||||
|
//
|
||||||
|
// In summary:
|
||||||
|
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||||
|
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||||
|
//
|
||||||
|
// So we first "flatten" out the slice expression
|
||||||
|
let index_exprs = match &subscript.node {
|
||||||
|
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
||||||
|
_ => vec![subscript],
|
||||||
|
};
|
||||||
|
|
||||||
|
// Process all index expressions
|
||||||
|
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
||||||
|
for index_expr in index_exprs {
|
||||||
|
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||||
|
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||||
|
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
||||||
|
// Handle slices
|
||||||
|
let slice = gen_slice(generator, ctx, lower, upper, step)?;
|
||||||
|
RustNDIndex::Slice(slice)
|
||||||
|
} else {
|
||||||
|
// Treat and handle everything else as a single element index.
|
||||||
|
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
||||||
|
)?;
|
||||||
|
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
|
||||||
|
|
||||||
|
RustNDIndex::SingleElement(index)
|
||||||
|
};
|
||||||
|
rust_ndindices.push(ndindex);
|
||||||
|
}
|
||||||
|
Ok(rust_ndindices)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,220 @@
|
||||||
|
use inkwell::values::BasicValueEnum;
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
object::ndarray::{AnyObject, NDArrayObject},
|
||||||
|
stmt::gen_for_callback,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
|
||||||
|
///
|
||||||
|
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
|
||||||
|
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
|
||||||
|
///
|
||||||
|
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
|
||||||
|
pub fn broadcast_starmap<'a, G, MappingFn>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ndarrays: &[Self],
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
mapping: MappingFn,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
MappingFn: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
&[BasicValueEnum<'ctx>],
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
// Broadcast inputs
|
||||||
|
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
|
||||||
|
|
||||||
|
let out_ndarray = match out {
|
||||||
|
NDArrayOut::NewNDArray { dtype } => {
|
||||||
|
// Create a new ndarray based on the broadcast shape.
|
||||||
|
let result_ndarray =
|
||||||
|
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
|
||||||
|
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
|
||||||
|
result_ndarray.create_data(generator, ctx);
|
||||||
|
result_ndarray
|
||||||
|
}
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||||
|
// Use an existing ndarray.
|
||||||
|
|
||||||
|
// Check that its shape is compatible with the broadcast shape.
|
||||||
|
result_ndarray.assert_can_be_written_by_out(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
broadcast_result.ndims,
|
||||||
|
broadcast_result.shape,
|
||||||
|
);
|
||||||
|
result_ndarray
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Map element-wise and store results into `mapped_ndarray`.
|
||||||
|
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
|
||||||
|
gen_for_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
Some("broadcast_starmap"),
|
||||||
|
|generator, ctx| {
|
||||||
|
// Create NDIters for all broadcasted input ndarrays.
|
||||||
|
let other_nditers = broadcast_result
|
||||||
|
.ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
|
||||||
|
.collect_vec();
|
||||||
|
Ok((nditer, other_nditers))
|
||||||
|
},
|
||||||
|
|generator, ctx, (out_nditer, _in_nditers)| {
|
||||||
|
// We can simply use `out_nditer`'s `has_next()`.
|
||||||
|
// `in_nditers`' `has_next()`s should return the same value.
|
||||||
|
Ok(out_nditer.has_next(generator, ctx).value)
|
||||||
|
},
|
||||||
|
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||||
|
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||||
|
// and write to `out_ndarray`.
|
||||||
|
|
||||||
|
let in_scalars = in_nditers
|
||||||
|
.iter()
|
||||||
|
.map(|nditer| nditer.get_scalar(generator, ctx).value)
|
||||||
|
.collect_vec();
|
||||||
|
|
||||||
|
let result = mapping(generator, ctx, &in_scalars)?;
|
||||||
|
|
||||||
|
let p = out_nditer.get_pointer(generator, ctx);
|
||||||
|
ctx.builder.build_store(p, result).unwrap();
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
|generator, ctx, (out_nditer, in_nditers)| {
|
||||||
|
// Advance all iterators
|
||||||
|
out_nditer.next(generator, ctx);
|
||||||
|
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(out_ndarray)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Map through this ndarray with an elementwise function.
|
||||||
|
pub fn map<'a, G, Mapping>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
mapping: Mapping,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Mapping: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BasicValueEnum<'ctx>,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
NDArrayObject::broadcast_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[*self],
|
||||||
|
out,
|
||||||
|
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||||
|
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
|
||||||
|
///
|
||||||
|
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
|
||||||
|
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
|
||||||
|
///
|
||||||
|
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
|
||||||
|
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
||||||
|
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
|
||||||
|
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
|
||||||
|
///
|
||||||
|
/// ## Details:
|
||||||
|
///
|
||||||
|
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
||||||
|
///
|
||||||
|
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
|
||||||
|
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
|
||||||
|
/// with dtype `ret_dtype`.
|
||||||
|
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
inputs: &[ScalarOrNDArray<'ctx>],
|
||||||
|
ret_dtype: Type,
|
||||||
|
mapping: MappingFn,
|
||||||
|
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
MappingFn: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
&[BasicValueEnum<'ctx>],
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
// Check if all inputs are Scalars
|
||||||
|
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
|
||||||
|
|
||||||
|
if let Some(scalars) = all_scalars {
|
||||||
|
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
|
||||||
|
let value = mapping(generator, ctx, &scalars)?;
|
||||||
|
|
||||||
|
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
|
||||||
|
} else {
|
||||||
|
// Promote all input to ndarrays and map through them.
|
||||||
|
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
||||||
|
let ndarray = NDArrayObject::broadcast_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&inputs,
|
||||||
|
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||||
|
mapping,
|
||||||
|
)?;
|
||||||
|
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
|
||||||
|
///
|
||||||
|
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
|
||||||
|
///
|
||||||
|
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
|
||||||
|
/// returned as a [`ScalarOrNDArray::NDArray`].
|
||||||
|
pub fn map<'a, G, Mapping>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ret_dtype: Type,
|
||||||
|
mapping: Mapping,
|
||||||
|
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Mapping: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BasicValueEnum<'ctx>,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
ScalarOrNDArray::broadcasting_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[*self],
|
||||||
|
ret_dtype,
|
||||||
|
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,218 @@
|
||||||
|
use std::cmp::max;
|
||||||
|
|
||||||
|
use nac3parser::ast::Operator;
|
||||||
|
use util::gen_for_model;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
|
||||||
|
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::{magic_methods::Binop, typedef::Type},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{NDArrayObject, NDArrayOut};
|
||||||
|
|
||||||
|
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
|
||||||
|
///
|
||||||
|
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||||
|
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dst_dtype: Type,
|
||||||
|
in_a: NDArrayObject<'ctx>,
|
||||||
|
in_b: NDArrayObject<'ctx>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
assert!(in_a.ndims >= 2);
|
||||||
|
assert!(in_b.ndims >= 2);
|
||||||
|
|
||||||
|
// Deduce ndims of the result of matmul.
|
||||||
|
let ndims_int = max(in_a.ndims, in_b.ndims);
|
||||||
|
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||||
|
|
||||||
|
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
|
||||||
|
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
|
||||||
|
|
||||||
|
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
|
||||||
|
// destination ndarray to store the result of matmul.
|
||||||
|
let (lhs, rhs, dst) = {
|
||||||
|
let in_lhs_ndims = in_a.ndims_llvm(generator, ctx.ctx);
|
||||||
|
let in_lhs_shape = in_a.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
let in_rhs_ndims = in_b.ndims_llvm(generator, ctx.ctx);
|
||||||
|
let in_rhs_shape = in_b.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
let lhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||||
|
let rhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||||
|
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||||
|
|
||||||
|
// Matmul dimension compatibility is checked here.
|
||||||
|
call_nac3_ndarray_matmul_calculate_shapes(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
in_lhs_ndims,
|
||||||
|
in_lhs_shape,
|
||||||
|
in_rhs_ndims,
|
||||||
|
in_rhs_shape,
|
||||||
|
ndims,
|
||||||
|
lhs_shape,
|
||||||
|
rhs_shape,
|
||||||
|
dst_shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, lhs_shape);
|
||||||
|
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, rhs_shape);
|
||||||
|
|
||||||
|
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
|
||||||
|
dst.copy_shape_from_array(generator, ctx, dst_shape);
|
||||||
|
dst.create_data(generator, ctx);
|
||||||
|
|
||||||
|
(lhs, rhs, dst)
|
||||||
|
};
|
||||||
|
|
||||||
|
let len = lhs.instance.get(generator, ctx, |f| f.shape).get_index_const(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ndims_int - 1,
|
||||||
|
);
|
||||||
|
|
||||||
|
let at_row = ndims_int - 2;
|
||||||
|
let at_col = ndims_int - 1;
|
||||||
|
|
||||||
|
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
|
||||||
|
let dst_zero = dst_dtype_llvm.const_zero();
|
||||||
|
|
||||||
|
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||||
|
let pdst_ij = hdl.get_pointer(generator, ctx);
|
||||||
|
|
||||||
|
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
|
||||||
|
|
||||||
|
let indices = hdl.get_indices();
|
||||||
|
let i = indices.get_index_const(generator, ctx, at_row);
|
||||||
|
let j = indices.get_index_const(generator, ctx, at_col);
|
||||||
|
|
||||||
|
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
|
||||||
|
// `indices` is modified to index into `a` and `b`, and restored.
|
||||||
|
indices.set_index_const(ctx, at_row, i);
|
||||||
|
indices.set_index_const(ctx, at_col, k);
|
||||||
|
let a_ik = lhs.get_scalar_by_indices(generator, ctx, indices);
|
||||||
|
|
||||||
|
indices.set_index_const(ctx, at_row, k);
|
||||||
|
indices.set_index_const(ctx, at_col, j);
|
||||||
|
let b_kj = rhs.get_scalar_by_indices(generator, ctx, indices);
|
||||||
|
|
||||||
|
// Restore `indices`.
|
||||||
|
indices.set_index_const(ctx, at_row, i);
|
||||||
|
indices.set_index_const(ctx, at_col, j);
|
||||||
|
|
||||||
|
// x = a_[...]ik * b_[...]kj
|
||||||
|
let x = gen_binop_expr_with_values(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
(&Some(lhs.dtype), a_ik.value),
|
||||||
|
Binop::normal(Operator::Mult),
|
||||||
|
(&Some(rhs.dtype), b_kj.value),
|
||||||
|
ctx.current_loc,
|
||||||
|
)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||||
|
|
||||||
|
// dst_[...]ij += x
|
||||||
|
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
|
||||||
|
let dst_ij = gen_binop_expr_with_values(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
(&Some(dst_dtype), dst_ij),
|
||||||
|
Binop::normal(Operator::Add),
|
||||||
|
(&Some(dst_dtype), x),
|
||||||
|
ctx.current_loc,
|
||||||
|
)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||||
|
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
dst
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Perform `np.matmul` according to the rules in
|
||||||
|
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
|
||||||
|
///
|
||||||
|
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
|
||||||
|
/// to handle when the output could be a scalar.
|
||||||
|
///
|
||||||
|
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||||
|
pub fn matmul<G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
a: Self,
|
||||||
|
b: Self,
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// Sanity check, but type inference should prevent this.
|
||||||
|
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
|
||||||
|
|
||||||
|
/*
|
||||||
|
If both arguments are 2-D they are multiplied like conventional matrices.
|
||||||
|
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
|
||||||
|
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
|
||||||
|
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
|
||||||
|
*/
|
||||||
|
|
||||||
|
let new_a = if a.ndims == 1 {
|
||||||
|
// Prepend 1 to its dimensions
|
||||||
|
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
|
||||||
|
} else {
|
||||||
|
a
|
||||||
|
};
|
||||||
|
|
||||||
|
let new_b = if b.ndims == 1 {
|
||||||
|
// Append 1 to its dimensions
|
||||||
|
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
|
||||||
|
} else {
|
||||||
|
b
|
||||||
|
};
|
||||||
|
|
||||||
|
// NOTE: `result` will always be a newly allocated ndarray.
|
||||||
|
// Current implementation cannot do in-place matrix muliplication.
|
||||||
|
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
|
||||||
|
|
||||||
|
// Postprocessing on the result to remove prepended/appended axes.
|
||||||
|
let mut postindices = vec![];
|
||||||
|
let zero = Int(Int32).const_0(generator, ctx.ctx);
|
||||||
|
|
||||||
|
if a.ndims == 1 {
|
||||||
|
// Remove the prepended 1
|
||||||
|
postindices.push(RustNDIndex::SingleElement(zero));
|
||||||
|
}
|
||||||
|
|
||||||
|
if b.ndims == 1 {
|
||||||
|
// Remove the appended 1
|
||||||
|
postindices.push(RustNDIndex::Ellipsis);
|
||||||
|
postindices.push(RustNDIndex::SingleElement(zero));
|
||||||
|
}
|
||||||
|
|
||||||
|
if !postindices.is_empty() {
|
||||||
|
result = result.index(generator, ctx, &postindices);
|
||||||
|
}
|
||||||
|
|
||||||
|
match out {
|
||||||
|
NDArrayOut::NewNDArray { .. } => result,
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
||||||
|
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
out_ndarray.assert_can_be_written_by_out(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
result.ndims,
|
||||||
|
result_shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
out_ndarray.copy_data_from(generator, ctx, result);
|
||||||
|
out_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,671 @@
|
||||||
|
pub mod array;
|
||||||
|
pub mod broadcast;
|
||||||
|
pub mod contiguous;
|
||||||
|
pub mod factory;
|
||||||
|
pub mod indexing;
|
||||||
|
pub mod map;
|
||||||
|
pub mod matmul;
|
||||||
|
pub mod nditer;
|
||||||
|
pub mod shape_util;
|
||||||
|
pub mod view;
|
||||||
|
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::BasicType,
|
||||||
|
values::{BasicValue, BasicValueEnum, PointerValue},
|
||||||
|
AddressSpace,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::{
|
||||||
|
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
|
||||||
|
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
|
||||||
|
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
|
||||||
|
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
|
||||||
|
call_nac3_ndarray_util_assert_output_shape_same,
|
||||||
|
},
|
||||||
|
model::*,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
toplevel::{
|
||||||
|
helper::{create_ndims, extract_ndims},
|
||||||
|
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||||
|
},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{any::AnyObject, tuple::TupleObject};
|
||||||
|
|
||||||
|
/// Fields of [`NDArray`]
|
||||||
|
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub data: F::Out<Ptr<Int<Byte>>>,
|
||||||
|
pub itemsize: F::Out<Int<SizeT>>,
|
||||||
|
pub ndims: F::Out<Int<SizeT>>,
|
||||||
|
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
pub strides: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A strided ndarray in NAC3.
|
||||||
|
///
|
||||||
|
/// See IRRT implementation for details about its fields.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct NDArray;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for NDArray {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
data: traversal.add_auto("data"),
|
||||||
|
itemsize: traversal.add_auto("itemsize"),
|
||||||
|
ndims: traversal.add_auto("ndims"),
|
||||||
|
shape: traversal.add_auto("shape"),
|
||||||
|
strides: traversal.add_auto("strides"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A NAC3 Python ndarray object.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct NDArrayObject<'ctx> {
|
||||||
|
pub dtype: Type,
|
||||||
|
pub ndims: u64,
|
||||||
|
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
|
||||||
|
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
||||||
|
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||||
|
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
||||||
|
/// `dtype` and `ndims`.
|
||||||
|
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
value: V,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
) -> Self {
|
||||||
|
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
|
||||||
|
NDArrayObject { dtype, ndims, instance: value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get this ndarray's `ndims` as an LLVM constant.
|
||||||
|
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
Int(SizeT).const_int(generator, ctx, self.ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the typechecker ndarray type of this [`NDArrayObject`].
|
||||||
|
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
|
||||||
|
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
|
||||||
|
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Forget that this is an ndarray and convert into an [`AnyObject`].
|
||||||
|
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||||
|
let ty = self.get_type(ctx);
|
||||||
|
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
|
||||||
|
///
|
||||||
|
/// `shape` and `strides` will be automatically allocated on the stack.
|
||||||
|
//e
|
||||||
|
/// The returned ndarray's content will be:
|
||||||
|
/// - `data`: set to `nullptr`.
|
||||||
|
/// - `itemsize`: set to the `sizeof()` of `dtype`.
|
||||||
|
/// - `ndims`: set to the value of `ndims`.
|
||||||
|
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
||||||
|
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
||||||
|
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
) -> Self {
|
||||||
|
let ndarray = Struct(NDArray).alloca(generator, ctx);
|
||||||
|
|
||||||
|
let data = Ptr(Int(Byte)).nullptr(generator, ctx.ctx);
|
||||||
|
ndarray.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
|
||||||
|
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
|
||||||
|
ndarray.set(ctx, |f| f.itemsize, itemsize);
|
||||||
|
|
||||||
|
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||||
|
ndarray.set(ctx, |f| f.ndims, ndims_val);
|
||||||
|
|
||||||
|
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
||||||
|
ndarray.set(ctx, |f| f.shape, shape);
|
||||||
|
|
||||||
|
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
||||||
|
ndarray.set(ctx, |f| f.strides, strides);
|
||||||
|
|
||||||
|
NDArrayObject { dtype, ndims, instance: ndarray }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
|
||||||
|
///
|
||||||
|
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||||
|
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
shape: &[u64],
|
||||||
|
) -> Self {
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
||||||
|
|
||||||
|
// Write shape
|
||||||
|
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
for (i, dim) in shape.iter().enumerate() {
|
||||||
|
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
|
||||||
|
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
|
||||||
|
}
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
|
||||||
|
///
|
||||||
|
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||||
|
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
shape: &[Instance<'ctx, Int<SizeT>>],
|
||||||
|
) -> Self {
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
||||||
|
|
||||||
|
// Write shape
|
||||||
|
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
for (i, dim) in shape.iter().enumerate() {
|
||||||
|
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
|
||||||
|
}
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||||
|
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||||
|
///
|
||||||
|
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||||
|
///
|
||||||
|
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||||
|
pub fn create_data<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
let nbytes = self.nbytes(generator, ctx);
|
||||||
|
|
||||||
|
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
|
||||||
|
self.instance.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
self.set_strides_contiguous(generator, ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy shape dimensions from an array.
|
||||||
|
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
||||||
|
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy shape dimensions from an ndarray.
|
||||||
|
/// Panics if `ndims` mismatches.
|
||||||
|
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: NDArrayObject<'ctx>,
|
||||||
|
) {
|
||||||
|
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||||
|
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy strides dimensions from an array.
|
||||||
|
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
||||||
|
self.instance
|
||||||
|
.get(generator, ctx, |f| f.strides)
|
||||||
|
.copy_from(generator, ctx, strides, num_items);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy strides dimensions from an ndarray.
|
||||||
|
/// Panics if `ndims` mismatches.
|
||||||
|
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: NDArrayObject<'ctx>,
|
||||||
|
) {
|
||||||
|
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||||
|
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
|
||||||
|
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `np.size()` of this ndarray.
|
||||||
|
pub fn size<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
call_nac3_ndarray_size(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `ndarray.nbytes` of this ndarray.
|
||||||
|
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this ndarray.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
call_nac3_ndarray_len(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if this ndarray is C-contiguous.
|
||||||
|
///
|
||||||
|
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
||||||
|
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the pointer to the n-th (0-based) element.
|
||||||
|
///
|
||||||
|
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||||
|
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
nth: Instance<'ctx, Int<SizeT>>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||||
|
|
||||||
|
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
|
||||||
|
ctx.builder
|
||||||
|
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the n-th (0-based) scalar.
|
||||||
|
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
nth: Instance<'ctx, Int<SizeT>>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let ptr = self.get_nth_pelement(generator, ctx, nth);
|
||||||
|
let value = ctx.builder.build_load(ptr, "").unwrap();
|
||||||
|
AnyObject { ty: self.dtype, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the pointer to the element indexed by `indices`.
|
||||||
|
///
|
||||||
|
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||||
|
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||||
|
|
||||||
|
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
|
||||||
|
ctx.builder
|
||||||
|
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the scalar indexed by `indices`.
|
||||||
|
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
|
||||||
|
let value = ctx.builder.build_load(ptr, "").unwrap();
|
||||||
|
AnyObject { ty: self.dtype, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
||||||
|
///
|
||||||
|
/// Update the ndarray's strides to make the ndarray contiguous.
|
||||||
|
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
|
||||||
|
self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
|
||||||
|
///
|
||||||
|
/// The new ndarray will own its data and will be C-contiguous.
|
||||||
|
#[must_use]
|
||||||
|
pub fn make_copy<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Self {
|
||||||
|
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
||||||
|
|
||||||
|
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
|
||||||
|
clone.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
clone.create_data(generator, ctx);
|
||||||
|
clone.copy_data_from(generator, ctx, *self);
|
||||||
|
clone
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy data from another ndarray.
|
||||||
|
///
|
||||||
|
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
||||||
|
/// do not matter. The copying order is determined by how their flattened views look.
|
||||||
|
///
|
||||||
|
/// Panics if the `dtype`s of ndarrays are different.
|
||||||
|
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src: NDArrayObject<'ctx>,
|
||||||
|
) {
|
||||||
|
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
|
||||||
|
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
||||||
|
#[must_use]
|
||||||
|
pub fn is_unsized(&self) -> bool {
|
||||||
|
self.ndims == 0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
|
||||||
|
/// Otherwise, do nothing and return the ndarray itself.
|
||||||
|
pub fn split_unsized<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> ScalarOrNDArray<'ctx> {
|
||||||
|
if self.is_unsized() {
|
||||||
|
// NOTE: `np.size(self) == 0` here is never possible.
|
||||||
|
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
||||||
|
let value = self.get_nth_scalar(generator, ctx, zero).value;
|
||||||
|
|
||||||
|
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
|
||||||
|
} else {
|
||||||
|
ScalarOrNDArray::NDArray(*self)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fill the ndarray with a scalar.
|
||||||
|
///
|
||||||
|
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
|
||||||
|
pub fn fill<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
value: BasicValueEnum<'ctx>,
|
||||||
|
) {
|
||||||
|
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||||
|
let p = nditer.get_pointer(generator, ctx);
|
||||||
|
ctx.builder.build_store(p, value).unwrap();
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
|
||||||
|
///
|
||||||
|
/// The returned integers in the tuple are in int32.
|
||||||
|
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> TupleObject<'ctx> {
|
||||||
|
// TODO: Return a tuple of SizeT
|
||||||
|
|
||||||
|
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||||
|
|
||||||
|
for i in 0..self.ndims {
|
||||||
|
let dim = self
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.shape)
|
||||||
|
.get_index_const(generator, ctx, i)
|
||||||
|
.truncate_or_bit_cast(generator, ctx, Int32);
|
||||||
|
|
||||||
|
objects.push(AnyObject {
|
||||||
|
ty: ctx.primitives.int32,
|
||||||
|
value: dim.value.as_basic_value_enum(),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
TupleObject::from_objects(generator, ctx, objects)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
|
||||||
|
///
|
||||||
|
/// The returned integers in the tuple are in int32.
|
||||||
|
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> TupleObject<'ctx> {
|
||||||
|
// TODO: Return a tuple of SizeT.
|
||||||
|
|
||||||
|
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||||
|
|
||||||
|
for i in 0..self.ndims {
|
||||||
|
let dim = self
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.strides)
|
||||||
|
.get_index_const(generator, ctx, i)
|
||||||
|
.truncate_or_bit_cast(generator, ctx, Int32);
|
||||||
|
|
||||||
|
objects.push(AnyObject {
|
||||||
|
ty: ctx.primitives.int32,
|
||||||
|
value: dim.value.as_basic_value_enum(),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
TupleObject::from_objects(generator, ctx, objects)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an unsized ndarray to contain `object`.
|
||||||
|
pub fn make_unsized<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
// We have to put the value on the stack to get a data pointer.
|
||||||
|
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
|
||||||
|
ctx.builder.build_store(data, object.value).unwrap();
|
||||||
|
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
|
||||||
|
ndarray.instance.set(ctx, |f| f.data, data);
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
||||||
|
///
|
||||||
|
/// Raise an exception if the shapes do not match.
|
||||||
|
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
out_ndims: u64,
|
||||||
|
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
|
||||||
|
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
|
||||||
|
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
|
||||||
|
let output_shape = out_shape;
|
||||||
|
|
||||||
|
call_nac3_ndarray_util_assert_output_shape_same(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ndarray_ndims,
|
||||||
|
ndarray_shape,
|
||||||
|
output_ndims,
|
||||||
|
output_shape,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum ScalarOrNDArray<'ctx> {
|
||||||
|
Scalar(AnyObject<'ctx>),
|
||||||
|
NDArray(NDArrayObject<'ctx>),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
|
||||||
|
type Error = ();
|
||||||
|
|
||||||
|
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||||
|
match value {
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
|
||||||
|
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
|
||||||
|
type Error = ();
|
||||||
|
|
||||||
|
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||||
|
match value {
|
||||||
|
ScalarOrNDArray::Scalar(_scalar) => Err(()),
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||||
|
/// Split on `object` either into a scalar or an ndarray.
|
||||||
|
///
|
||||||
|
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
|
||||||
|
///
|
||||||
|
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
|
||||||
|
pub fn split_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> ScalarOrNDArray<'ctx> {
|
||||||
|
match &*ctx.unifier.get_ty(object.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||||
|
ScalarOrNDArray::NDArray(ndarray)
|
||||||
|
}
|
||||||
|
_ => ScalarOrNDArray::Scalar(object),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => scalar.value,
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
|
||||||
|
/// - If this is an ndarray, the ndarray is returned.
|
||||||
|
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
|
||||||
|
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_dtype(&self) -> Type {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An helper enum specifying how a function should produce its output.
|
||||||
|
///
|
||||||
|
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
|
||||||
|
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
|
||||||
|
/// create a new ndarray and store the result in it.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum NDArrayOut<'ctx> {
|
||||||
|
/// Tell a function should create a new ndarray with the expected element type `dtype`.
|
||||||
|
NewNDArray { dtype: Type },
|
||||||
|
/// Tell a function to write the result to `ndarray`.
|
||||||
|
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayOut<'ctx> {
|
||||||
|
/// Get the dtype of this output.
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_dtype(&self) -> Type {
|
||||||
|
match self {
|
||||||
|
NDArrayOut::NewNDArray { dtype } => *dtype,
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
|
||||||
|
///
|
||||||
|
/// This function is used generating strides for globally defined contiguous ndarrays.
|
||||||
|
#[must_use]
|
||||||
|
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
|
||||||
|
let mut strides = Vec::with_capacity(ndims as usize);
|
||||||
|
let mut stride_product = 1u64;
|
||||||
|
for i in 0..ndims {
|
||||||
|
let axis = ndims - i - 1;
|
||||||
|
strides[axis as usize] = stride_product * itemsize;
|
||||||
|
stride_product *= shape[axis as usize];
|
||||||
|
}
|
||||||
|
strides
|
||||||
|
}
|
|
@ -0,0 +1,168 @@
|
||||||
|
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
|
||||||
|
model::*,
|
||||||
|
object::any::AnyObject,
|
||||||
|
stmt::{gen_for_callback, BreakContinueHooks},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
/// Fields of [`NDIter`]
|
||||||
|
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub ndims: F::Out<Int<SizeT>>,
|
||||||
|
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
pub strides: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
|
||||||
|
pub indices: F::Out<Ptr<Int<SizeT>>>,
|
||||||
|
pub nth: F::Out<Int<SizeT>>,
|
||||||
|
pub element: F::Out<Ptr<Int<Byte>>>,
|
||||||
|
|
||||||
|
pub size: F::Out<Int<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT helper structure used to iterate through an ndarray.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct NDIter;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for NDIter {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
ndims: traversal.add_auto("ndims"),
|
||||||
|
shape: traversal.add_auto("shape"),
|
||||||
|
strides: traversal.add_auto("strides"),
|
||||||
|
|
||||||
|
indices: traversal.add_auto("indices"),
|
||||||
|
nth: traversal.add_auto("nth"),
|
||||||
|
element: traversal.add_auto("element"),
|
||||||
|
|
||||||
|
size: traversal.add_auto("size"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A helper structure containing extra details of an [`NDIter`].
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct NDIterHandle<'ctx> {
|
||||||
|
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||||
|
/// The ndarray this [`NDIter`] to iterating over.
|
||||||
|
ndarray: NDArrayObject<'ctx>,
|
||||||
|
/// The current indices of [`NDIter`].
|
||||||
|
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDIterHandle<'ctx> {
|
||||||
|
/// Allocate an [`NDIter`] that iterates through an ndarray.
|
||||||
|
pub fn new<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: NDArrayObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let nditer = Struct(NDIter).alloca(generator, ctx);
|
||||||
|
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
||||||
|
|
||||||
|
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
||||||
|
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||||
|
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
|
||||||
|
|
||||||
|
NDIterHandle { ndarray, instance: nditer, indices }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn has_next<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<Bool>> {
|
||||||
|
call_nac3_nditer_has_next(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn next<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
call_nac3_nditer_next(generator, ctx, self.instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get pointer to the current element.
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_pointer<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
|
||||||
|
|
||||||
|
let p = self.instance.get(generator, ctx, |f| f.element);
|
||||||
|
ctx.builder
|
||||||
|
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the value of the current element.
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_scalar<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let p = self.get_pointer(generator, ctx);
|
||||||
|
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||||
|
AnyObject { ty: self.ndarray.dtype, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the index of the current element.
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
self.instance.get(generator, ctx, |f| f.nth)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the indices of the current element.
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
|
||||||
|
self.indices
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Iterate through every element in the ndarray.
|
||||||
|
///
|
||||||
|
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
|
||||||
|
pub fn foreach<'a, G, F>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
body: F,
|
||||||
|
) -> Result<(), String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
F: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BreakContinueHooks<'ctx>,
|
||||||
|
NDIterHandle<'ctx>,
|
||||||
|
) -> Result<(), String>,
|
||||||
|
{
|
||||||
|
gen_for_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
Some("ndarray_foreach"),
|
||||||
|
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|
||||||
|
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|
||||||
|
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|
||||||
|
|generator, ctx, nditer| {
|
||||||
|
nditer.next(generator, ctx);
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,105 @@
|
||||||
|
use util::gen_for_model;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
model::*,
|
||||||
|
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::TypeEnum,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
|
||||||
|
///
|
||||||
|
/// * `sequence` - The `sequence` parameter.
|
||||||
|
/// * `sequence_ty` - The typechecker type of `sequence`
|
||||||
|
///
|
||||||
|
/// The `sequence` argument type may only be one of the following:
|
||||||
|
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||||
|
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||||
|
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||||
|
///
|
||||||
|
/// All `int32` values will be sign-extended to `SizeT`.
|
||||||
|
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
input_sequence: AnyObject<'ctx>,
|
||||||
|
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
|
||||||
|
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
||||||
|
let one = Int(SizeT).const_1(generator, ctx.ctx);
|
||||||
|
|
||||||
|
// The result `list` to return.
|
||||||
|
match &*ctx.unifier.get_ty(input_sequence.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||||
|
|
||||||
|
// Check `input_sequence`
|
||||||
|
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
|
||||||
|
|
||||||
|
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
|
||||||
|
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||||
|
|
||||||
|
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
|
||||||
|
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
|
||||||
|
// Load the i-th int32 in the input sequence
|
||||||
|
let int = input_sequence
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.items)
|
||||||
|
.get_index(generator, ctx, i.value)
|
||||||
|
.value
|
||||||
|
.into_int_value();
|
||||||
|
|
||||||
|
// Cast to SizeT
|
||||||
|
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
||||||
|
|
||||||
|
// Store
|
||||||
|
result.set_index(ctx, i.value, int);
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
(len, result)
|
||||||
|
}
|
||||||
|
TypeEnum::TTuple { .. } => {
|
||||||
|
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||||
|
|
||||||
|
let input_sequence = TupleObject::from_object(ctx, input_sequence);
|
||||||
|
|
||||||
|
let len = input_sequence.len(generator, ctx);
|
||||||
|
|
||||||
|
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||||
|
|
||||||
|
for i in 0..input_sequence.num_elements() {
|
||||||
|
// Get the i-th element off of the tuple and load it into `result`.
|
||||||
|
let int = input_sequence.index(ctx, i).value.into_int_value();
|
||||||
|
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
||||||
|
|
||||||
|
result.set_index_const(ctx, i as u64, int);
|
||||||
|
}
|
||||||
|
|
||||||
|
(len, result)
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||||
|
let input_int = input_sequence.value.into_int_value();
|
||||||
|
|
||||||
|
let len = Int(SizeT).const_1(generator, ctx.ctx);
|
||||||
|
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||||
|
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
|
||||||
|
|
||||||
|
// Storing into result[0]
|
||||||
|
result.store(ctx, int);
|
||||||
|
|
||||||
|
(len, result)
|
||||||
|
}
|
||||||
|
_ => panic!(
|
||||||
|
"encountered unknown sequence type: {}",
|
||||||
|
ctx.unifier.stringify(input_sequence.ty)
|
||||||
|
),
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,3 @@
|
||||||
|
|
||||||
|
pub fn str_type() {
|
||||||
|
}
|
|
@ -0,0 +1,119 @@
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
|
||||||
|
model::*,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{indexing::RustNDIndex, NDArrayObject};
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Make sure the ndarray is at least `ndmin`-dimensional.
|
||||||
|
///
|
||||||
|
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
|
||||||
|
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
|
||||||
|
#[must_use]
|
||||||
|
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndmin: u64,
|
||||||
|
) -> Self {
|
||||||
|
if self.ndims < ndmin {
|
||||||
|
// return this_ndarray[np.newaxis, np.newaxis, and more, ...]
|
||||||
|
let mut indices = vec![];
|
||||||
|
for _ in self.ndims..ndmin {
|
||||||
|
indices.push(RustNDIndex::NewAxis);
|
||||||
|
}
|
||||||
|
indices.push(RustNDIndex::Ellipsis);
|
||||||
|
self.index(generator, ctx, &indices)
|
||||||
|
} else {
|
||||||
|
*self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a reshaped view on this ndarray like `np.reshape()`.
|
||||||
|
///
|
||||||
|
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
|
||||||
|
///
|
||||||
|
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
|
||||||
|
///
|
||||||
|
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
|
||||||
|
/// * `new_shape` - The target shape to do `np.reshape()`.
|
||||||
|
#[must_use]
|
||||||
|
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
new_ndims: u64,
|
||||||
|
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
|
||||||
|
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
|
||||||
|
// without copying data. Look into how numpy does it.
|
||||||
|
|
||||||
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||||
|
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||||
|
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||||
|
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||||
|
|
||||||
|
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
|
||||||
|
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
|
||||||
|
|
||||||
|
// Reolsve negative indices
|
||||||
|
let size = self.size(generator, ctx);
|
||||||
|
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
|
||||||
|
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||||
|
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
|
||||||
|
generator, ctx, size, dst_ndims, dst_shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
|
||||||
|
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into then_bb: reshape is possible without copying
|
||||||
|
ctx.builder.position_at_end(then_bb);
|
||||||
|
dst_ndarray.set_strides_contiguous(generator, ctx);
|
||||||
|
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into else_bb: reshape is impossible without copying
|
||||||
|
ctx.builder.position_at_end(else_bb);
|
||||||
|
dst_ndarray.create_data(generator, ctx);
|
||||||
|
dst_ndarray.copy_data_from(generator, ctx, *self);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Reposition for continuation
|
||||||
|
ctx.builder.position_at_end(end_bb);
|
||||||
|
|
||||||
|
dst_ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
|
||||||
|
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
|
||||||
|
#[must_use]
|
||||||
|
pub fn transpose<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
|
||||||
|
) -> Self {
|
||||||
|
// Define models
|
||||||
|
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
||||||
|
|
||||||
|
let num_axes = self.ndims_llvm(generator, ctx.ctx);
|
||||||
|
|
||||||
|
// `axes = nullptr` if `axes` is unspecified.
|
||||||
|
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
|
||||||
|
|
||||||
|
call_nac3_ndarray_transpose(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
self.instance,
|
||||||
|
transposed_ndarray.instance,
|
||||||
|
num_axes,
|
||||||
|
axes,
|
||||||
|
);
|
||||||
|
|
||||||
|
transposed_ndarray
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,139 @@
|
||||||
|
use inkwell::{values::IntValue, IntPredicate};
|
||||||
|
|
||||||
|
use crate::codegen::{irrt::call_nac3_range_len, model::*, CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::any::AnyObject;
|
||||||
|
|
||||||
|
/// A range in NAC3.
|
||||||
|
pub type Range<N> = Array<Len<3>, Int<N>>;
|
||||||
|
|
||||||
|
/// An alias for `Range::<Int32>::default()`
|
||||||
|
#[must_use]
|
||||||
|
pub fn range_model() -> Range<Int32> {
|
||||||
|
Array::default()
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Ptr<Range<N>>> {
|
||||||
|
/// Get GEP to `range.start`.
|
||||||
|
pub fn start(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||||
|
self.gep_const(ctx, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get GEP to `range.stop`.
|
||||||
|
pub fn stop(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||||
|
self.gep_const(ctx, 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get GEP to `range.step`.
|
||||||
|
pub fn step(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||||
|
self.gep_const(ctx, 2)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function to load the `(start, stop, step)` of this range.
|
||||||
|
#[allow(clippy::type_complexity)]
|
||||||
|
pub fn destructure<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> (Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>) {
|
||||||
|
let start = self.start(ctx).load(generator, ctx);
|
||||||
|
let stop = self.stop(ctx).load(generator, ctx);
|
||||||
|
let step = self.step(ctx).load(generator, ctx);
|
||||||
|
(start, stop, step)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generate LLVM IR to check that a range's `step` is not zero.
|
||||||
|
/// Throws "range step must not be zero" if it is the case.
|
||||||
|
pub fn assert_range_step_non_zero<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
step: IntValue<'ctx>,
|
||||||
|
) {
|
||||||
|
let int32 = ctx.ctx.i32_type();
|
||||||
|
let rangenez =
|
||||||
|
ctx.builder.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "").unwrap();
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
rangenez,
|
||||||
|
"0:ValueError",
|
||||||
|
"range step must not be zero",
|
||||||
|
[None, None, None],
|
||||||
|
ctx.current_loc,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A Rust structure that has [`Range`] utilities and looks like a [`Range`] but
|
||||||
|
/// `start`, `stop` and `step` are held by LLVM registers only.
|
||||||
|
///
|
||||||
|
/// This structure exists because many implementations use [`Range`] utilities but
|
||||||
|
/// it might not be good to alloca an actual [`Range`] value on the stack in order
|
||||||
|
/// to perform calculations.
|
||||||
|
pub struct RustRange<'ctx, N: IntKind<'ctx>> {
|
||||||
|
pub start: Instance<'ctx, Int<N>>,
|
||||||
|
pub stop: Instance<'ctx, Int<N>>,
|
||||||
|
pub step: Instance<'ctx, Int<N>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> RustRange<'ctx, N> {
|
||||||
|
pub fn assert_step_non_zero<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
assert_range_step_non_zero(generator, ctx, self.step.value);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Calculate the `len()` of this range.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<N>> {
|
||||||
|
let int_kind = self.start.model.0;
|
||||||
|
call_nac3_range_len(generator, ctx, int_kind, self.start, self.stop, self.step)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: `RangeObject` in the future will have range32, range64
|
||||||
|
|
||||||
|
/// A NAC3 Python range object.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct RangeObject<'ctx> {
|
||||||
|
pub instance: Instance<'ctx, Ptr<Range<Int32>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> RangeObject<'ctx> {
|
||||||
|
/// Attempt to convert an [`AnyObject`] into a [`RangeObject`].
|
||||||
|
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> RangeObject<'ctx> {
|
||||||
|
assert!(ctx.unifier.unioned(object.ty, ctx.primitives.range));
|
||||||
|
|
||||||
|
let instance = Ptr(Range::default()).check_value(generator, ctx.ctx, object.value).unwrap();
|
||||||
|
RangeObject { instance }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert into a [`RustRange`].
|
||||||
|
pub fn as_rust_range<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> RustRange<'ctx, Int32> {
|
||||||
|
let (start, stop, step) = self.instance.destructure(generator, ctx);
|
||||||
|
RustRange { start, stop, step }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this range.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<Int32>> {
|
||||||
|
let range = self.as_rust_range(generator, ctx);
|
||||||
|
range.assert_step_non_zero(generator, ctx);
|
||||||
|
range.len(generator, ctx)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,185 @@
|
||||||
|
use crate::codegen::{irrt::call_nac3_slice_indices, model::*, CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::range::RustRange;
|
||||||
|
|
||||||
|
/// Fields of [`Slice`]
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
|
||||||
|
pub start_defined: F::Out<Int<Bool>>,
|
||||||
|
pub start: F::Out<Int<N>>,
|
||||||
|
pub stop_defined: F::Out<Int<Bool>>,
|
||||||
|
pub stop: F::Out<Int<N>>,
|
||||||
|
pub step_defined: F::Out<Int<Bool>>,
|
||||||
|
pub step: F::Out<Int<N>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT representation of an (unresolved) slice.
|
||||||
|
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||||
|
pub struct Slice<N>(pub N);
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
start_defined: traversal.add_auto("start_defined"),
|
||||||
|
start: traversal.add("start", Int(self.0)),
|
||||||
|
stop_defined: traversal.add_auto("stop_defined"),
|
||||||
|
stop: traversal.add("stop", Int(self.0)),
|
||||||
|
step_defined: traversal.add_auto("step_defined"),
|
||||||
|
step: traversal.add("step", Int(self.0)),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A Rust structure that has [`Slice`] utilities and looks like a [`Slice`] but
|
||||||
|
/// `start`, `stop` and `step` are held by LLVM registers only and possibly
|
||||||
|
/// [`Option::None`] if unspecified.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
|
||||||
|
// It is possible that `start`, `stop`, and `step` are all `None`.
|
||||||
|
// We need to know the `int_kind` even when that is the case.
|
||||||
|
pub int_kind: N,
|
||||||
|
pub start: Option<Instance<'ctx, Int<N>>>,
|
||||||
|
pub stop: Option<Instance<'ctx, Int<N>>>,
|
||||||
|
pub step: Option<Instance<'ctx, Int<N>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
|
||||||
|
/// Write the contents to an LLVM [`Slice`].
|
||||||
|
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
|
||||||
|
) {
|
||||||
|
let false_ = Int(Bool).const_false(generator, ctx.ctx);
|
||||||
|
let true_ = Int(Bool).const_true(generator, ctx.ctx);
|
||||||
|
|
||||||
|
match self.start {
|
||||||
|
Some(start) => {
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
|
||||||
|
}
|
||||||
|
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
|
||||||
|
}
|
||||||
|
|
||||||
|
match self.stop {
|
||||||
|
Some(stop) => {
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
|
||||||
|
}
|
||||||
|
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
|
||||||
|
}
|
||||||
|
|
||||||
|
match self.step {
|
||||||
|
Some(step) => {
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
|
||||||
|
}
|
||||||
|
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Resolve this [`RustSlice`] into a [`RustRange`] like `slice.indices` in Python.
|
||||||
|
///
|
||||||
|
/// NOTE: This function does stack allocation.
|
||||||
|
pub fn indices<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
length: Instance<'ctx, Int<N>>,
|
||||||
|
) -> RustRange<'ctx, N> {
|
||||||
|
let mut is_defined = |value: Option<_>| -> Instance<'ctx, Int<Bool>> {
|
||||||
|
Int(Bool).const_int(generator, ctx.ctx, u64::from(value.is_some()))
|
||||||
|
};
|
||||||
|
|
||||||
|
let start_defined = is_defined(self.start);
|
||||||
|
let stop_defined = is_defined(self.stop);
|
||||||
|
let step_defined = is_defined(self.step);
|
||||||
|
|
||||||
|
let mut defined_or_zero = |value: Option<_>| -> Instance<'ctx, Int<N>> {
|
||||||
|
if let Some(value) = value {
|
||||||
|
value
|
||||||
|
} else {
|
||||||
|
// If undefined, return 0 as a placeholder.
|
||||||
|
Int(self.int_kind).const_0(generator, ctx.ctx)
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let start = defined_or_zero(self.start);
|
||||||
|
let stop = defined_or_zero(self.stop);
|
||||||
|
let step = defined_or_zero(self.step);
|
||||||
|
|
||||||
|
// Stack allocation here.
|
||||||
|
let range_start = Int(self.int_kind).alloca(generator, ctx);
|
||||||
|
let range_stop = Int(self.int_kind).alloca(generator, ctx);
|
||||||
|
let range_step = Int(self.int_kind).alloca(generator, ctx);
|
||||||
|
|
||||||
|
call_nac3_slice_indices(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
self.int_kind,
|
||||||
|
start_defined,
|
||||||
|
start,
|
||||||
|
stop_defined,
|
||||||
|
stop,
|
||||||
|
step_defined,
|
||||||
|
step,
|
||||||
|
length,
|
||||||
|
range_start,
|
||||||
|
range_stop,
|
||||||
|
range_step,
|
||||||
|
);
|
||||||
|
|
||||||
|
let start = range_start.load(generator, ctx);
|
||||||
|
let stop = range_stop.load(generator, ctx);
|
||||||
|
let step = range_step.load(generator, ctx);
|
||||||
|
|
||||||
|
RustRange { start, stop, step }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub mod util {
|
||||||
|
use nac3parser::ast::Expr;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::RustSlice;
|
||||||
|
|
||||||
|
/// Generate LLVM IR for an [`ExprKind::Slice`] and convert it into a [`RustSlice`].
|
||||||
|
#[allow(clippy::type_complexity)]
|
||||||
|
pub fn gen_slice<'ctx, G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
lower: &Option<Box<Expr<Option<Type>>>>,
|
||||||
|
upper: &Option<Box<Expr<Option<Type>>>>,
|
||||||
|
step: &Option<Box<Expr<Option<Type>>>>,
|
||||||
|
) -> Result<RustSlice<'ctx, Int32>, String> {
|
||||||
|
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
|
||||||
|
Ok(match value_expr {
|
||||||
|
None => None,
|
||||||
|
Some(value_expr) => {
|
||||||
|
let value_expr = generator
|
||||||
|
.gen_expr(ctx, value_expr)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
|
||||||
|
|
||||||
|
let value_expr =
|
||||||
|
Int(Int32).check_value(generator, ctx.ctx, value_expr).unwrap();
|
||||||
|
|
||||||
|
Some(value_expr)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
};
|
||||||
|
|
||||||
|
let start = help(lower)?;
|
||||||
|
let stop = help(upper)?;
|
||||||
|
let step = help(step)?;
|
||||||
|
|
||||||
|
Ok(RustSlice { int_kind: Int32, start, stop, step })
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,11 @@
|
||||||
|
use super::cslice::CSlice;
|
||||||
|
use crate::codegen::model::*;
|
||||||
|
|
||||||
|
/// A string in NAC3.
|
||||||
|
pub type Str = Struct<CSlice<Int<Byte>>>;
|
||||||
|
|
||||||
|
/// An alias for `Str::default()`
|
||||||
|
#[must_use]
|
||||||
|
pub fn str_model() -> Str {
|
||||||
|
Str::default()
|
||||||
|
}
|
|
@ -0,0 +1,99 @@
|
||||||
|
use inkwell::values::StructValue;
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::any::AnyObject;
|
||||||
|
|
||||||
|
/// A NAC3 tuple object.
|
||||||
|
///
|
||||||
|
/// NOTE: This struct has no copy trait.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct TupleObject<'ctx> {
|
||||||
|
/// The type of the tuple.
|
||||||
|
pub tys: Vec<Type>,
|
||||||
|
/// The underlying LLVM struct value of this tuple.
|
||||||
|
pub value: StructValue<'ctx>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TupleObject<'ctx> {
|
||||||
|
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
|
||||||
|
// TODO: Keep `is_vararg_ctx` from TTuple?
|
||||||
|
|
||||||
|
// Sanity check on object type.
|
||||||
|
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
|
||||||
|
panic!(
|
||||||
|
"Expected type to be a TypeEnum::TTuple, got {}",
|
||||||
|
ctx.unifier.stringify(object.ty)
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
// Check number of fields
|
||||||
|
let value = object.value.into_struct_value();
|
||||||
|
let value_num_fields = value.get_type().count_fields() as usize;
|
||||||
|
assert!(
|
||||||
|
value_num_fields == tys.len(),
|
||||||
|
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
|
||||||
|
tys.len(),
|
||||||
|
value_num_fields
|
||||||
|
);
|
||||||
|
|
||||||
|
TupleObject { tys: tys.clone(), value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
|
||||||
|
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
objects: I,
|
||||||
|
) -> Self
|
||||||
|
where
|
||||||
|
I: IntoIterator<Item = AnyObject<'ctx>>,
|
||||||
|
{
|
||||||
|
let (values, tys): (Vec<_>, Vec<_>) =
|
||||||
|
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
|
||||||
|
|
||||||
|
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||||
|
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
|
||||||
|
|
||||||
|
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
|
||||||
|
for (i, val) in values.into_iter().enumerate() {
|
||||||
|
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
|
||||||
|
ctx.builder.build_store(pval, val).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
|
||||||
|
TupleObject { tys, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn num_elements(&self) -> usize {
|
||||||
|
self.tys.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this tuple.
|
||||||
|
#[must_use]
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Instance<'ctx, Int<SizeT>> {
|
||||||
|
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `i`-th (0-based) object in this tuple.
|
||||||
|
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
|
||||||
|
assert!(
|
||||||
|
i < self.num_elements(),
|
||||||
|
"Tuple object with length {} have index {i}",
|
||||||
|
self.num_elements()
|
||||||
|
);
|
||||||
|
|
||||||
|
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
|
||||||
|
let ty = self.tys[i];
|
||||||
|
AnyObject { ty, value }
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,12 +1,21 @@
|
||||||
use super::{
|
use super::{
|
||||||
super::symbol_resolver::ValueEnum,
|
super::symbol_resolver::ValueEnum,
|
||||||
expr::destructure_range,
|
|
||||||
irrt::{handle_slice_indices, list_slice_assignment},
|
irrt::{handle_slice_indices, list_slice_assignment},
|
||||||
|
model::*,
|
||||||
|
object::{
|
||||||
|
any::AnyObject,
|
||||||
|
exception::Exception,
|
||||||
|
ndarray::{
|
||||||
|
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, ScalarOrNDArray,
|
||||||
|
},
|
||||||
|
range::RangeObject,
|
||||||
|
str::str_model,
|
||||||
|
},
|
||||||
CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
};
|
};
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue},
|
||||||
expr::gen_binop_expr,
|
expr::gen_binop_expr,
|
||||||
gen_in_range_check,
|
gen_in_range_check,
|
||||||
},
|
},
|
||||||
|
@ -24,9 +33,7 @@ use inkwell::{
|
||||||
IntPredicate,
|
IntPredicate,
|
||||||
};
|
};
|
||||||
use itertools::{izip, Itertools};
|
use itertools::{izip, Itertools};
|
||||||
use nac3parser::ast::{
|
use nac3parser::ast::{ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef};
|
||||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
|
||||||
};
|
|
||||||
|
|
||||||
/// See [`CodeGenerator::gen_var_alloc`].
|
/// See [`CodeGenerator::gen_var_alloc`].
|
||||||
pub fn gen_var<'ctx>(
|
pub fn gen_var<'ctx>(
|
||||||
|
@ -401,7 +408,47 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
{
|
{
|
||||||
// Handle NDArray item assignment
|
// Handle NDArray item assignment
|
||||||
todo!("ndarray subscript assignment is not yet implemented");
|
// Process target
|
||||||
|
let target = generator
|
||||||
|
.gen_expr(ctx, target)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||||
|
let target = AnyObject { value: target, ty: target_ty };
|
||||||
|
|
||||||
|
// Process key
|
||||||
|
let key = gen_ndarray_subscript_ndindices(generator, ctx, key)?;
|
||||||
|
|
||||||
|
// Process value
|
||||||
|
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||||
|
let value = AnyObject { value, ty: value_ty };
|
||||||
|
|
||||||
|
/*
|
||||||
|
Reference code:
|
||||||
|
```python
|
||||||
|
target = target[key]
|
||||||
|
value = np.asarray(value)
|
||||||
|
|
||||||
|
shape = np.broadcast_shape((target, value))
|
||||||
|
|
||||||
|
target = np.broadcast_to(target, shape)
|
||||||
|
value = np.broadcast_to(value, shape)
|
||||||
|
|
||||||
|
...and finally copy 1-1 from value to target.
|
||||||
|
```
|
||||||
|
*/
|
||||||
|
|
||||||
|
let target = NDArrayObject::from_object(generator, ctx, target);
|
||||||
|
let target = target.index(generator, ctx, &key);
|
||||||
|
|
||||||
|
let value =
|
||||||
|
ScalarOrNDArray::split_object(generator, ctx, value).to_ndarray(generator, ctx);
|
||||||
|
|
||||||
|
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
|
||||||
|
|
||||||
|
let target = broadcast_result.ndarrays[0];
|
||||||
|
let value = broadcast_result.ndarrays[1];
|
||||||
|
|
||||||
|
target.copy_data_from(generator, ctx, value);
|
||||||
}
|
}
|
||||||
_ => {
|
_ => {
|
||||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||||
|
@ -451,7 +498,14 @@ pub fn gen_for<G: CodeGenerator>(
|
||||||
TypeEnum::TObj { obj_id, .. }
|
TypeEnum::TObj { obj_id, .. }
|
||||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||||
{
|
{
|
||||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
let range = AnyObject { value: iter_val, ty: iter_ty };
|
||||||
|
let range = RangeObject::from_object(generator, ctx, range);
|
||||||
|
|
||||||
|
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||||
|
let start = start.value;
|
||||||
|
let stop = stop.value;
|
||||||
|
let step = step.value;
|
||||||
|
|
||||||
// Internal variable for loop; Cannot be assigned
|
// Internal variable for loop; Cannot be assigned
|
||||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||||
|
@ -460,7 +514,6 @@ pub fn gen_for<G: CodeGenerator>(
|
||||||
else {
|
else {
|
||||||
unreachable!()
|
unreachable!()
|
||||||
};
|
};
|
||||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
|
||||||
|
|
||||||
ctx.builder.build_store(i, start).unwrap();
|
ctx.builder.build_store(i, start).unwrap();
|
||||||
|
|
||||||
|
@ -1195,65 +1248,58 @@ pub fn exn_constructor<'ctx>(
|
||||||
mut args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
mut args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
||||||
generator: &mut dyn CodeGenerator,
|
generator: &mut dyn CodeGenerator,
|
||||||
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
||||||
let (zelf_ty, zelf) = obj.unwrap();
|
let (exn_ty, exn) = obj.unwrap();
|
||||||
let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
|
let exn = exn.to_basic_value_enum(ctx, generator, exn_ty)?;
|
||||||
let int32 = ctx.ctx.i32_type();
|
let exn = Ptr(Struct(Exception)).check_value(generator, ctx.ctx, exn).unwrap();
|
||||||
let zero = int32.const_zero();
|
|
||||||
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
|
// Get the Exception name `exn_name` of this Exception object.
|
||||||
|
let exn_def_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(exn_ty) {
|
||||||
obj_id.0
|
obj_id.0
|
||||||
} else {
|
} else {
|
||||||
unreachable!()
|
unreachable!()
|
||||||
};
|
};
|
||||||
let defs = ctx.top_level.definitions.read();
|
let defs = ctx.top_level.definitions.read();
|
||||||
let def = defs[zelf_id].read();
|
let exn_def = defs[exn_def_id].read();
|
||||||
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
|
let TopLevelDef::Class { name: exn_name, .. } = &*exn_def else { unreachable!() };
|
||||||
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
|
let exn_name = format!("{}:{}", ctx.resolver.get_exception_id(exn_def_id), exn_name);
|
||||||
unsafe {
|
|
||||||
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
|
// Initialize the fields of the Exception object.
|
||||||
let id = ctx.resolver.get_string_id(&exception_name);
|
|
||||||
ctx.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
|
let empty_str = ctx.gen_string(generator, "");
|
||||||
let empty_string =
|
let num_0 = Int(Int32).const_0(generator, ctx.ctx);
|
||||||
ctx.gen_const(generator, &Constant::Str(String::new()), ctx.primitives.str);
|
|
||||||
let ptr = ctx
|
// Initialize `self.id`.
|
||||||
.builder
|
let id = ctx.resolver.get_string_id(&exn_name);
|
||||||
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
|
let id = Int(Int32).const_int(generator, ctx.ctx, id as u64);
|
||||||
.unwrap();
|
exn.set(ctx, |f| f.id, id);
|
||||||
|
|
||||||
|
// Initialize `self.msg`.
|
||||||
let msg = if args.is_empty() {
|
let msg = if args.is_empty() {
|
||||||
empty_string.unwrap()
|
// Default to `msg` to "" if the user didn't pass anything.
|
||||||
|
empty_str
|
||||||
} else {
|
} else {
|
||||||
args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.str)?
|
let msg = args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.str)?;
|
||||||
|
str_model().check_value(generator, ctx.ctx, msg).unwrap()
|
||||||
};
|
};
|
||||||
ctx.builder.build_store(ptr, msg).unwrap();
|
exn.set(ctx, |f| f.msg, msg);
|
||||||
for i in &[6, 7, 8] {
|
|
||||||
let value = if args.is_empty() {
|
// Initialize `self.params`, the arguments after `msg` are the params.
|
||||||
ctx.ctx.i64_type().const_zero().into()
|
for (i, (_, param)) in args.into_iter().enumerate() {
|
||||||
} else {
|
assert!(i <= 3, "There should only be at most 3 exception parameters");
|
||||||
args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.int64)?
|
|
||||||
};
|
let param = param.to_basic_value_enum(ctx, generator, ctx.primitives.int64)?;
|
||||||
let ptr = ctx
|
let param = Int(Int64).check_value(generator, ctx.ctx, param).unwrap();
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.param")
|
exn.set(ctx, |f| f.params[i], param);
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(ptr, value).unwrap();
|
|
||||||
}
|
}
|
||||||
// set file, func to empty string
|
|
||||||
for i in &[1, 4] {
|
// Initialize everything else to 0 or "".
|
||||||
let ptr = ctx
|
exn.set(ctx, |f| f.line, num_0);
|
||||||
.builder
|
exn.set(ctx, |f| f.column, num_0);
|
||||||
.build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.str")
|
exn.set(ctx, |f| f.function, empty_str);
|
||||||
.unwrap();
|
exn.set(ctx, |f| f.filename, empty_str);
|
||||||
ctx.builder.build_store(ptr, empty_string.unwrap()).unwrap();
|
|
||||||
}
|
Ok(Some(exn.value.into()))
|
||||||
// set ints to zero
|
|
||||||
for i in &[2, 3] {
|
|
||||||
let ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.ints")
|
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(ptr, zero).unwrap();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(Some(zelf.into()))
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates IR for a `raise` statement.
|
/// Generates IR for a `raise` statement.
|
||||||
|
@ -1263,43 +1309,27 @@ pub fn exn_constructor<'ctx>(
|
||||||
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
|
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
exception: Option<&BasicValueEnum<'ctx>>,
|
exception: Option<Instance<'ctx, Ptr<Struct<Exception>>>>,
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
if let Some(exception) = exception {
|
if let Some(exn) = exception {
|
||||||
unsafe {
|
let filename = loc.file.0;
|
||||||
let int32 = ctx.ctx.i32_type();
|
let filename = ctx.gen_string(generator, filename);
|
||||||
let zero = int32.const_zero();
|
exn.set(ctx, |f| f.filename, filename);
|
||||||
let exception = exception.into_pointer_value();
|
|
||||||
let file_ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(1, false)], "file_ptr")
|
|
||||||
.unwrap();
|
|
||||||
let filename = ctx.gen_string(generator, loc.file.0);
|
|
||||||
ctx.builder.build_store(file_ptr, filename).unwrap();
|
|
||||||
let row_ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(2, false)], "row_ptr")
|
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(row_ptr, int32.const_int(loc.row as u64, false)).unwrap();
|
|
||||||
let col_ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(3, false)], "col_ptr")
|
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(col_ptr, int32.const_int(loc.column as u64, false)).unwrap();
|
|
||||||
|
|
||||||
let current_fun = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
let row = Int(Int32).const_int(generator, ctx.ctx, loc.row as u64);
|
||||||
let fun_name = ctx.gen_string(generator, current_fun.get_name().to_str().unwrap());
|
exn.set(ctx, |f| f.line, row);
|
||||||
let name_ptr = ctx
|
|
||||||
.builder
|
let column = Int(Int32).const_int(generator, ctx.ctx, loc.column as u64);
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(4, false)], "name_ptr")
|
exn.set(ctx, |f| f.column, column);
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(name_ptr, fun_name).unwrap();
|
let current_fn = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||||
}
|
let current_fn_name = current_fn.get_name().to_str().unwrap();
|
||||||
|
let current_fn_name = ctx.gen_string(generator, current_fn_name);
|
||||||
|
exn.set(ctx, |f| f.function, current_fn_name);
|
||||||
|
|
||||||
let raise = get_builtins(generator, ctx, "__nac3_raise");
|
let raise = get_builtins(generator, ctx, "__nac3_raise");
|
||||||
let exception = *exception;
|
ctx.build_call_or_invoke(raise, &[exn.value.into()], "raise");
|
||||||
ctx.build_call_or_invoke(raise, &[exception], "raise");
|
|
||||||
} else {
|
} else {
|
||||||
let resume = get_builtins(generator, ctx, "__nac3_resume");
|
let resume = get_builtins(generator, ctx, "__nac3_resume");
|
||||||
ctx.build_call_or_invoke(resume, &[], "resume");
|
ctx.build_call_or_invoke(resume, &[], "resume");
|
||||||
|
@ -1765,7 +1795,9 @@ pub fn gen_stmt<G: CodeGenerator>(
|
||||||
} else {
|
} else {
|
||||||
return Ok(());
|
return Ok(());
|
||||||
};
|
};
|
||||||
gen_raise(generator, ctx, Some(&exc), stmt.location);
|
|
||||||
|
let exc = Ptr(Struct(Exception)).check_value(generator, ctx.ctx, exc).unwrap();
|
||||||
|
gen_raise(generator, ctx, Some(exc), stmt.location);
|
||||||
} else {
|
} else {
|
||||||
gen_raise(generator, ctx, None, stmt.location);
|
gen_raise(generator, ctx, None, stmt.location);
|
||||||
}
|
}
|
||||||
|
@ -1778,13 +1810,19 @@ pub fn gen_stmt<G: CodeGenerator>(
|
||||||
};
|
};
|
||||||
let err_msg = match msg {
|
let err_msg = match msg {
|
||||||
Some(msg) => {
|
Some(msg) => {
|
||||||
if let Some(v) = generator.gen_expr(ctx, msg)? {
|
let msg_ty = msg.custom.unwrap();
|
||||||
v.to_basic_value_enum(ctx, generator, msg.custom.unwrap())?
|
if let Some(msg) = generator.gen_expr(ctx, msg)? {
|
||||||
|
let msg = msg.to_basic_value_enum(ctx, generator, msg_ty)?;
|
||||||
|
let msg = str_model().check_value(generator, ctx.ctx, msg).unwrap();
|
||||||
|
msg
|
||||||
} else {
|
} else {
|
||||||
return Ok(());
|
return Ok(());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
None => ctx.gen_string(generator, "").into(),
|
None => {
|
||||||
|
// Return an empty string.
|
||||||
|
ctx.gen_string(generator, "")
|
||||||
|
}
|
||||||
};
|
};
|
||||||
ctx.make_assert_impl(
|
ctx.make_assert_impl(
|
||||||
generator,
|
generator,
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{ListType, NDArrayType, ProxyType, RangeType},
|
classes::{ListType, ProxyType},
|
||||||
concrete_type::ConcreteTypeStore,
|
concrete_type::ConcreteTypeStore,
|
||||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
||||||
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||||
|
@ -448,23 +448,3 @@ fn test_classes_list_type_new() {
|
||||||
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
|
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
|
||||||
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
|
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_classes_range_type_new() {
|
|
||||||
let ctx = inkwell::context::Context::create();
|
|
||||||
|
|
||||||
let llvm_range = RangeType::new(&ctx);
|
|
||||||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_classes_ndarray_type_new() {
|
|
||||||
let ctx = inkwell::context::Context::create();
|
|
||||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
|
||||||
|
|
||||||
let llvm_i32 = ctx.i32_type();
|
|
||||||
let llvm_usize = generator.get_size_type(&ctx);
|
|
||||||
|
|
||||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
|
||||||
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
|
||||||
}
|
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
use std::iter::once;
|
use std::iter::once;
|
||||||
|
|
||||||
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
|
use helper::{debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDefDetails};
|
||||||
use indexmap::IndexMap;
|
use indexmap::IndexMap;
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
|
@ -9,13 +9,19 @@ use inkwell::{
|
||||||
IntPredicate,
|
IntPredicate,
|
||||||
};
|
};
|
||||||
use itertools::Either;
|
use itertools::Either;
|
||||||
|
use numpy::unpack_ndarray_var_tys;
|
||||||
use strum::IntoEnumIterator;
|
use strum::IntoEnumIterator;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
builtin_fns,
|
builtin_fns,
|
||||||
classes::{ProxyValue, RangeValue},
|
model::*,
|
||||||
numpy::*,
|
numpy::*,
|
||||||
|
object::{
|
||||||
|
any::AnyObject,
|
||||||
|
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||||
|
range::RangeObject,
|
||||||
|
},
|
||||||
stmt::exn_constructor,
|
stmt::exn_constructor,
|
||||||
},
|
},
|
||||||
symbol_resolver::SymbolValue,
|
symbol_resolver::SymbolValue,
|
||||||
|
@ -511,6 +517,14 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
| PrimDef::FunNpEye
|
| PrimDef::FunNpEye
|
||||||
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
|
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
|
||||||
|
|
||||||
|
PrimDef::FunNpSize | PrimDef::FunNpShape | PrimDef::FunNpStrides => {
|
||||||
|
self.build_ndarray_property_getter_function(prim)
|
||||||
|
}
|
||||||
|
|
||||||
|
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
||||||
|
self.build_ndarray_view_function(prim)
|
||||||
|
}
|
||||||
|
|
||||||
PrimDef::FunStr => self.build_str_function(),
|
PrimDef::FunStr => self.build_str_function(),
|
||||||
|
|
||||||
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
|
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
|
||||||
|
@ -576,10 +590,6 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
| PrimDef::FunNpHypot
|
| PrimDef::FunNpHypot
|
||||||
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
||||||
|
|
||||||
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
|
||||||
self.build_np_sp_ndarray_function(prim)
|
|
||||||
}
|
|
||||||
|
|
||||||
PrimDef::FunNpDot
|
PrimDef::FunNpDot
|
||||||
| PrimDef::FunNpLinalgCholesky
|
| PrimDef::FunNpLinalgCholesky
|
||||||
| PrimDef::FunNpLinalgQr
|
| PrimDef::FunNpLinalgQr
|
||||||
|
@ -707,9 +717,10 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
||||||
|ctx, obj, _, args, generator| {
|
|ctx, obj, _, args, generator| {
|
||||||
let (zelf_ty, zelf) = obj.unwrap();
|
let (zelf_ty, zelf) = obj.unwrap();
|
||||||
let zelf =
|
let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?;
|
||||||
zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
|
|
||||||
let zelf = RangeValue::from_ptr_val(zelf, Some("range"));
|
let zelf = AnyObject { ty: zelf_ty, value: zelf };
|
||||||
|
let zelf = RangeObject::from_object(generator, ctx, zelf);
|
||||||
|
|
||||||
let mut start = None;
|
let mut start = None;
|
||||||
let mut stop = None;
|
let mut stop = None;
|
||||||
|
@ -792,11 +803,14 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
});
|
});
|
||||||
let start = start.unwrap_or_else(|| int32.const_zero());
|
let start = start.unwrap_or_else(|| int32.const_zero());
|
||||||
|
|
||||||
zelf.store_start(ctx, start);
|
let start = Int(Int32).believe_value(start);
|
||||||
zelf.store_end(ctx, stop);
|
let stop = Int(Int32).believe_value(stop);
|
||||||
zelf.store_step(ctx, step);
|
let step = Int(Int32).believe_value(step);
|
||||||
|
zelf.instance.start(ctx).store(ctx, start);
|
||||||
|
zelf.instance.stop(ctx).store(ctx, stop);
|
||||||
|
zelf.instance.step(ctx).store(ctx, step);
|
||||||
|
|
||||||
Ok(Some(zelf.as_base_value().into()))
|
Ok(Some(zelf.instance.value.as_basic_value_enum()))
|
||||||
},
|
},
|
||||||
)))),
|
)))),
|
||||||
loc: None,
|
loc: None,
|
||||||
|
@ -1385,6 +1399,171 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||||
|
debug_assert_prim_is_allowed(
|
||||||
|
prim,
|
||||||
|
&[PrimDef::FunNpSize, PrimDef::FunNpShape, PrimDef::FunNpStrides],
|
||||||
|
);
|
||||||
|
|
||||||
|
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||||
|
&[self.primitives.ndarray],
|
||||||
|
Some("T".into()),
|
||||||
|
None,
|
||||||
|
);
|
||||||
|
|
||||||
|
match prim {
|
||||||
|
PrimDef::FunNpSize => create_fn_by_codegen(
|
||||||
|
self.unifier,
|
||||||
|
&into_var_map([in_ndarray_ty]),
|
||||||
|
prim.name(),
|
||||||
|
self.primitives.int32,
|
||||||
|
&[(in_ndarray_ty.ty, "a")],
|
||||||
|
Box::new(|ctx, obj, fun, args, generator| {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 1);
|
||||||
|
|
||||||
|
let ndarray_ty = fun.0.args[0].ty;
|
||||||
|
let ndarray =
|
||||||
|
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
|
let size =
|
||||||
|
ndarray.size(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32);
|
||||||
|
Ok(Some(size.value.as_basic_value_enum()))
|
||||||
|
}),
|
||||||
|
),
|
||||||
|
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
|
||||||
|
// The function signatures of `np_shape` an `np_size` are the same.
|
||||||
|
// Mixed together for convenience.
|
||||||
|
|
||||||
|
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
|
||||||
|
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
|
||||||
|
|
||||||
|
create_fn_by_codegen(
|
||||||
|
self.unifier,
|
||||||
|
&into_var_map([in_ndarray_ty]),
|
||||||
|
prim.name(),
|
||||||
|
ret_ty,
|
||||||
|
&[(in_ndarray_ty.ty, "a")],
|
||||||
|
Box::new(move |ctx, obj, fun, args, generator| {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 1);
|
||||||
|
|
||||||
|
let ndarray_ty = fun.0.args[0].ty;
|
||||||
|
let ndarray =
|
||||||
|
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
|
||||||
|
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
|
let result_tuple = match prim {
|
||||||
|
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
|
||||||
|
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
|
||||||
|
_ => unreachable!(),
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(Some(result_tuple.value.as_basic_value_enum()))
|
||||||
|
}),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
_ => unreachable!(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Build np/sp functions that take as input `NDArray` only
|
||||||
|
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||||
|
debug_assert_prim_is_allowed(
|
||||||
|
prim,
|
||||||
|
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
|
||||||
|
);
|
||||||
|
|
||||||
|
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||||
|
&[self.primitives.ndarray],
|
||||||
|
Some("T".into()),
|
||||||
|
None,
|
||||||
|
);
|
||||||
|
|
||||||
|
match prim {
|
||||||
|
PrimDef::FunNpTranspose => {
|
||||||
|
create_fn_by_codegen(
|
||||||
|
self.unifier,
|
||||||
|
&into_var_map([in_ndarray_ty]),
|
||||||
|
prim.name(),
|
||||||
|
in_ndarray_ty.ty,
|
||||||
|
&[(in_ndarray_ty.ty, "x")],
|
||||||
|
Box::new(move |ctx, _, fun, args, generator| {
|
||||||
|
let arg_ty = fun.0.args[0].ty;
|
||||||
|
let arg_val =
|
||||||
|
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||||
|
|
||||||
|
let arg = AnyObject { ty: arg_ty, value: arg_val };
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, arg);
|
||||||
|
|
||||||
|
let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument
|
||||||
|
Ok(Some(ndarray.instance.value.as_basic_value_enum()))
|
||||||
|
}),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
||||||
|
// the `param_ty` for `create_fn_by_codegen`.
|
||||||
|
//
|
||||||
|
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
||||||
|
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
||||||
|
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
||||||
|
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
|
||||||
|
// These two functions have the same function signature.
|
||||||
|
// Mixed together for convenience.
|
||||||
|
|
||||||
|
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
|
||||||
|
|
||||||
|
create_fn_by_codegen(
|
||||||
|
self.unifier,
|
||||||
|
&VarMap::new(),
|
||||||
|
prim.name(),
|
||||||
|
ret_ty,
|
||||||
|
&[
|
||||||
|
(in_ndarray_ty.ty, "x"),
|
||||||
|
(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding
|
||||||
|
],
|
||||||
|
Box::new(move |ctx, _, fun, args, generator| {
|
||||||
|
let ndarray_ty = fun.0.args[0].ty;
|
||||||
|
let ndarray_val =
|
||||||
|
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
|
||||||
|
let shape_ty = fun.0.args[1].ty;
|
||||||
|
let shape_val =
|
||||||
|
args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
||||||
|
|
||||||
|
let ndarray = AnyObject { value: ndarray_val, ty: ndarray_ty };
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
|
let shape = AnyObject { value: shape_val, ty: shape_ty };
|
||||||
|
let (_, shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
||||||
|
|
||||||
|
// The ndims after reshaping is gotten from the return type of the call.
|
||||||
|
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||||
|
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||||
|
|
||||||
|
let new_ndarray = match prim {
|
||||||
|
PrimDef::FunNpBroadcastTo => {
|
||||||
|
ndarray.broadcast_to(generator, ctx, ndims, shape)
|
||||||
|
}
|
||||||
|
PrimDef::FunNpReshape => {
|
||||||
|
ndarray.reshape_or_copy(generator, ctx, ndims, shape)
|
||||||
|
}
|
||||||
|
_ => unreachable!(),
|
||||||
|
};
|
||||||
|
Ok(Some(new_ndarray.instance.value.as_basic_value_enum()))
|
||||||
|
}),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
_ => unreachable!(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Build the `str()` function.
|
/// Build the `str()` function.
|
||||||
fn build_str_function(&mut self) -> TopLevelDef {
|
fn build_str_function(&mut self) -> TopLevelDef {
|
||||||
let prim = PrimDef::FunStr;
|
let prim = PrimDef::FunStr;
|
||||||
|
@ -1872,57 +2051,6 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Build np/sp functions that take as input `NDArray` only
|
|
||||||
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
||||||
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
|
|
||||||
|
|
||||||
match prim {
|
|
||||||
PrimDef::FunNpTranspose => {
|
|
||||||
let ndarray_ty = self.unifier.get_fresh_var_with_range(
|
|
||||||
&[self.ndarray_num_ty],
|
|
||||||
Some("T".into()),
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
create_fn_by_codegen(
|
|
||||||
self.unifier,
|
|
||||||
&into_var_map([ndarray_ty]),
|
|
||||||
prim.name(),
|
|
||||||
ndarray_ty.ty,
|
|
||||||
&[(ndarray_ty.ty, "x")],
|
|
||||||
Box::new(move |ctx, _, fun, args, generator| {
|
|
||||||
let arg_ty = fun.0.args[0].ty;
|
|
||||||
let arg_val =
|
|
||||||
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
||||||
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
|
|
||||||
}),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
|
||||||
// the `param_ty` for `create_fn_by_codegen`.
|
|
||||||
//
|
|
||||||
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
|
||||||
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
|
||||||
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
|
||||||
PrimDef::FunNpReshape => create_fn_by_codegen(
|
|
||||||
self.unifier,
|
|
||||||
&VarMap::new(),
|
|
||||||
prim.name(),
|
|
||||||
self.ndarray_num_ty,
|
|
||||||
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
|
||||||
Box::new(move |ctx, _, fun, args, generator| {
|
|
||||||
let x1_ty = fun.0.args[0].ty;
|
|
||||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
||||||
let x2_ty = fun.0.args[1].ty;
|
|
||||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
|
||||||
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
|
||||||
}),
|
|
||||||
),
|
|
||||||
|
|
||||||
_ => unreachable!(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Build `np_linalg` and `sp_linalg` functions
|
/// Build `np_linalg` and `sp_linalg` functions
|
||||||
///
|
///
|
||||||
/// The input to these functions must be floating point `NDArray`
|
/// The input to these functions must be floating point `NDArray`
|
||||||
|
@ -1954,10 +2082,12 @@ impl<'a> BuiltinBuilder<'a> {
|
||||||
Box::new(move |ctx, _, fun, args, generator| {
|
Box::new(move |ctx, _, fun, args, generator| {
|
||||||
let x1_ty = fun.0.args[0].ty;
|
let x1_ty = fun.0.args[0].ty;
|
||||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||||
|
|
||||||
let x2_ty = fun.0.args[1].ty;
|
let x2_ty = fun.0.args[1].ty;
|
||||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||||
|
|
||||||
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
|
||||||
|
Ok(Some(result))
|
||||||
}),
|
}),
|
||||||
),
|
),
|
||||||
|
|
||||||
|
|
|
@ -52,6 +52,16 @@ pub enum PrimDef {
|
||||||
FunNpEye,
|
FunNpEye,
|
||||||
FunNpIdentity,
|
FunNpIdentity,
|
||||||
|
|
||||||
|
// NumPy ndarray property getters
|
||||||
|
FunNpSize,
|
||||||
|
FunNpShape,
|
||||||
|
FunNpStrides,
|
||||||
|
|
||||||
|
// NumPy ndarray view functions
|
||||||
|
FunNpBroadcastTo,
|
||||||
|
FunNpTranspose,
|
||||||
|
FunNpReshape,
|
||||||
|
|
||||||
// Miscellaneous NumPy & SciPy functions
|
// Miscellaneous NumPy & SciPy functions
|
||||||
FunNpRound,
|
FunNpRound,
|
||||||
FunNpFloor,
|
FunNpFloor,
|
||||||
|
@ -99,8 +109,6 @@ pub enum PrimDef {
|
||||||
FunNpLdExp,
|
FunNpLdExp,
|
||||||
FunNpHypot,
|
FunNpHypot,
|
||||||
FunNpNextAfter,
|
FunNpNextAfter,
|
||||||
FunNpTranspose,
|
|
||||||
FunNpReshape,
|
|
||||||
|
|
||||||
// Linalg functions
|
// Linalg functions
|
||||||
FunNpDot,
|
FunNpDot,
|
||||||
|
@ -238,6 +246,16 @@ impl PrimDef {
|
||||||
PrimDef::FunNpEye => fun("np_eye", None),
|
PrimDef::FunNpEye => fun("np_eye", None),
|
||||||
PrimDef::FunNpIdentity => fun("np_identity", None),
|
PrimDef::FunNpIdentity => fun("np_identity", None),
|
||||||
|
|
||||||
|
// NumPy NDArray property getters,
|
||||||
|
PrimDef::FunNpSize => fun("np_size", None),
|
||||||
|
PrimDef::FunNpShape => fun("np_shape", None),
|
||||||
|
PrimDef::FunNpStrides => fun("np_strides", None),
|
||||||
|
|
||||||
|
// NumPy NDArray view functions
|
||||||
|
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
|
||||||
|
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||||
|
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||||
|
|
||||||
// Miscellaneous NumPy & SciPy functions
|
// Miscellaneous NumPy & SciPy functions
|
||||||
PrimDef::FunNpRound => fun("np_round", None),
|
PrimDef::FunNpRound => fun("np_round", None),
|
||||||
PrimDef::FunNpFloor => fun("np_floor", None),
|
PrimDef::FunNpFloor => fun("np_floor", None),
|
||||||
|
@ -285,8 +303,6 @@ impl PrimDef {
|
||||||
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
||||||
PrimDef::FunNpHypot => fun("np_hypot", None),
|
PrimDef::FunNpHypot => fun("np_hypot", None),
|
||||||
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
||||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
|
||||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
|
||||||
|
|
||||||
// Linalg functions
|
// Linalg functions
|
||||||
PrimDef::FunNpDot => fun("np_dot", None),
|
PrimDef::FunNpDot => fun("np_dot", None),
|
||||||
|
@ -1000,3 +1016,23 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
|
||||||
_ => 0,
|
_ => 0,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
|
||||||
|
/// The `ndims` must only contain 1 value.
|
||||||
|
#[must_use]
|
||||||
|
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
|
||||||
|
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
|
||||||
|
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
|
||||||
|
panic!("ndims_ty should be a TLiteral");
|
||||||
|
};
|
||||||
|
|
||||||
|
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
|
||||||
|
|
||||||
|
let ndims = values[0].clone();
|
||||||
|
u64::try_from(ndims).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
|
||||||
|
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
|
||||||
|
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
|
||||||
|
}
|
||||||
|
|
|
@ -5,7 +5,7 @@ expression: res_vec
|
||||||
[
|
[
|
||||||
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
|
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
|
||||||
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(241)]\n}\n",
|
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
|
||||||
|
|
|
@ -7,7 +7,7 @@ expression: res_vec
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B[typevar246]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar246\"]\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",
|
||||||
|
|
|
@ -5,8 +5,8 @@ expression: res_vec
|
||||||
[
|
[
|
||||||
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
|
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(259)]\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(264)]\n}\n",
|
||||||
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
|
|
|
@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
|
||||||
expression: res_vec
|
expression: res_vec
|
||||||
---
|
---
|
||||||
[
|
[
|
||||||
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n",
|
"Class {\nname: \"A\",\nancestors: [\"A[typevar245, typevar246]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar245\", \"typevar246\"]\n}\n",
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",
|
||||||
|
|
|
@ -6,12 +6,12 @@ expression: res_vec
|
||||||
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n",
|
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(265)]\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
|
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(273)]\n}\n",
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
use crate::symbol_resolver::SymbolValue;
|
use crate::symbol_resolver::SymbolValue;
|
||||||
use crate::toplevel::helper::PrimDef;
|
use crate::toplevel::helper::{extract_ndims, PrimDef};
|
||||||
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
||||||
use crate::typecheck::{
|
use crate::typecheck::{
|
||||||
type_inferencer::*,
|
type_inferencer::*,
|
||||||
|
@ -13,6 +13,8 @@ use std::collections::HashMap;
|
||||||
use std::rc::Rc;
|
use std::rc::Rc;
|
||||||
use strum::IntoEnumIterator;
|
use strum::IntoEnumIterator;
|
||||||
|
|
||||||
|
use super::typedef::into_var_map;
|
||||||
|
|
||||||
/// The variant of a binary operator.
|
/// The variant of a binary operator.
|
||||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||||
pub enum BinopVariant {
|
pub enum BinopVariant {
|
||||||
|
@ -171,19 +173,8 @@ pub fn impl_binop(
|
||||||
ops: &[Operator],
|
ops: &[Operator],
|
||||||
) {
|
) {
|
||||||
with_fields(unifier, ty, |unifier, fields| {
|
with_fields(unifier, ty, |unifier, fields| {
|
||||||
let (other_ty, other_var_id) = if other_ty.len() == 1 {
|
let other_tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
|
||||||
(other_ty[0], None)
|
let function_vars = into_var_map([other_tvar]);
|
||||||
} else {
|
|
||||||
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
|
|
||||||
(tvar.ty, Some(tvar.id))
|
|
||||||
};
|
|
||||||
|
|
||||||
let function_vars = if let Some(var_id) = other_var_id {
|
|
||||||
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
|
|
||||||
} else {
|
|
||||||
VarMap::new()
|
|
||||||
};
|
|
||||||
|
|
||||||
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
|
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
|
||||||
|
|
||||||
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
|
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
|
||||||
|
@ -194,7 +185,7 @@ pub fn impl_binop(
|
||||||
ret: ret_ty,
|
ret: ret_ty,
|
||||||
vars: function_vars.clone(),
|
vars: function_vars.clone(),
|
||||||
args: vec![FuncArg {
|
args: vec![FuncArg {
|
||||||
ty: other_ty,
|
ty: other_tvar.ty,
|
||||||
default_value: None,
|
default_value: None,
|
||||||
name: "other".into(),
|
name: "other".into(),
|
||||||
is_vararg: false,
|
is_vararg: false,
|
||||||
|
@ -520,36 +511,41 @@ pub fn typeof_binop(
|
||||||
}
|
}
|
||||||
|
|
||||||
Operator::MatMult => {
|
Operator::MatMult => {
|
||||||
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
||||||
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
|
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
|
||||||
TypeEnum::TLiteral { values, .. } => {
|
|
||||||
assert_eq!(values.len(), 1);
|
let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
||||||
u64::try_from(values[0].clone()).unwrap()
|
let rhs_ndims = extract_ndims(unifier, rhs_ndims);
|
||||||
|
|
||||||
|
if !(unifier.unioned(lhs_dtype, primitives.float)
|
||||||
|
&& unifier.unioned(rhs_dtype, primitives.float))
|
||||||
|
{
|
||||||
|
return Err(format!(
|
||||||
|
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
|
||||||
|
unifier.stringify(lhs),
|
||||||
|
unifier.stringify(rhs)
|
||||||
|
));
|
||||||
}
|
}
|
||||||
_ => unreachable!(),
|
|
||||||
};
|
let result_ndims = match (lhs_ndims, rhs_ndims) {
|
||||||
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
(0, _) | (_, 0) => {
|
||||||
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
|
return Err(
|
||||||
TypeEnum::TLiteral { values, .. } => {
|
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
|
||||||
assert_eq!(values.len(), 1);
|
)
|
||||||
u64::try_from(values[0].clone()).unwrap()
|
|
||||||
}
|
}
|
||||||
_ => unreachable!(),
|
(1, 1) => 0,
|
||||||
|
(1, _) => rhs_ndims - 1,
|
||||||
|
(_, 1) => lhs_ndims - 1,
|
||||||
|
(m, n) => max(m, n),
|
||||||
};
|
};
|
||||||
|
|
||||||
match (lhs_ndims, rhs_ndims) {
|
if result_ndims == 0 {
|
||||||
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
|
// If the result is unsized, NumPy returns a scalar.
|
||||||
(lhs, rhs) if lhs == 0 || rhs == 0 => {
|
primitives.float
|
||||||
return Err(format!(
|
} else {
|
||||||
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
|
let result_ndims_ty =
|
||||||
u8::from(rhs == 0)
|
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
|
||||||
))
|
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
|
||||||
}
|
|
||||||
(lhs, rhs) => {
|
|
||||||
return Err(format!(
|
|
||||||
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -752,7 +748,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
||||||
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
||||||
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
|
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
|
||||||
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
||||||
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
||||||
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
use std::cmp::max;
|
use std::cmp::max;
|
||||||
use std::collections::{HashMap, HashSet};
|
use std::collections::{HashMap, HashSet};
|
||||||
use std::convert::{From, TryInto};
|
use std::convert::{From, TryInto};
|
||||||
use std::iter::once;
|
use std::iter::{self, once};
|
||||||
use std::{cell::RefCell, sync::Arc};
|
use std::{cell::RefCell, sync::Arc};
|
||||||
|
|
||||||
use super::{
|
use super::{
|
||||||
|
@ -1181,6 +1181,45 @@ impl<'a> Inferencer<'a> {
|
||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
|
||||||
|
let ndarray = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
|
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
|
||||||
|
|
||||||
|
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
|
||||||
|
let ret_ty = TypeEnum::TTuple {
|
||||||
|
ty: iter::repeat(self.primitives.int32).take(ndims as usize).collect_vec(),
|
||||||
|
is_vararg_ctx: false,
|
||||||
|
};
|
||||||
|
let ret_ty = self.unifier.add_ty(ret_ty);
|
||||||
|
|
||||||
|
let func_ty = TypeEnum::TFunc(FunSignature {
|
||||||
|
args: vec![FuncArg {
|
||||||
|
name: "a".into(),
|
||||||
|
default_value: None,
|
||||||
|
ty: ndarray.custom.unwrap(),
|
||||||
|
is_vararg: false,
|
||||||
|
}],
|
||||||
|
ret: ret_ty,
|
||||||
|
vars: VarMap::new(),
|
||||||
|
});
|
||||||
|
let func_ty = self.unifier.add_ty(func_ty);
|
||||||
|
|
||||||
|
return Ok(Some(Located {
|
||||||
|
location,
|
||||||
|
custom: Some(ret_ty),
|
||||||
|
node: ExprKind::Call {
|
||||||
|
func: Box::new(Located {
|
||||||
|
custom: Some(func_ty),
|
||||||
|
location: func.location,
|
||||||
|
node: ExprKind::Name { id: *id, ctx: *ctx },
|
||||||
|
}),
|
||||||
|
args: vec![ndarray],
|
||||||
|
keywords: vec![],
|
||||||
|
},
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
if id == &"np_dot".into() {
|
if id == &"np_dot".into() {
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
let arg0 = self.fold_expr(args.remove(0))?;
|
||||||
let arg1 = self.fold_expr(args.remove(0))?;
|
let arg1 = self.fold_expr(args.remove(0))?;
|
||||||
|
@ -1502,7 +1541,7 @@ impl<'a> Inferencer<'a> {
|
||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
// 2-argument ndarray n-dimensional factory functions
|
// 2-argument ndarray n-dimensional factory functions
|
||||||
if id == &"np_reshape".into() && args.len() == 2 {
|
if ["np_reshape".into(), "np_broadcast_to".into()].contains(id) && args.len() == 2 {
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
let arg0 = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
let shape_expr = args.remove(0);
|
let shape_expr = args.remove(0);
|
||||||
|
|
|
@ -179,6 +179,16 @@ def patch(module):
|
||||||
module.np_identity = np.identity
|
module.np_identity = np.identity
|
||||||
module.np_array = np.array
|
module.np_array = np.array
|
||||||
|
|
||||||
|
# NumPy NDArray view functions
|
||||||
|
module.np_broadcast_to = np.broadcast_to
|
||||||
|
module.np_transpose = np.transpose
|
||||||
|
module.np_reshape = np.reshape
|
||||||
|
|
||||||
|
# NumPy NDArray property getters
|
||||||
|
module.np_size = np.size
|
||||||
|
module.np_shape = np.shape
|
||||||
|
module.np_strides = lambda ndarray: ndarray.strides
|
||||||
|
|
||||||
# NumPy Math functions
|
# NumPy Math functions
|
||||||
module.np_isnan = np.isnan
|
module.np_isnan = np.isnan
|
||||||
module.np_isinf = np.isinf
|
module.np_isinf = np.isinf
|
||||||
|
@ -218,8 +228,6 @@ def patch(module):
|
||||||
module.np_ldexp = np.ldexp
|
module.np_ldexp = np.ldexp
|
||||||
module.np_hypot = np.hypot
|
module.np_hypot = np.hypot
|
||||||
module.np_nextafter = np.nextafter
|
module.np_nextafter = np.nextafter
|
||||||
module.np_transpose = np.transpose
|
|
||||||
module.np_reshape = np.reshape
|
|
||||||
|
|
||||||
# SciPy Math functions
|
# SciPy Math functions
|
||||||
module.sp_spec_erf = special.erf
|
module.sp_spec_erf = special.erf
|
||||||
|
|
|
@ -68,6 +68,19 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
|
||||||
for c in range(len(n[r])):
|
for c in range(len(n[r])):
|
||||||
output_float64(n[r][c])
|
output_float64(n[r][c])
|
||||||
|
|
||||||
|
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
|
||||||
|
for d in range(len(n)):
|
||||||
|
for r in range(len(n[d])):
|
||||||
|
for c in range(len(n[d][r])):
|
||||||
|
output_float64(n[d][r][c])
|
||||||
|
|
||||||
|
def output_ndarray_float_4(n: ndarray[float, Literal[4]]):
|
||||||
|
for x in range(len(n)):
|
||||||
|
for y in range(len(n[x])):
|
||||||
|
for z in range(len(n[x][y])):
|
||||||
|
for w in range(len(n[x][y][z])):
|
||||||
|
output_float64(n[x][y][z][w])
|
||||||
|
|
||||||
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
|
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -186,6 +199,104 @@ def test_ndarray_nd_idx():
|
||||||
output_float64(x[1, 0])
|
output_float64(x[1, 0])
|
||||||
output_float64(x[1, 1])
|
output_float64(x[1, 1])
|
||||||
|
|
||||||
|
def test_ndarray_transpose():
|
||||||
|
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
|
||||||
|
y = np_transpose(x)
|
||||||
|
z = np_transpose(y)
|
||||||
|
|
||||||
|
output_int32(np_shape(x)[0])
|
||||||
|
output_int32(np_shape(x)[1])
|
||||||
|
output_ndarray_float_2(x)
|
||||||
|
|
||||||
|
output_int32(np_shape(y)[0])
|
||||||
|
output_int32(np_shape(y)[1])
|
||||||
|
output_ndarray_float_2(y)
|
||||||
|
|
||||||
|
output_int32(np_shape(z)[0])
|
||||||
|
output_int32(np_shape(z)[1])
|
||||||
|
output_ndarray_float_2(z)
|
||||||
|
|
||||||
|
def test_ndarray_reshape():
|
||||||
|
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
||||||
|
x = np_reshape(w, (1, 2, 1, -1))
|
||||||
|
y = np_reshape(x, [2, -1])
|
||||||
|
z = np_reshape(y, 10)
|
||||||
|
|
||||||
|
output_int32(np_shape(w)[0])
|
||||||
|
output_ndarray_float_1(w)
|
||||||
|
|
||||||
|
output_int32(np_shape(x)[0])
|
||||||
|
output_int32(np_shape(x)[1])
|
||||||
|
output_int32(np_shape(x)[2])
|
||||||
|
output_int32(np_shape(x)[3])
|
||||||
|
output_ndarray_float_4(x)
|
||||||
|
|
||||||
|
output_int32(np_shape(y)[0])
|
||||||
|
output_int32(np_shape(y)[1])
|
||||||
|
output_ndarray_float_2(y)
|
||||||
|
|
||||||
|
output_int32(np_shape(z)[0])
|
||||||
|
output_ndarray_float_1(z)
|
||||||
|
|
||||||
|
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
|
||||||
|
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
|
||||||
|
|
||||||
|
output_int32(np_shape(x1)[0])
|
||||||
|
output_ndarray_int32_1(x1)
|
||||||
|
|
||||||
|
output_int32(np_shape(x2)[0])
|
||||||
|
output_int32(np_shape(x2)[1])
|
||||||
|
output_ndarray_int32_2(x2)
|
||||||
|
|
||||||
|
def test_ndarray_broadcast_to():
|
||||||
|
xs = np_array([1.0, 2.0, 3.0])
|
||||||
|
ys = np_broadcast_to(xs, (1, 3))
|
||||||
|
zs = np_broadcast_to(ys, (2, 4, 3))
|
||||||
|
|
||||||
|
output_int32(np_shape(xs)[0])
|
||||||
|
output_ndarray_float_1(xs)
|
||||||
|
|
||||||
|
output_int32(np_shape(ys)[0])
|
||||||
|
output_int32(np_shape(ys)[1])
|
||||||
|
output_ndarray_float_2(ys)
|
||||||
|
|
||||||
|
output_int32(np_shape(zs)[0])
|
||||||
|
output_int32(np_shape(zs)[1])
|
||||||
|
output_int32(np_shape(zs)[2])
|
||||||
|
output_ndarray_float_3(zs)
|
||||||
|
|
||||||
|
def test_ndarray_subscript_assignment():
|
||||||
|
xs = np_array([[11.0, 22.0, 33.0, 44.0], [55.0, 66.0, 77.0, 88.0]])
|
||||||
|
|
||||||
|
xs[0, 0] = 99.0
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
|
||||||
|
xs[0] = 100.0
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
|
||||||
|
xs[:, ::2] = 101.0
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
|
||||||
|
xs[1:, 0] = 102.0
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
|
||||||
|
xs[0] = np_array([-1.0, -2.0, -3.0, -4.0])
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
|
||||||
|
xs[:] = np_array([-5.0, -6.0, -7.0, -8.0])
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
|
||||||
|
# Test assignment with memory sharing
|
||||||
|
ys1 = np_reshape(xs, (2, 4))
|
||||||
|
ys2 = np_transpose(ys1)
|
||||||
|
ys3 = ys2[::-1, 0]
|
||||||
|
ys3[0] = -999.0
|
||||||
|
|
||||||
|
output_ndarray_float_2(xs)
|
||||||
|
output_ndarray_float_2(ys1)
|
||||||
|
output_ndarray_float_2(ys2)
|
||||||
|
output_ndarray_float_1(ys3)
|
||||||
|
|
||||||
def test_ndarray_add():
|
def test_ndarray_add():
|
||||||
x = np_identity(2)
|
x = np_identity(2)
|
||||||
y = x + np_ones([2, 2])
|
y = x + np_ones([2, 2])
|
||||||
|
@ -530,11 +641,59 @@ def test_ndarray_ipow_broadcast_scalar():
|
||||||
output_ndarray_float_2(x)
|
output_ndarray_float_2(x)
|
||||||
|
|
||||||
def test_ndarray_matmul():
|
def test_ndarray_matmul():
|
||||||
x = np_identity(2)
|
# 2D @ 2D -> 2D
|
||||||
y = x @ np_ones([2, 2])
|
a1 = np_array([[2.0, 3.0], [5.0, 7.0]])
|
||||||
|
b1 = np_array([[11.0, 13.0], [17.0, 23.0]])
|
||||||
|
c1 = a1 @ b1
|
||||||
|
output_int32(np_shape(c1)[0])
|
||||||
|
output_int32(np_shape(c1)[1])
|
||||||
|
output_ndarray_float_2(c1)
|
||||||
|
|
||||||
output_ndarray_float_2(x)
|
# 1D @ 1D -> Scalar
|
||||||
output_ndarray_float_2(y)
|
a2 = np_array([2.0, 3.0, 5.0])
|
||||||
|
b2 = np_array([7.0, 11.0, 13.0])
|
||||||
|
c2 = a2 @ b2
|
||||||
|
output_float64(c2)
|
||||||
|
|
||||||
|
# 2D @ 1D -> 1D
|
||||||
|
a3 = np_array([[1.0, 2.0, 3.0], [7.0, 8.0, 9.0]])
|
||||||
|
b3 = np_array([4.0, 5.0, 6.0])
|
||||||
|
c3 = a3 @ b3
|
||||||
|
output_int32(np_shape(c3)[0])
|
||||||
|
output_ndarray_float_1(c3)
|
||||||
|
|
||||||
|
# 1D @ 2D -> 1D
|
||||||
|
a4 = np_array([1.0, 2.0, 3.0])
|
||||||
|
b4 = np_array([[4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])
|
||||||
|
c4 = a4 @ b4
|
||||||
|
output_int32(np_shape(c4)[0])
|
||||||
|
output_ndarray_float_1(c4)
|
||||||
|
|
||||||
|
# Broadcasting
|
||||||
|
a5 = np_array([
|
||||||
|
[[ 0.0, 1.0, 2.0, 3.0],
|
||||||
|
[ 4.0, 5.0, 6.0, 7.0]],
|
||||||
|
[[ 8.0, 9.0, 10.0, 11.0],
|
||||||
|
[12.0, 13.0, 14.0, 15.0]],
|
||||||
|
[[16.0, 17.0, 18.0, 19.0],
|
||||||
|
[20.0, 21.0, 22.0, 23.0]]
|
||||||
|
])
|
||||||
|
b5 = np_array([
|
||||||
|
[[[ 0.0, 1.0, 2.0],
|
||||||
|
[ 3.0, 4.0, 5.0],
|
||||||
|
[ 6.0, 7.0, 8.0],
|
||||||
|
[ 9.0, 10.0, 11.0]]],
|
||||||
|
[[[12.0, 13.0, 14.0],
|
||||||
|
[15.0, 16.0, 17.0],
|
||||||
|
[18.0, 19.0, 20.0],
|
||||||
|
[21.0, 22.0, 23.0]]]
|
||||||
|
])
|
||||||
|
c5 = a5 @ b5
|
||||||
|
output_int32(np_shape(c5)[0])
|
||||||
|
output_int32(np_shape(c5)[1])
|
||||||
|
output_int32(np_shape(c5)[2])
|
||||||
|
output_int32(np_shape(c5)[3])
|
||||||
|
output_ndarray_float_4(c5)
|
||||||
|
|
||||||
def test_ndarray_imatmul():
|
def test_ndarray_imatmul():
|
||||||
x = np_identity(2)
|
x = np_identity(2)
|
||||||
|
@ -1429,27 +1588,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
|
||||||
output_ndarray_float_2(nextafter_x_zeros)
|
output_ndarray_float_2(nextafter_x_zeros)
|
||||||
output_ndarray_float_2(nextafter_x_ones)
|
output_ndarray_float_2(nextafter_x_ones)
|
||||||
|
|
||||||
def test_ndarray_transpose():
|
|
||||||
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
|
|
||||||
y = np_transpose(x)
|
|
||||||
z = np_transpose(y)
|
|
||||||
|
|
||||||
output_ndarray_float_2(x)
|
|
||||||
output_ndarray_float_2(y)
|
|
||||||
|
|
||||||
def test_ndarray_reshape():
|
|
||||||
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
|
||||||
x = np_reshape(w, (1, 2, 1, -1))
|
|
||||||
y = np_reshape(x, [2, -1])
|
|
||||||
z = np_reshape(y, 10)
|
|
||||||
|
|
||||||
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
|
|
||||||
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
|
|
||||||
|
|
||||||
output_ndarray_float_1(w)
|
|
||||||
output_ndarray_float_2(y)
|
|
||||||
output_ndarray_float_1(z)
|
|
||||||
|
|
||||||
def test_ndarray_dot():
|
def test_ndarray_dot():
|
||||||
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
|
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
|
||||||
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
|
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
|
||||||
|
@ -1581,6 +1719,11 @@ def run() -> int32:
|
||||||
test_ndarray_slices()
|
test_ndarray_slices()
|
||||||
test_ndarray_nd_idx()
|
test_ndarray_nd_idx()
|
||||||
|
|
||||||
|
test_ndarray_transpose()
|
||||||
|
test_ndarray_reshape()
|
||||||
|
test_ndarray_broadcast_to()
|
||||||
|
test_ndarray_subscript_assignment()
|
||||||
|
|
||||||
test_ndarray_add()
|
test_ndarray_add()
|
||||||
test_ndarray_add_broadcast()
|
test_ndarray_add_broadcast()
|
||||||
test_ndarray_add_broadcast_lhs_scalar()
|
test_ndarray_add_broadcast_lhs_scalar()
|
||||||
|
@ -1744,8 +1887,6 @@ def run() -> int32:
|
||||||
test_ndarray_nextafter_broadcast()
|
test_ndarray_nextafter_broadcast()
|
||||||
test_ndarray_nextafter_broadcast_lhs_scalar()
|
test_ndarray_nextafter_broadcast_lhs_scalar()
|
||||||
test_ndarray_nextafter_broadcast_rhs_scalar()
|
test_ndarray_nextafter_broadcast_rhs_scalar()
|
||||||
test_ndarray_transpose()
|
|
||||||
test_ndarray_reshape()
|
|
||||||
|
|
||||||
test_ndarray_dot()
|
test_ndarray_dot()
|
||||||
test_ndarray_cholesky()
|
test_ndarray_cholesky()
|
||||||
|
|
|
@ -14,6 +14,7 @@ use inkwell::{
|
||||||
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
|
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
|
||||||
OptimizationLevel,
|
OptimizationLevel,
|
||||||
};
|
};
|
||||||
|
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||||
use nac3core::{
|
use nac3core::{
|
||||||
codegen::{
|
codegen::{
|
||||||
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
|
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
|
||||||
|
@ -314,6 +315,16 @@ fn main() {
|
||||||
let resolver =
|
let resolver =
|
||||||
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
|
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||||
|
|
||||||
|
let context = inkwell::context::Context::create();
|
||||||
|
|
||||||
|
// Process IRRT
|
||||||
|
let irrt = load_irrt(&context);
|
||||||
|
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||||
|
if emit_llvm {
|
||||||
|
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Process the Python script
|
||||||
let parser_result = parser::parse_program(&program, file_name.into()).unwrap();
|
let parser_result = parser::parse_program(&program, file_name.into()).unwrap();
|
||||||
|
|
||||||
for stmt in parser_result {
|
for stmt in parser_result {
|
||||||
|
@ -418,8 +429,8 @@ fn main() {
|
||||||
registry.add_task(task);
|
registry.add_task(task);
|
||||||
registry.wait_tasks_complete(handles);
|
registry.wait_tasks_complete(handles);
|
||||||
|
|
||||||
|
// Link all modules together into `main`
|
||||||
let buffers = membuffers.lock();
|
let buffers = membuffers.lock();
|
||||||
let context = inkwell::context::Context::create();
|
|
||||||
let main = context
|
let main = context
|
||||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
@ -439,12 +450,9 @@ fn main() {
|
||||||
main.link_in_module(other).unwrap();
|
main.link_in_module(other).unwrap();
|
||||||
}
|
}
|
||||||
|
|
||||||
let irrt = load_irrt(&context);
|
|
||||||
if emit_llvm {
|
|
||||||
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
|
|
||||||
}
|
|
||||||
main.link_in_module(irrt).unwrap();
|
main.link_in_module(irrt).unwrap();
|
||||||
|
|
||||||
|
// Private all functions except "run"
|
||||||
let mut function_iter = main.get_first_function();
|
let mut function_iter = main.get_first_function();
|
||||||
while let Some(func) = function_iter {
|
while let Some(func) = function_iter {
|
||||||
if func.count_basic_blocks() > 0 && func.get_name().to_str().unwrap() != "run" {
|
if func.count_basic_blocks() > 0 && func.get_name().to_str().unwrap() != "run" {
|
||||||
|
@ -453,6 +461,7 @@ fn main() {
|
||||||
function_iter = func.get_next_function();
|
function_iter = func.get_next_function();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Optimize `main`
|
||||||
let target_machine = llvm_options
|
let target_machine = llvm_options
|
||||||
.target
|
.target
|
||||||
.create_target_machine(llvm_options.opt_level)
|
.create_target_machine(llvm_options.opt_level)
|
||||||
|
@ -466,6 +475,7 @@ fn main() {
|
||||||
panic!("Failed to run optimization for module `main`: {}", err.to_string());
|
panic!("Failed to run optimization for module `main`: {}", err.to_string());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Write output
|
||||||
target_machine
|
target_machine
|
||||||
.write_to_file(&main, FileType::Object, Path::new("module.o"))
|
.write_to_file(&main, FileType::Object, Path::new("module.o"))
|
||||||
.expect("couldn't write module to file");
|
.expect("couldn't write module to file");
|
||||||
|
|
Loading…
Reference in New Issue