Compare commits
21 Commits
master
...
ndstrides-
Author | SHA1 | Date |
---|---|---|
lyken | 9fa0dfe202 | |
lyken | 1c48d54afa | |
lyken | a69a441bdd | |
lyken | 4b765cfb27 | |
lyken | f8b934096d | |
lyken | 0df2f26c98 | |
lyken | 5dce27e87d | |
lyken | 15dfb2eaa0 | |
lyken | fd78f7a0e8 | |
lyken | 2fbe981701 | |
lyken | febe78b6a4 | |
lyken | 18dcbf5bbc | |
lyken | bb1687f8a4 | |
lyken | 1d7184708f | |
lyken | 82edcd9390 | |
lyken | 0c3534c2f9 | |
lyken | 5602812c8f | |
lyken | 51d26ad3bf | |
lyken | 1d2c887146 | |
lyken | 7ba77ddbd6 | |
lyken | a5a25f41bb |
|
@ -0,0 +1,3 @@
|
||||||
|
BasedOnStyle: Google
|
||||||
|
IndentWidth: 4
|
||||||
|
ReflowComments: false
|
|
@ -14,6 +14,7 @@
|
||||||
''
|
''
|
||||||
mkdir -p $out/bin
|
mkdir -p $out/bin
|
||||||
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
|
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
|
||||||
|
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
|
||||||
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
|
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
|
||||||
'';
|
'';
|
||||||
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
|
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
|
||||||
|
@ -40,6 +41,7 @@
|
||||||
cargoLock = {
|
cargoLock = {
|
||||||
lockFile = ./Cargo.lock;
|
lockFile = ./Cargo.lock;
|
||||||
};
|
};
|
||||||
|
cargoTestFlags = [ "--features" "test" ];
|
||||||
passthru.cargoLock = cargoLock;
|
passthru.cargoLock = cargoLock;
|
||||||
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||||
buildInputs = [ pkgs.python3 llvm-nac3 ];
|
buildInputs = [ pkgs.python3 llvm-nac3 ];
|
||||||
|
|
|
@ -798,8 +798,7 @@ fn polymorphic_print<'ctx>(
|
||||||
ctx.module.add_function(fn_name, fn_t, None)
|
ctx.module.add_function(fn_name, fn_t, None)
|
||||||
});
|
});
|
||||||
|
|
||||||
let fmt = ctx.gen_string(generator, fmt);
|
let fmt = ctx.gen_string(generator, &fmt).get_field(generator, ctx.ctx, |f| f.base).value;
|
||||||
let fmt = unsafe { fmt.get_field_at_index_unchecked(0) }.into_pointer_value();
|
|
||||||
|
|
||||||
ctx.builder
|
ctx.builder
|
||||||
.build_call(
|
.build_call(
|
||||||
|
@ -879,20 +878,24 @@ fn polymorphic_print<'ctx>(
|
||||||
fmt.push_str("%.*s");
|
fmt.push_str("%.*s");
|
||||||
|
|
||||||
let true_str = ctx.gen_string(generator, "True");
|
let true_str = ctx.gen_string(generator, "True");
|
||||||
let true_data =
|
|
||||||
unsafe { true_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
let true_data = true_str.get_field(generator, ctx.ctx, |f| f.base);
|
||||||
let true_len = unsafe { true_str.get_field_at_index_unchecked(1) }.into_int_value();
|
let true_len = true_str.get_field(generator, ctx.ctx, |f| f.len);
|
||||||
|
|
||||||
let false_str = ctx.gen_string(generator, "False");
|
let false_str = ctx.gen_string(generator, "False");
|
||||||
let false_data =
|
|
||||||
unsafe { false_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
let false_data = false_str.get_field(generator, ctx.ctx, |f| f.base);
|
||||||
let false_len =
|
let false_len = false_str.get_field(generator, ctx.ctx, |f| f.len);
|
||||||
unsafe { false_str.get_field_at_index_unchecked(1) }.into_int_value();
|
|
||||||
|
|
||||||
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
|
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
|
||||||
|
|
||||||
args.extend([
|
args.extend([
|
||||||
ctx.builder.build_select(bool_val, true_len, false_len, "").unwrap(),
|
ctx.builder
|
||||||
ctx.builder.build_select(bool_val, true_data, false_data, "").unwrap(),
|
.build_select(bool_val, true_len.value, false_len.value, "")
|
||||||
|
.unwrap(),
|
||||||
|
ctx.builder
|
||||||
|
.build_select(bool_val, true_data.value, false_data.value, "")
|
||||||
|
.unwrap(),
|
||||||
]);
|
]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -33,6 +33,7 @@ use inkwell::{
|
||||||
OptimizationLevel,
|
OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
|
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||||
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
||||||
use nac3core::toplevel::builtins::get_exn_constructor;
|
use nac3core::toplevel::builtins::get_exn_constructor;
|
||||||
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
||||||
|
@ -557,6 +558,11 @@ impl Nac3 {
|
||||||
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
|
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
|
// Process IRRT
|
||||||
|
let context = inkwell::context::Context::create();
|
||||||
|
let irrt = load_irrt(&context);
|
||||||
|
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||||
|
|
||||||
let fun_signature =
|
let fun_signature =
|
||||||
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
||||||
let mut store = ConcreteTypeStore::new();
|
let mut store = ConcreteTypeStore::new();
|
||||||
|
@ -727,7 +733,7 @@ impl Nac3 {
|
||||||
membuffer.lock().push(buffer);
|
membuffer.lock().push(buffer);
|
||||||
});
|
});
|
||||||
|
|
||||||
let context = inkwell::context::Context::create();
|
// Link all modules into `main`.
|
||||||
let buffers = membuffers.lock();
|
let buffers = membuffers.lock();
|
||||||
let main = context
|
let main = context
|
||||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||||
|
@ -756,8 +762,7 @@ impl Nac3 {
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
main.link_in_module(load_irrt(&context))
|
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||||
.map_err(|err| CompileError::new_err(err.to_string()))?;
|
|
||||||
|
|
||||||
let mut function_iter = main.get_first_function();
|
let mut function_iter = main.get_first_function();
|
||||||
while let Some(func) = function_iter {
|
while let Some(func) = function_iter {
|
||||||
|
|
|
@ -1,3 +1,6 @@
|
||||||
|
[features]
|
||||||
|
test = []
|
||||||
|
|
||||||
[package]
|
[package]
|
||||||
name = "nac3core"
|
name = "nac3core"
|
||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
|
|
|
@ -3,43 +3,60 @@ use std::{
|
||||||
env,
|
env,
|
||||||
fs::File,
|
fs::File,
|
||||||
io::Write,
|
io::Write,
|
||||||
path::Path,
|
path::{Path, PathBuf},
|
||||||
process::{Command, Stdio},
|
process::{Command, Stdio},
|
||||||
};
|
};
|
||||||
|
|
||||||
fn main() {
|
const CMD_IRRT_CLANG: &str = "clang-irrt";
|
||||||
const FILE: &str = "src/codegen/irrt/irrt.cpp";
|
const CMD_IRRT_CLANG_TEST: &str = "clang-irrt-test";
|
||||||
|
const CMD_IRRT_LLVM_AS: &str = "llvm-as-irrt";
|
||||||
|
|
||||||
|
fn get_out_dir() -> PathBuf {
|
||||||
|
PathBuf::from(env::var("OUT_DIR").unwrap())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_irrt_dir() -> &'static Path {
|
||||||
|
Path::new("irrt")
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compile `irrt.cpp` for use in `src/codegen`
|
||||||
|
fn compile_irrt_cpp() {
|
||||||
|
let out_dir = get_out_dir();
|
||||||
|
let irrt_dir = get_irrt_dir();
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||||
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
||||||
*/
|
*/
|
||||||
let flags: &[&str] = &[
|
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||||
"--target=wasm32",
|
|
||||||
FILE,
|
let mut flags = vec![];
|
||||||
"-x",
|
flags.push("--target=wasm32");
|
||||||
"c++",
|
flags.extend(&["-x", "c++"]);
|
||||||
"-fno-discard-value-names",
|
flags.extend(&["-fno-discard-value-names", "-fno-exceptions", "-fno-rtti"]);
|
||||||
"-fno-exceptions",
|
flags.push("-emit-llvm");
|
||||||
"-fno-rtti",
|
flags.push("-S");
|
||||||
|
flags.extend(&["-Wall", "-Wextra"]);
|
||||||
|
flags.extend(&["-o", "-"]);
|
||||||
|
flags.extend(&["-I", irrt_dir.to_str().unwrap()]);
|
||||||
|
flags.push(irrt_cpp_path.to_str().unwrap());
|
||||||
|
|
||||||
match env::var("PROFILE").as_deref() {
|
match env::var("PROFILE").as_deref() {
|
||||||
Ok("debug") => "-O0",
|
Ok("debug") => {
|
||||||
Ok("release") => "-O3",
|
flags.push("-O0");
|
||||||
|
flags.push("-DIRRT_DEBUG");
|
||||||
|
}
|
||||||
|
Ok("release") => {
|
||||||
|
flags.push("-O3");
|
||||||
|
}
|
||||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||||
},
|
};
|
||||||
"-emit-llvm",
|
|
||||||
"-S",
|
|
||||||
"-Wall",
|
|
||||||
"-Wextra",
|
|
||||||
"-o",
|
|
||||||
"-",
|
|
||||||
];
|
|
||||||
|
|
||||||
println!("cargo:rerun-if-changed={FILE}");
|
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
|
||||||
let out_dir = env::var("OUT_DIR").unwrap();
|
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||||
let out_path = Path::new(&out_dir);
|
|
||||||
|
|
||||||
let output = Command::new("clang-irrt")
|
// Compile IRRT and capture the LLVM IR output
|
||||||
|
let output = Command::new(CMD_IRRT_CLANG)
|
||||||
.args(flags)
|
.args(flags)
|
||||||
.output()
|
.output()
|
||||||
.map(|o| {
|
.map(|o| {
|
||||||
|
@ -52,7 +69,17 @@ fn main() {
|
||||||
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
||||||
let mut filtered_output = String::with_capacity(output.len());
|
let mut filtered_output = String::with_capacity(output.len());
|
||||||
|
|
||||||
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
|
// Filter out irrelevant IR
|
||||||
|
//
|
||||||
|
// Regex:
|
||||||
|
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
|
||||||
|
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
|
||||||
|
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
|
||||||
|
// - `(?m:^@.+?=.+$)` captures global constants
|
||||||
|
let regex_filter = Regex::new(
|
||||||
|
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
for f in regex_filter.captures_iter(&output) {
|
for f in regex_filter.captures_iter(&output) {
|
||||||
assert_eq!(f.len(), 1);
|
assert_eq!(f.len(), 1);
|
||||||
filtered_output.push_str(&f[0]);
|
filtered_output.push_str(&f[0]);
|
||||||
|
@ -63,20 +90,71 @@ fn main() {
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.replace_all(&filtered_output, "");
|
.replace_all(&filtered_output, "");
|
||||||
|
|
||||||
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
|
// For debugging
|
||||||
if env::var("DEBUG_DUMP_IRRT").is_ok() {
|
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
|
||||||
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
|
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
|
||||||
|
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
|
||||||
|
if env::var(DEBUG_DUMP_IRRT).is_ok() {
|
||||||
|
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
|
||||||
file.write_all(output.as_bytes()).unwrap();
|
file.write_all(output.as_bytes()).unwrap();
|
||||||
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
|
|
||||||
|
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
|
||||||
file.write_all(filtered_output.as_bytes()).unwrap();
|
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
// Assemble the emitted and filtered IR to .bc
|
||||||
|
// That .bc will be integrated into nac3core's codegen
|
||||||
|
let mut llvm_as = Command::new(CMD_IRRT_LLVM_AS)
|
||||||
.stdin(Stdio::piped())
|
.stdin(Stdio::piped())
|
||||||
.arg("-o")
|
.arg("-o")
|
||||||
.arg(out_path.join("irrt.bc"))
|
.arg(out_dir.join("irrt.bc"))
|
||||||
.spawn()
|
.spawn()
|
||||||
.unwrap();
|
.unwrap();
|
||||||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||||
assert!(llvm_as.wait().unwrap().success());
|
assert!(llvm_as.wait().unwrap().success());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Compile `irrt_test.cpp` for testing
|
||||||
|
fn compile_irrt_test_cpp() {
|
||||||
|
let out_dir = get_out_dir();
|
||||||
|
let irrt_dir = get_irrt_dir();
|
||||||
|
|
||||||
|
let exe_path = out_dir.join("irrt_test.out"); // Output path of the compiled test executable
|
||||||
|
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
|
||||||
|
let flags: &[&str] = &[
|
||||||
|
irrt_test_cpp_path.to_str().unwrap(),
|
||||||
|
"-x",
|
||||||
|
"c++",
|
||||||
|
"-I",
|
||||||
|
irrt_dir.to_str().unwrap(),
|
||||||
|
"-g",
|
||||||
|
"-fno-discard-value-names",
|
||||||
|
"-O0",
|
||||||
|
"-Wall",
|
||||||
|
"-Wextra",
|
||||||
|
"-Werror=return-type",
|
||||||
|
"-lm", // for `tgamma()`, `lgamma()`
|
||||||
|
"-o",
|
||||||
|
exe_path.to_str().unwrap(),
|
||||||
|
];
|
||||||
|
|
||||||
|
Command::new(CMD_IRRT_CLANG_TEST)
|
||||||
|
.args(flags)
|
||||||
|
.output()
|
||||||
|
.map(|o| {
|
||||||
|
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||||
|
o
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
compile_irrt_cpp();
|
||||||
|
|
||||||
|
// https://github.com/rust-lang/cargo/issues/2549
|
||||||
|
// `cargo test -F test` to also build `irrt_test.cpp
|
||||||
|
if cfg!(feature = "test") {
|
||||||
|
compile_irrt_test_cpp();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -0,0 +1,10 @@
|
||||||
|
#define IRRT_DEFINE_TYPEDEF_INTS
|
||||||
|
#include <irrt_everything.hpp>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* All IRRT implementations.
|
||||||
|
*
|
||||||
|
* We don't have pre-compiled objects, so we are writing all implementations in
|
||||||
|
* headers and concatenate them with `#include` into one massive source file that
|
||||||
|
* contains all the IRRT stuff.
|
||||||
|
*/
|
|
@ -1,27 +1,17 @@
|
||||||
using int8_t = _BitInt(8);
|
#pragma once
|
||||||
using uint8_t = unsigned _BitInt(8);
|
|
||||||
using int32_t = _BitInt(32);
|
#include <irrt/int_defs.hpp>
|
||||||
using uint32_t = unsigned _BitInt(32);
|
#include <irrt/util.hpp>
|
||||||
using int64_t = _BitInt(64);
|
|
||||||
using uint64_t = unsigned _BitInt(64);
|
|
||||||
|
|
||||||
// NDArray indices are always `uint32_t`.
|
// NDArray indices are always `uint32_t`.
|
||||||
using NDIndex = uint32_t;
|
using NDIndexInt = uint32_t;
|
||||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
// The type of an index or a value describing the length of a
|
||||||
|
// range/slice is always `int32_t`.
|
||||||
using SliceIndex = int32_t;
|
using SliceIndex = int32_t;
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
template <typename T>
|
// adapted from GNU Scientific Library:
|
||||||
const T& max(const T& a, const T& b) {
|
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||||
return a > b ? a : b;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
const T& min(const T& a, const T& b) {
|
|
||||||
return a > b ? b : a;
|
|
||||||
}
|
|
||||||
|
|
||||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
|
||||||
// need to make sure `exp >= 0` before calling this function
|
// need to make sure `exp >= 0` before calling this function
|
||||||
template <typename T>
|
template <typename T>
|
||||||
T __nac3_int_exp_impl(T base, T exp) {
|
T __nac3_int_exp_impl(T base, T exp) {
|
||||||
|
@ -38,12 +28,8 @@ T __nac3_int_exp_impl(T base, T exp) {
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename SizeT>
|
template <typename SizeT>
|
||||||
SizeT __nac3_ndarray_calc_size_impl(
|
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len,
|
||||||
const SizeT* list_data,
|
SizeT begin_idx, SizeT end_idx) {
|
||||||
SizeT list_len,
|
|
||||||
SizeT begin_idx,
|
|
||||||
SizeT end_idx
|
|
||||||
) {
|
|
||||||
__builtin_assume(end_idx <= list_len);
|
__builtin_assume(end_idx <= list_len);
|
||||||
|
|
||||||
SizeT num_elems = 1;
|
SizeT num_elems = 1;
|
||||||
|
@ -56,12 +42,8 @@ SizeT __nac3_ndarray_calc_size_impl(
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename SizeT>
|
template <typename SizeT>
|
||||||
void __nac3_ndarray_calc_nd_indices_impl(
|
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims,
|
||||||
SizeT index,
|
SizeT num_dims, NDIndexInt* idxs) {
|
||||||
const SizeT* dims,
|
|
||||||
SizeT num_dims,
|
|
||||||
NDIndex* idxs
|
|
||||||
) {
|
|
||||||
SizeT stride = 1;
|
SizeT stride = 1;
|
||||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||||
SizeT i = num_dims - dim - 1;
|
SizeT i = num_dims - dim - 1;
|
||||||
|
@ -72,12 +54,9 @@ void __nac3_ndarray_calc_nd_indices_impl(
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename SizeT>
|
template <typename SizeT>
|
||||||
SizeT __nac3_ndarray_flatten_index_impl(
|
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims,
|
||||||
const SizeT* dims,
|
const NDIndexInt* indices,
|
||||||
SizeT num_dims,
|
SizeT num_indices) {
|
||||||
const NDIndex* indices,
|
|
||||||
SizeT num_indices
|
|
||||||
) {
|
|
||||||
SizeT idx = 0;
|
SizeT idx = 0;
|
||||||
SizeT stride = 1;
|
SizeT stride = 1;
|
||||||
for (SizeT i = 0; i < num_dims; ++i) {
|
for (SizeT i = 0; i < num_dims; ++i) {
|
||||||
|
@ -93,18 +72,17 @@ SizeT __nac3_ndarray_flatten_index_impl(
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename SizeT>
|
template <typename SizeT>
|
||||||
void __nac3_ndarray_calc_broadcast_impl(
|
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims, SizeT lhs_ndims,
|
||||||
const SizeT* lhs_dims,
|
const SizeT* rhs_dims, SizeT rhs_ndims,
|
||||||
SizeT lhs_ndims,
|
SizeT* out_dims) {
|
||||||
const SizeT* rhs_dims,
|
|
||||||
SizeT rhs_ndims,
|
|
||||||
SizeT* out_dims
|
|
||||||
) {
|
|
||||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||||
|
|
||||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||||
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
const SizeT* lhs_dim_sz =
|
||||||
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||||
|
const SizeT* rhs_dim_sz =
|
||||||
|
i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||||
|
|
||||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||||
|
|
||||||
if (lhs_dim_sz == nullptr) {
|
if (lhs_dim_sz == nullptr) {
|
||||||
|
@ -124,12 +102,10 @@ void __nac3_ndarray_calc_broadcast_impl(
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename SizeT>
|
template <typename SizeT>
|
||||||
void __nac3_ndarray_calc_broadcast_idx_impl(
|
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
|
||||||
const SizeT* src_dims,
|
|
||||||
SizeT src_ndims,
|
SizeT src_ndims,
|
||||||
const NDIndex* in_idx,
|
const NDIndexInt* in_idx,
|
||||||
NDIndex* out_idx
|
NDIndexInt* out_idx) {
|
||||||
) {
|
|
||||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||||
SizeT src_i = src_ndims - i - 1;
|
SizeT src_i = src_ndims - i - 1;
|
||||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||||
|
@ -143,10 +119,10 @@ extern "C" {
|
||||||
return __nac3_int_exp_impl(base, exp); \
|
return __nac3_int_exp_impl(base, exp); \
|
||||||
}
|
}
|
||||||
|
|
||||||
DEF_nac3_int_exp_(int32_t)
|
DEF_nac3_int_exp_(int32_t);
|
||||||
DEF_nac3_int_exp_(int64_t)
|
DEF_nac3_int_exp_(int64_t);
|
||||||
DEF_nac3_int_exp_(uint32_t)
|
DEF_nac3_int_exp_(uint32_t);
|
||||||
DEF_nac3_int_exp_(uint64_t)
|
DEF_nac3_int_exp_(uint64_t);
|
||||||
|
|
||||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||||
if (i < 0) {
|
if (i < 0) {
|
||||||
|
@ -160,11 +136,8 @@ SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||||
return i;
|
return i;
|
||||||
}
|
}
|
||||||
|
|
||||||
SliceIndex __nac3_range_slice_len(
|
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end,
|
||||||
const SliceIndex start,
|
const SliceIndex step) {
|
||||||
const SliceIndex end,
|
|
||||||
const SliceIndex step
|
|
||||||
) {
|
|
||||||
SliceIndex diff = end - start;
|
SliceIndex diff = end - start;
|
||||||
if (diff > 0 && step > 0) {
|
if (diff > 0 && step > 0) {
|
||||||
return ((diff - 1) / step) + 1;
|
return ((diff - 1) / step) + 1;
|
||||||
|
@ -180,62 +153,52 @@ SliceIndex __nac3_range_slice_len(
|
||||||
// - All the index must *not* be out-of-bound or negative,
|
// - All the index must *not* be out-of-bound or negative,
|
||||||
// - The end index is *inclusive*,
|
// - The end index is *inclusive*,
|
||||||
// - The length of src and dest slice size should already
|
// - The length of src and dest slice size should already
|
||||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
// be checked: if dest.step == 1 then len(src) <= len(dest) else
|
||||||
|
// len(src) == len(dest)
|
||||||
SliceIndex __nac3_list_slice_assign_var_size(
|
SliceIndex __nac3_list_slice_assign_var_size(
|
||||||
SliceIndex dest_start,
|
SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||||
SliceIndex dest_end,
|
uint8_t* dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||||
SliceIndex dest_step,
|
SliceIndex src_end, SliceIndex src_step, uint8_t* src_arr,
|
||||||
uint8_t* dest_arr,
|
SliceIndex src_arr_len, const SliceIndex size) {
|
||||||
SliceIndex dest_arr_len,
|
/* if dest_arr_len == 0, do nothing since we do not support
|
||||||
SliceIndex src_start,
|
* extending list
|
||||||
SliceIndex src_end,
|
*/
|
||||||
SliceIndex src_step,
|
|
||||||
uint8_t* src_arr,
|
|
||||||
SliceIndex src_arr_len,
|
|
||||||
const SliceIndex size
|
|
||||||
) {
|
|
||||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
|
||||||
if (dest_arr_len == 0) return dest_arr_len;
|
if (dest_arr_len == 0) return dest_arr_len;
|
||||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
/* if both step is 1, memmove directly, handle the dropping of
|
||||||
|
* the list, and shrink size */
|
||||||
if (src_step == dest_step && dest_step == 1) {
|
if (src_step == dest_step && dest_step == 1) {
|
||||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
const SliceIndex src_len =
|
||||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
(src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||||
|
const SliceIndex dest_len =
|
||||||
|
(dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||||
if (src_len > 0) {
|
if (src_len > 0) {
|
||||||
__builtin_memmove(
|
__builtin_memmove(dest_arr + dest_start * size,
|
||||||
dest_arr + dest_start * size,
|
src_arr + src_start * size, src_len * size);
|
||||||
src_arr + src_start * size,
|
|
||||||
src_len * size
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
if (dest_len > 0) {
|
if (dest_len > 0) {
|
||||||
/* dropping */
|
/* dropping */
|
||||||
__builtin_memmove(
|
__builtin_memmove(dest_arr + (dest_start + src_len) * size,
|
||||||
dest_arr + (dest_start + src_len) * size,
|
|
||||||
dest_arr + (dest_end + 1) * size,
|
dest_arr + (dest_end + 1) * size,
|
||||||
(dest_arr_len - dest_end - 1) * size
|
(dest_arr_len - dest_end - 1) * size);
|
||||||
);
|
|
||||||
}
|
}
|
||||||
/* shrink size */
|
/* shrink size */
|
||||||
return dest_arr_len - (dest_len - src_len);
|
return dest_arr_len - (dest_len - src_len);
|
||||||
}
|
}
|
||||||
/* if two range overlaps, need alloca */
|
/* if two range overlaps, need alloca */
|
||||||
uint8_t need_alloca =
|
uint8_t need_alloca =
|
||||||
(dest_arr == src_arr)
|
(dest_arr == src_arr) &&
|
||||||
&& !(
|
!(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||||
max(dest_start, dest_end) < min(src_start, src_end)
|
max(src_start, src_end) < min(dest_start, dest_end));
|
||||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
|
||||||
);
|
|
||||||
if (need_alloca) {
|
if (need_alloca) {
|
||||||
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
uint8_t* tmp =
|
||||||
|
reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
|
||||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||||
src_arr = tmp;
|
src_arr = tmp;
|
||||||
}
|
}
|
||||||
SliceIndex src_ind = src_start;
|
SliceIndex src_ind = src_start;
|
||||||
SliceIndex dest_ind = dest_start;
|
SliceIndex dest_ind = dest_start;
|
||||||
for (;
|
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
src_ind += src_step, dest_ind += dest_step) {
|
||||||
src_ind += src_step, dest_ind += dest_step
|
|
||||||
) {
|
|
||||||
/* for constant optimization */
|
/* for constant optimization */
|
||||||
if (size == 1) {
|
if (size == 1) {
|
||||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||||
|
@ -244,30 +207,26 @@ SliceIndex __nac3_list_slice_assign_var_size(
|
||||||
} else if (size == 8) {
|
} else if (size == 8) {
|
||||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||||
} else {
|
} else {
|
||||||
/* memcpy for var size, cannot overlap after previous alloca */
|
/* memcpy for var size, cannot overlap after previous
|
||||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
* alloca */
|
||||||
|
__builtin_memcpy(dest_arr + dest_ind * size,
|
||||||
|
src_arr + src_ind * size, size);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
/* only dest_step == 1 can we shrink the dest list. */
|
/* only dest_step == 1 can we shrink the dest list. */
|
||||||
/* size should be ensured prior to calling this function */
|
/* size should be ensured prior to calling this function */
|
||||||
if (dest_step == 1 && dest_end >= dest_start) {
|
if (dest_step == 1 && dest_end >= dest_start) {
|
||||||
__builtin_memmove(
|
__builtin_memmove(
|
||||||
dest_arr + dest_ind * size,
|
dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||||
dest_arr + (dest_end + 1) * size,
|
(dest_arr_len - dest_end - 1) * size + size + size + size);
|
||||||
(dest_arr_len - dest_end - 1) * size
|
|
||||||
);
|
|
||||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||||
}
|
}
|
||||||
return dest_arr_len;
|
return dest_arr_len;
|
||||||
}
|
}
|
||||||
|
|
||||||
int32_t __nac3_isinf(double x) {
|
int32_t __nac3_isinf(double x) { return __builtin_isinf(x); }
|
||||||
return __builtin_isinf(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t __nac3_isnan(double x) {
|
int32_t __nac3_isnan(double x) { return __builtin_isnan(x); }
|
||||||
return __builtin_isnan(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
double tgamma(double arg);
|
double tgamma(double arg);
|
||||||
|
|
||||||
|
@ -320,95 +279,71 @@ double __nac3_j0(double x) {
|
||||||
return j0(x);
|
return j0(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t __nac3_ndarray_calc_size(
|
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len,
|
||||||
const uint32_t* list_data,
|
uint32_t begin_idx, uint32_t end_idx) {
|
||||||
uint32_t list_len,
|
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
|
||||||
uint32_t begin_idx,
|
end_idx);
|
||||||
uint32_t end_idx
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint64_t __nac3_ndarray_calc_size64(
|
uint64_t __nac3_ndarray_calc_size64(const uint64_t* list_data,
|
||||||
const uint64_t* list_data,
|
uint64_t list_len, uint64_t begin_idx,
|
||||||
uint64_t list_len,
|
uint64_t end_idx) {
|
||||||
uint64_t begin_idx,
|
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
|
||||||
uint64_t end_idx
|
end_idx);
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void __nac3_ndarray_calc_nd_indices(
|
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims,
|
||||||
uint32_t index,
|
uint32_t num_dims, NDIndexInt* idxs) {
|
||||||
const uint32_t* dims,
|
|
||||||
uint32_t num_dims,
|
|
||||||
NDIndex* idxs
|
|
||||||
) {
|
|
||||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||||
}
|
}
|
||||||
|
|
||||||
void __nac3_ndarray_calc_nd_indices64(
|
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims,
|
||||||
uint64_t index,
|
uint64_t num_dims, NDIndexInt* idxs) {
|
||||||
const uint64_t* dims,
|
|
||||||
uint64_t num_dims,
|
|
||||||
NDIndex* idxs
|
|
||||||
) {
|
|
||||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t __nac3_ndarray_flatten_index(
|
uint32_t __nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims,
|
||||||
const uint32_t* dims,
|
const NDIndexInt* indices,
|
||||||
uint32_t num_dims,
|
uint32_t num_indices) {
|
||||||
const NDIndex* indices,
|
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
|
||||||
uint32_t num_indices
|
num_indices);
|
||||||
) {
|
|
||||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint64_t __nac3_ndarray_flatten_index64(
|
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims,
|
||||||
const uint64_t* dims,
|
const NDIndexInt* indices,
|
||||||
uint64_t num_dims,
|
uint64_t num_indices) {
|
||||||
const NDIndex* indices,
|
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
|
||||||
uint64_t num_indices
|
num_indices);
|
||||||
) {
|
|
||||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast(
|
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims, uint32_t lhs_ndims,
|
||||||
const uint32_t* lhs_dims,
|
const uint32_t* rhs_dims, uint32_t rhs_ndims,
|
||||||
uint32_t lhs_ndims,
|
uint32_t* out_dims) {
|
||||||
const uint32_t* rhs_dims,
|
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
|
||||||
uint32_t rhs_ndims,
|
rhs_ndims, out_dims);
|
||||||
uint32_t* out_dims
|
|
||||||
) {
|
|
||||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast64(
|
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
|
||||||
const uint64_t* lhs_dims,
|
|
||||||
uint64_t lhs_ndims,
|
uint64_t lhs_ndims,
|
||||||
const uint64_t* rhs_dims,
|
const uint64_t* rhs_dims,
|
||||||
uint64_t rhs_ndims,
|
uint64_t rhs_ndims, uint64_t* out_dims) {
|
||||||
uint64_t* out_dims
|
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
|
||||||
) {
|
rhs_ndims, out_dims);
|
||||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast_idx(
|
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
|
||||||
const uint32_t* src_dims,
|
|
||||||
uint32_t src_ndims,
|
uint32_t src_ndims,
|
||||||
const NDIndex* in_idx,
|
const NDIndexInt* in_idx,
|
||||||
NDIndex* out_idx
|
NDIndexInt* out_idx) {
|
||||||
) {
|
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
|
||||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
out_idx);
|
||||||
}
|
}
|
||||||
|
|
||||||
void __nac3_ndarray_calc_broadcast_idx64(
|
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
|
||||||
const uint64_t* src_dims,
|
|
||||||
uint64_t src_ndims,
|
uint64_t src_ndims,
|
||||||
const NDIndex* in_idx,
|
const NDIndexInt* in_idx,
|
||||||
NDIndex* out_idx
|
NDIndexInt* out_idx) {
|
||||||
) {
|
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
|
||||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
out_idx);
|
||||||
}
|
}
|
||||||
} // extern "C"
|
} // extern "C"
|
|
@ -0,0 +1,9 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
|
||||||
|
template <typename SizeT>
|
||||||
|
struct CSlice {
|
||||||
|
uint8_t* base;
|
||||||
|
SizeT len;
|
||||||
|
};
|
|
@ -0,0 +1,15 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
|
||||||
|
raise_exception(SizeT, EXN_ASSERTION_ERROR, \
|
||||||
|
"IRRT debug assert failed: " msg, param1, param2, param3);
|
||||||
|
|
||||||
|
#define debug_assert_eq(SizeT, lhs, rhs) \
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) { \
|
||||||
|
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define debug_assert(SizeT, expr) \
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) { \
|
||||||
|
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
|
||||||
|
}
|
|
@ -0,0 +1,123 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/cslice.hpp>
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/util.hpp>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The int type of ARTIQ exception IDs.
|
||||||
|
*
|
||||||
|
* It is always `int32_t`
|
||||||
|
*/
|
||||||
|
typedef int32_t ExceptionId;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* A set of exceptions IRRT can use.
|
||||||
|
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
|
||||||
|
* All exception IDs are initialized by `setup_irrt_exceptions`.
|
||||||
|
*/
|
||||||
|
#ifdef IRRT_TESTING
|
||||||
|
// If we are doing IRRT tests (i.e., running `cargo test -F test`), define them with a fake set of IDs.
|
||||||
|
ExceptionId EXN_INDEX_ERROR = 0;
|
||||||
|
ExceptionId EXN_VALUE_ERROR = 1;
|
||||||
|
ExceptionId EXN_ASSERTION_ERROR = 2;
|
||||||
|
ExceptionId EXN_RUNTIME_ERROR = 3;
|
||||||
|
ExceptionId EXN_TYPE_ERROR = 4;
|
||||||
|
#else
|
||||||
|
extern "C" {
|
||||||
|
ExceptionId EXN_INDEX_ERROR;
|
||||||
|
ExceptionId EXN_VALUE_ERROR;
|
||||||
|
ExceptionId EXN_ASSERTION_ERROR;
|
||||||
|
ExceptionId EXN_RUNTIME_ERROR;
|
||||||
|
ExceptionId EXN_TYPE_ERROR;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
/**
|
||||||
|
* @brief NAC3's Exception struct
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
struct Exception {
|
||||||
|
ExceptionId id;
|
||||||
|
CSlice<SizeT> filename;
|
||||||
|
int32_t line;
|
||||||
|
int32_t column;
|
||||||
|
CSlice<SizeT> function;
|
||||||
|
CSlice<SizeT> msg;
|
||||||
|
int64_t params[3];
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
// Declare/Define `__nac3_raise`
|
||||||
|
#ifdef IRRT_TESTING
|
||||||
|
#include <cstdio>
|
||||||
|
void __nac3_raise(void* err) {
|
||||||
|
// TODO: Print the error content?
|
||||||
|
printf("__nac3_raise called. Exiting...\n");
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
/**
|
||||||
|
* @brief Extern function to `__nac3_raise`
|
||||||
|
*
|
||||||
|
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||||
|
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||||
|
*/
|
||||||
|
extern "C" void __nac3_raise(void* err);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
const int64_t NO_PARAM = 0;
|
||||||
|
|
||||||
|
// Helper function to raise an exception with `__nac3_raise`
|
||||||
|
// Do not use this function directly. See `raise_exception`.
|
||||||
|
template <typename SizeT>
|
||||||
|
void _raise_exception_helper(ExceptionId id, const char* filename, int32_t line,
|
||||||
|
const char* function, const char* msg,
|
||||||
|
int64_t param0, int64_t param1, int64_t param2) {
|
||||||
|
Exception<SizeT> e = {
|
||||||
|
.id = id,
|
||||||
|
.filename = {.base = (uint8_t*)filename,
|
||||||
|
.len = (int32_t)cstr_utils::length(filename)},
|
||||||
|
.line = line,
|
||||||
|
.column = 0,
|
||||||
|
.function = {.base = (uint8_t*)function,
|
||||||
|
.len = (int32_t)cstr_utils::length(function)},
|
||||||
|
.msg = {.base = (uint8_t*)msg, .len = (int32_t)cstr_utils::length(msg)},
|
||||||
|
};
|
||||||
|
e.params[0] = param0;
|
||||||
|
e.params[1] = param1;
|
||||||
|
e.params[2] = param2;
|
||||||
|
__nac3_raise((void*)&e);
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||||
|
* @param SizeT The runtime `size_t` type.
|
||||||
|
* @param id The ID of the exception to raise.
|
||||||
|
* @param msg A global constant C-string of the error message.
|
||||||
|
*
|
||||||
|
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
|
||||||
|
* `NO_PARAM` to indicate they are unused.
|
||||||
|
*/
|
||||||
|
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||||
|
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, \
|
||||||
|
param0, param1, param2)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Throw a dummy error for testing.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void throw_dummy_error() {
|
||||||
|
raise_exception(SizeT, EXN_RUNTIME_ERROR, "dummy error", NO_PARAM, NO_PARAM,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
void __nac3_throw_dummy_error() { throw_dummy_error<int32_t>(); }
|
||||||
|
|
||||||
|
void __nac3_throw_dummy_error64() { throw_dummy_error<int64_t>(); }
|
||||||
|
}
|
|
@ -0,0 +1,12 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
// This is made toggleable since `irrt_test.cpp` itself would include
|
||||||
|
// headers that define these typedefs
|
||||||
|
#ifdef IRRT_DEFINE_TYPEDEF_INTS
|
||||||
|
using int8_t = _BitInt(8);
|
||||||
|
using uint8_t = unsigned _BitInt(8);
|
||||||
|
using int32_t = _BitInt(32);
|
||||||
|
using uint32_t = unsigned _BitInt(32);
|
||||||
|
using int64_t = _BitInt(64);
|
||||||
|
using uint64_t = unsigned _BitInt(64);
|
||||||
|
#endif
|
|
@ -0,0 +1,56 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
/**
|
||||||
|
* @brief A list in NAC3.
|
||||||
|
*
|
||||||
|
* The `items` field is opaque. You must rely on external contexts to
|
||||||
|
* know how to interpret it.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
struct List {
|
||||||
|
uint8_t* items;
|
||||||
|
SizeT len;
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace list {
|
||||||
|
template <typename SizeT>
|
||||||
|
void slice_assign(List<SizeT>* dst, List<SizeT>* src, SizeT itemsize,
|
||||||
|
UserSlice* user_slice) {
|
||||||
|
Slice slice = user_slice->indices_checked<SizeT>(dst->len);
|
||||||
|
|
||||||
|
// NOTE: Python does not have this restriction.
|
||||||
|
if (slice.len() != src->len) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"List destination has {} item(s), but source has {} "
|
||||||
|
"item(s). The lengths must match.",
|
||||||
|
slice.len(), src->len, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Look into how the original implementation was implemented and optimized.
|
||||||
|
SizeT dst_i = slice.start;
|
||||||
|
SizeT src_i = 0;
|
||||||
|
while (src_i < slice.len()) {
|
||||||
|
__builtin_memcpy(dst->items + dst_i, src->items + src_i, itemsize);
|
||||||
|
|
||||||
|
src_i += 1;
|
||||||
|
dst_i += slice.step;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace list
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
void __nac3_list_slice_assign(List<int32_t>* dst, List<int32_t>* src,
|
||||||
|
int32_t itemsize, UserSlice* user_slice) {
|
||||||
|
list::slice_assign(dst, src, itemsize, user_slice);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_list_slice_assign64(List<int64_t>* dst, List<int64_t>* src,
|
||||||
|
int64_t itemsize, UserSlice* user_slice) {
|
||||||
|
list::slice_assign(dst, src, itemsize, user_slice);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,119 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/list.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace array {
|
||||||
|
// TODO: Document me
|
||||||
|
template <typename SizeT>
|
||||||
|
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list,
|
||||||
|
SizeT ndims, SizeT* shape) {
|
||||||
|
if (shape[axis] == -1) {
|
||||||
|
// Dimension is unspecified. Set it.
|
||||||
|
shape[axis] = list->len;
|
||||||
|
} else {
|
||||||
|
// Dimension is specified. Check.
|
||||||
|
if (shape[axis] != list->len) {
|
||||||
|
// Mismatch, throw an error.
|
||||||
|
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"The requested array has an inhomogenous shape "
|
||||||
|
"after {0} dimension(s).",
|
||||||
|
axis, shape[axis], list->len);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (axis + 1 == ndims) {
|
||||||
|
// `list` has type `list[ItemType]`
|
||||||
|
// Do nothing
|
||||||
|
} else {
|
||||||
|
// `list` has type `list[list[...]]`
|
||||||
|
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||||
|
for (SizeT i = 0; i < list->len; i++) {
|
||||||
|
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims,
|
||||||
|
shape);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Document me
|
||||||
|
template <typename SizeT>
|
||||||
|
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||||
|
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||||
|
}
|
||||||
|
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Document me
|
||||||
|
template <typename SizeT>
|
||||||
|
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list,
|
||||||
|
NDArray<SizeT>* ndarray) {
|
||||||
|
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||||
|
if (!ndarray::basic::is_c_contiguous(ndarray)) {
|
||||||
|
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0],
|
||||||
|
ndarray->strides[1], NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (axis + 1 == ndarray->ndims) {
|
||||||
|
// `list` has type `list[ItemType]`
|
||||||
|
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||||
|
uint8_t* dst = ndarray->data + (ndarray->itemsize * (*index));
|
||||||
|
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||||
|
*index += list->len;
|
||||||
|
} else {
|
||||||
|
// `list` has type `list[list[...]]`
|
||||||
|
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < list->len; i++) {
|
||||||
|
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i],
|
||||||
|
ndarray);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Document me
|
||||||
|
template <typename SizeT>
|
||||||
|
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||||
|
// done after set_and_validate(list, ndims, shape), list is well-formed
|
||||||
|
// ndarray->data is allocated and owned
|
||||||
|
// ndarray->itemsize is set
|
||||||
|
// ndarray->ndims is set
|
||||||
|
// ndarray->shape is set
|
||||||
|
// ndarray->strides is ???
|
||||||
|
SizeT index = 0;
|
||||||
|
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||||
|
}
|
||||||
|
} // namespace array
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::array;
|
||||||
|
|
||||||
|
void __nac3_array_set_and_validate_list_shape(List<int32_t>* list,
|
||||||
|
int32_t ndims, int32_t* shape) {
|
||||||
|
set_and_validate_list_shape(list, ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_array_set_and_validate_list_shape64(List<int64_t>* list,
|
||||||
|
int64_t ndims, int64_t* shape) {
|
||||||
|
set_and_validate_list_shape(list, ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_array_write_list_to_array(List<int32_t>* list,
|
||||||
|
NDArray<int32_t>* ndarray) {
|
||||||
|
write_list_to_array(list, ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_array_write_list_to_array64(List<int64_t>* list,
|
||||||
|
NDArray<int64_t>* ndarray) {
|
||||||
|
write_list_to_array(list, ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,345 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace basic {
|
||||||
|
/**
|
||||||
|
* @brief Asserts that `shape` does not contain negative dimensions.
|
||||||
|
*
|
||||||
|
* @param ndims Number of dimensions in `shape`
|
||||||
|
* @param shape The shape to check on
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||||
|
if (shape[axis] < 0) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"negative dimensions are not allowed; axis {0} "
|
||||||
|
"has dimension {1}",
|
||||||
|
axis, shape[axis], NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
|
||||||
|
*
|
||||||
|
* This function throws error messages for output shape mismatches.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT* ndarray_shape,
|
||||||
|
SizeT output_ndims, const SizeT* output_shape) {
|
||||||
|
if (ndarray_ndims != output_ndims) {
|
||||||
|
// There is no corresponding NumPy error message like this.
|
||||||
|
raise_exception(
|
||||||
|
SizeT, EXN_VALUE_ERROR,
|
||||||
|
"Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||||
|
output_ndims, ndarray_ndims, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
|
||||||
|
if (ndarray_shape[axis] != output_shape[axis]) {
|
||||||
|
// There is no corresponding NumPy error message like this.
|
||||||
|
raise_exception(
|
||||||
|
SizeT, EXN_VALUE_ERROR,
|
||||||
|
"Mismatched dimensions on axis {0}, output has "
|
||||||
|
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||||
|
axis, output_shape[axis], ndarray_shape[axis]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Returns the number of elements of an ndarray given its shape.
|
||||||
|
*
|
||||||
|
* @param ndims Number of dimensions in `shape`
|
||||||
|
* @param shape The shape of the ndarray
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||||
|
SizeT size = 1;
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
|
||||||
|
return size;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||||
|
*
|
||||||
|
* @param ndims Number of elements in `shape` and `indices`
|
||||||
|
* @param shape The shape of the ndarray
|
||||||
|
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||||
|
* @param nth The index of the element of interest.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices,
|
||||||
|
SizeT nth) {
|
||||||
|
for (SizeT i = 0; i < ndims; i++) {
|
||||||
|
SizeT axis = ndims - i - 1;
|
||||||
|
SizeT dim = shape[axis];
|
||||||
|
|
||||||
|
indices[axis] = nth % dim;
|
||||||
|
nth /= dim;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return the number of elements of an `ndarray`
|
||||||
|
*
|
||||||
|
* This function corresponds to `<an_ndarray>.size`
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
SizeT size(const NDArray<SizeT>* ndarray) {
|
||||||
|
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return of the number of its content of an `ndarray`.
|
||||||
|
*
|
||||||
|
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
SizeT nbytes(const NDArray<SizeT>* ndarray) {
|
||||||
|
return size(ndarray) * ndarray->itemsize;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||||
|
*
|
||||||
|
* This function corresponds to `<an_ndarray>.__len__`.
|
||||||
|
*
|
||||||
|
* @param dst_length The returned result
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
SizeT len(const NDArray<SizeT>* ndarray) {
|
||||||
|
// numpy prohibits `__len__` on unsized objects
|
||||||
|
if (ndarray->ndims == 0) {
|
||||||
|
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
} else {
|
||||||
|
return ndarray->shape[0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||||
|
*
|
||||||
|
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
|
||||||
|
// Other references:
|
||||||
|
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||||
|
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||||
|
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||||
|
|
||||||
|
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||||
|
//
|
||||||
|
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||||
|
// the following must hold:
|
||||||
|
//
|
||||||
|
// strides[-1] == itemsize
|
||||||
|
// strides[i] == shape[i+1] * strides[i + 1]
|
||||||
|
// [...]
|
||||||
|
// According to these rules, a 0- or 1-dimensional array is either both
|
||||||
|
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||||
|
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||||
|
// there are exceptions for arrays with zero or one item, in the first
|
||||||
|
// case the check is relaxed up to and including the first dimension
|
||||||
|
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||||
|
// can be true for all dimensions and both flags are set.
|
||||||
|
|
||||||
|
if (ndarray->ndims == 0) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT i = 1; i < ndarray->ndims; i++) {
|
||||||
|
SizeT axis_i = ndarray->ndims - i - 1;
|
||||||
|
if (ndarray->strides[axis_i] !=
|
||||||
|
ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return the pointer to the element indexed by `indices`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray,
|
||||||
|
const SizeT* indices) {
|
||||||
|
uint8_t* element = ndarray->data;
|
||||||
|
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||||
|
element += indices[dim_i] * ndarray->strides[dim_i];
|
||||||
|
return element;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Convenience function. Like `get_pelement_by_indices` but
|
||||||
|
* reinterprets the element pointer.
|
||||||
|
*/
|
||||||
|
template <typename SizeT, typename T>
|
||||||
|
T* get_ptr(const NDArray<SizeT>* ndarray, const SizeT* indices) {
|
||||||
|
return (T*)get_pelement_by_indices(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
|
||||||
|
*
|
||||||
|
* This function does no bound check.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
|
||||||
|
uint8_t* element = ndarray->data;
|
||||||
|
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||||
|
SizeT axis = ndarray->ndims - i - 1;
|
||||||
|
SizeT dim = ndarray->shape[axis];
|
||||||
|
element += ndarray->strides[axis] * (nth % dim);
|
||||||
|
nth /= dim;
|
||||||
|
}
|
||||||
|
return element;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Update the strides of an ndarray given an ndarray `shape`
|
||||||
|
* and assuming that the ndarray is fully c-contagious.
|
||||||
|
*
|
||||||
|
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
|
||||||
|
SizeT stride_product = 1;
|
||||||
|
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||||
|
SizeT axis = ndarray->ndims - i - 1;
|
||||||
|
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||||
|
stride_product *= ndarray->shape[axis];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Set an element in `ndarray`.
|
||||||
|
*
|
||||||
|
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||||
|
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement,
|
||||||
|
const uint8_t* pvalue) {
|
||||||
|
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||||
|
*
|
||||||
|
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||||
|
// TODO: Make this faster with memcpy
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < size(src_ndarray); i++) {
|
||||||
|
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||||
|
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||||
|
ndarray::basic::set_pelement_value(dst_ndarray, dst_element,
|
||||||
|
src_element);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace basic
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::basic;
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims,
|
||||||
|
int32_t* shape) {
|
||||||
|
assert_shape_no_negative(ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims,
|
||||||
|
int64_t* shape) {
|
||||||
|
assert_shape_no_negative(ndims, shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
|
||||||
|
const int32_t* ndarray_shape,
|
||||||
|
int32_t output_ndims,
|
||||||
|
const int32_t* output_shape) {
|
||||||
|
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims,
|
||||||
|
output_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_util_assert_output_shape_same64(
|
||||||
|
int64_t ndarray_ndims, const int64_t* ndarray_shape, int64_t output_ndims,
|
||||||
|
const int64_t* output_shape) {
|
||||||
|
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims,
|
||||||
|
output_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||||
|
return size(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||||
|
return size(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
||||||
|
return nbytes(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
||||||
|
return nbytes(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) { return len(ndarray); }
|
||||||
|
|
||||||
|
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) { return len(ndarray); }
|
||||||
|
|
||||||
|
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
|
||||||
|
return is_c_contiguous(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
|
||||||
|
return is_c_contiguous(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray,
|
||||||
|
int32_t nth) {
|
||||||
|
return get_nth_pelement(ndarray, nth);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray,
|
||||||
|
int64_t nth) {
|
||||||
|
return get_nth_pelement(ndarray, nth);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||||
|
set_strides_by_shape(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||||
|
set_strides_by_shape(ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray,
|
||||||
|
NDArray<int32_t>* dst_ndarray) {
|
||||||
|
copy_data(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray,
|
||||||
|
NDArray<int64_t>* dst_ndarray) {
|
||||||
|
copy_data(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,171 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template <typename SizeT>
|
||||||
|
struct ShapeEntry {
|
||||||
|
SizeT ndims;
|
||||||
|
SizeT* shape;
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace broadcast {
|
||||||
|
/**
|
||||||
|
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||||
|
*
|
||||||
|
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape,
|
||||||
|
SizeT src_ndims, const SizeT* src_shape) {
|
||||||
|
if (src_ndims > target_ndims) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < src_ndims; i++) {
|
||||||
|
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||||
|
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||||
|
if (!(src_dim == 1 || target_dim == src_dim)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||||
|
*
|
||||||
|
* @param num_shapes Number of entries in `shapes`
|
||||||
|
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||||
|
* @param dst_ndims The length of `dst_shape`.
|
||||||
|
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||||
|
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||||
|
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||||
|
* of `np.broadcast_shapes` and write it here.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes,
|
||||||
|
SizeT dst_ndims, SizeT* dst_shape) {
|
||||||
|
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
|
||||||
|
dst_shape[dst_axis] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
SizeT max_ndims_found = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < num_shapes; i++) {
|
||||||
|
ShapeEntry<SizeT> entry = shapes[i];
|
||||||
|
|
||||||
|
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||||
|
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (SizeT j = 0; j < entry.ndims; j++) {
|
||||||
|
SizeT entry_axis = entry.ndims - j - 1;
|
||||||
|
SizeT dst_axis = dst_ndims - j - 1;
|
||||||
|
|
||||||
|
SizeT entry_dim = entry.shape[entry_axis];
|
||||||
|
SizeT dst_dim = dst_shape[dst_axis];
|
||||||
|
|
||||||
|
if (dst_dim == 1) {
|
||||||
|
dst_shape[dst_axis] = entry_dim;
|
||||||
|
} else if (entry_dim == 1 || entry_dim == dst_dim) {
|
||||||
|
// Do nothing
|
||||||
|
} else {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"shape mismatch: objects cannot be broadcast "
|
||||||
|
"to a single shape.",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||||
|
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||||
|
*
|
||||||
|
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||||
|
* and return the result by modifying `dst_ndarray`.
|
||||||
|
*
|
||||||
|
* # Notes on `dst_ndarray`
|
||||||
|
* The caller is responsible for allocating space for the resulting ndarray.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||||
|
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged.
|
||||||
|
* - `dst_ndarray->shape` is unchanged.
|
||||||
|
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void broadcast_to(const NDArray<SizeT>* src_ndarray,
|
||||||
|
NDArray<SizeT>* dst_ndarray) {
|
||||||
|
if (!ndarray::broadcast::can_broadcast_shape_to(
|
||||||
|
dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||||
|
src_ndarray->shape)) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"operands could not be broadcast together", NO_PARAM,
|
||||||
|
NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
|
||||||
|
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||||
|
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||||
|
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 &&
|
||||||
|
dst_ndarray->shape[dst_axis] != 1)) {
|
||||||
|
// Freeze the steps in-place
|
||||||
|
dst_ndarray->strides[dst_axis] = 0;
|
||||||
|
} else {
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace broadcast
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::broadcast;
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray,
|
||||||
|
NDArray<int32_t>* dst_ndarray) {
|
||||||
|
broadcast_to(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray,
|
||||||
|
NDArray<int64_t>* dst_ndarray) {
|
||||||
|
broadcast_to(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
|
||||||
|
const ShapeEntry<int32_t>* shapes,
|
||||||
|
int32_t dst_ndims, int32_t* dst_shape) {
|
||||||
|
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
|
||||||
|
const ShapeEntry<int64_t>* shapes,
|
||||||
|
int64_t dst_ndims, int64_t* dst_shape) {
|
||||||
|
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,44 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
/**
|
||||||
|
* @brief The NDArray object
|
||||||
|
*
|
||||||
|
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
struct NDArray {
|
||||||
|
/**
|
||||||
|
* @brief The underlying data this `ndarray` is pointing to.
|
||||||
|
*
|
||||||
|
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
|
||||||
|
*/
|
||||||
|
uint8_t* data;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The number of bytes of a single element in `data`.
|
||||||
|
*/
|
||||||
|
SizeT itemsize;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The number of dimensions of this shape.
|
||||||
|
*/
|
||||||
|
SizeT ndims;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The NDArray shape, with length equal to `ndims`.
|
||||||
|
*
|
||||||
|
* Note that it may contain 0.
|
||||||
|
*/
|
||||||
|
SizeT* shape;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Array strides, with length equal to `ndims`
|
||||||
|
*
|
||||||
|
* The stride values are in units of bytes, not number of elements.
|
||||||
|
*
|
||||||
|
* Note that `strides` can have negative values.
|
||||||
|
*/
|
||||||
|
SizeT* strides;
|
||||||
|
};
|
||||||
|
} // namespace
|
|
@ -0,0 +1,221 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
typedef uint8_t NDIndexType;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief A single element index
|
||||||
|
*
|
||||||
|
* `data` points to a `SliceIndex`.
|
||||||
|
*/
|
||||||
|
|
||||||
|
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||||
|
/**
|
||||||
|
* @brief A slice index
|
||||||
|
*
|
||||||
|
* `data` points to a `UserRange`.
|
||||||
|
*/
|
||||||
|
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief `np.newaxis` / `None`
|
||||||
|
*
|
||||||
|
* `data` is unused.
|
||||||
|
*/
|
||||||
|
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief `Ellipsis` / `...`
|
||||||
|
*
|
||||||
|
* `data` is unused.
|
||||||
|
*/
|
||||||
|
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief An index used in ndarray indexing
|
||||||
|
*/
|
||||||
|
struct NDIndex {
|
||||||
|
/**
|
||||||
|
* @brief Enum tag to specify the type of index.
|
||||||
|
*
|
||||||
|
* Please see comments of each enum constant.
|
||||||
|
*/
|
||||||
|
NDIndexType type;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The accompanying data associated with `type`.
|
||||||
|
*
|
||||||
|
* Please see comments of each enum constant.
|
||||||
|
*/
|
||||||
|
uint8_t* data;
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace indexing {
|
||||||
|
/**
|
||||||
|
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||||
|
*
|
||||||
|
* This is function very similar to performing `dst_ndarray = src_ndarray[indexes]` in Python (where the variables
|
||||||
|
* can all be found in the parameter of this function).
|
||||||
|
*
|
||||||
|
* In other words, this function takes in an ndarray (`src_ndarray`), index it with `indexes`, and return the
|
||||||
|
* indexed array (by writing the result to `dst_ndarray`).
|
||||||
|
*
|
||||||
|
* This function also does proper assertions on `indexes`.
|
||||||
|
*
|
||||||
|
* # Notes on `dst_ndarray`
|
||||||
|
* The caller is responsible for allocating space for the resulting ndarray.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||||
|
* indexing `src_ndarray` with `indexes`.
|
||||||
|
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged.
|
||||||
|
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||||
|
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||||
|
*
|
||||||
|
* @param indexes Indexes to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||||
|
* @param src_ndarray The NDArray to be indexed.
|
||||||
|
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void index(SizeT num_indexes, const NDIndex* indexes,
|
||||||
|
const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||||
|
// First, validate `indexes`.
|
||||||
|
|
||||||
|
// Expected value of `dst_ndarray->ndims`.
|
||||||
|
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||||
|
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||||
|
SizeT num_indexed = 0;
|
||||||
|
// There may be ellipsis `...` in `indexes`. There can only be 0 or 1 ellipsis.
|
||||||
|
SizeT num_ellipsis = 0;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < num_indexes; i++) {
|
||||||
|
if (indexes[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||||
|
expected_dst_ndims--;
|
||||||
|
num_indexed++;
|
||||||
|
} else if (indexes[i].type == ND_INDEX_TYPE_SLICE) {
|
||||||
|
num_indexed++;
|
||||||
|
} else if (indexes[i].type == ND_INDEX_TYPE_NEWAXIS) {
|
||||||
|
expected_dst_ndims++;
|
||||||
|
} else if (indexes[i].type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||||
|
num_ellipsis++;
|
||||||
|
if (num_ellipsis > 1) {
|
||||||
|
raise_exception(
|
||||||
|
SizeT, EXN_INDEX_ERROR,
|
||||||
|
"an index can only have a single ellipsis ('...')",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||||
|
|
||||||
|
if (src_ndarray->ndims - num_indexed < 0) {
|
||||||
|
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||||
|
"too many indices for array: array is {0}-dimensional, "
|
||||||
|
"but {1} were indexed",
|
||||||
|
src_ndarray->ndims, num_indexes, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||||
|
SizeT src_axis = 0;
|
||||||
|
SizeT dst_axis = 0;
|
||||||
|
|
||||||
|
for (SliceIndex i = 0; i < num_indexes; i++) {
|
||||||
|
const NDIndex* index = &indexes[i];
|
||||||
|
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||||
|
SliceIndex input = *((SliceIndex*)index->data);
|
||||||
|
SliceIndex k = slice::resolve_index_in_length(
|
||||||
|
src_ndarray->shape[src_axis], input);
|
||||||
|
|
||||||
|
if (k == slice::OUT_OF_BOUNDS) {
|
||||||
|
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||||
|
"index {0} is out of bounds for axis {1} "
|
||||||
|
"with size {2}",
|
||||||
|
input, src_axis, src_ndarray->shape[src_axis]);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data += k * src_ndarray->strides[src_axis];
|
||||||
|
|
||||||
|
src_axis++;
|
||||||
|
} else if (index->type == ND_INDEX_TYPE_SLICE) {
|
||||||
|
UserSlice* input = (UserSlice*)index->data;
|
||||||
|
|
||||||
|
Slice slice =
|
||||||
|
input->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||||
|
|
||||||
|
dst_ndarray->data +=
|
||||||
|
(SizeT)slice.start * src_ndarray->strides[src_axis];
|
||||||
|
dst_ndarray->strides[dst_axis] =
|
||||||
|
((SizeT)slice.step) * src_ndarray->strides[src_axis];
|
||||||
|
dst_ndarray->shape[dst_axis] = (SizeT)slice.len();
|
||||||
|
|
||||||
|
dst_axis++;
|
||||||
|
src_axis++;
|
||||||
|
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
|
||||||
|
dst_ndarray->strides[dst_axis] = 0;
|
||||||
|
dst_ndarray->shape[dst_axis] = 1;
|
||||||
|
|
||||||
|
dst_axis++;
|
||||||
|
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||||
|
// The number of ':' entries this '...' implies.
|
||||||
|
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||||
|
|
||||||
|
for (SizeT j = 0; j < ellipsis_size; j++) {
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||||
|
|
||||||
|
dst_axis++;
|
||||||
|
src_axis++;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
|
||||||
|
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
}
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||||
|
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||||
|
}
|
||||||
|
} // namespace indexing
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::indexing;
|
||||||
|
|
||||||
|
void __nac3_ndarray_index(int32_t num_indexes, NDIndex* indexes,
|
||||||
|
NDArray<int32_t>* src_ndarray,
|
||||||
|
NDArray<int32_t>* dst_ndarray) {
|
||||||
|
index(num_indexes, indexes, src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_index64(int64_t num_indexes, NDIndex* indexes,
|
||||||
|
NDArray<int64_t>* src_ndarray,
|
||||||
|
NDArray<int64_t>* dst_ndarray) {
|
||||||
|
index(num_indexes, indexes, src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,118 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
/**
|
||||||
|
* @brief Helper struct to enumerate through all indices under a shape.
|
||||||
|
*
|
||||||
|
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
|
||||||
|
* - `[0, 0]`
|
||||||
|
* - `[0, 1]`
|
||||||
|
* - `[1, 0]`
|
||||||
|
* - `[1, 1]`
|
||||||
|
* - `[2, 0]`
|
||||||
|
* - `[2, 1]`
|
||||||
|
* - end.
|
||||||
|
*
|
||||||
|
* Interesting cases:
|
||||||
|
* - If ndims == 0, there is one enumeration.
|
||||||
|
* - If shape contains zeroes, there are no enumerations.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
struct NDIter {
|
||||||
|
SizeT ndims;
|
||||||
|
SizeT* shape;
|
||||||
|
SizeT* strides;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The current indices.
|
||||||
|
*
|
||||||
|
* Must be allocated by the caller.
|
||||||
|
*/
|
||||||
|
SizeT* indices;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The nth (0-based) index of the current indices.
|
||||||
|
*/
|
||||||
|
SizeT nth;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Pointer to the current element.
|
||||||
|
*/
|
||||||
|
uint8_t* element;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief The product of shape.
|
||||||
|
*/
|
||||||
|
SizeT size;
|
||||||
|
|
||||||
|
// TODO:: There is something called backstrides to speedup iteration.
|
||||||
|
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||||
|
// Maybe LLVM is clever and knows how to optimize.
|
||||||
|
|
||||||
|
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element,
|
||||||
|
SizeT* indices) {
|
||||||
|
this->ndims = ndims;
|
||||||
|
this->shape = shape;
|
||||||
|
this->strides = strides;
|
||||||
|
|
||||||
|
this->indices = indices;
|
||||||
|
this->element = element;
|
||||||
|
|
||||||
|
// Compute size and backstrides
|
||||||
|
this->size = 1;
|
||||||
|
for (SizeT i = 0; i < ndims; i++) {
|
||||||
|
this->size *= shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++) indices[axis] = 0;
|
||||||
|
nth = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
|
||||||
|
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides,
|
||||||
|
ndarray->data, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool has_next() { return nth < size; }
|
||||||
|
|
||||||
|
void next() {
|
||||||
|
for (SizeT i = 0; i < ndims; i++) {
|
||||||
|
SizeT axis = ndims - i - 1;
|
||||||
|
indices[axis]++;
|
||||||
|
if (indices[axis] >= shape[axis]) {
|
||||||
|
indices[axis] = 0;
|
||||||
|
|
||||||
|
// TODO: Can be optimized with backstrides.
|
||||||
|
element -= strides[axis] * (shape[axis] - 1);
|
||||||
|
} else {
|
||||||
|
element += strides[axis];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
nth++;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray,
|
||||||
|
int32_t* indices) {
|
||||||
|
iter->initialize_by_ndarray(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_nditer_initialize64(NDIter<int64_t>* iter,
|
||||||
|
NDArray<int64_t>* ndarray, int64_t* indices) {
|
||||||
|
iter->initialize_by_ndarray(ndarray, indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool __nac3_nditer_has_next(NDIter<int32_t>* iter) { return iter->has_next(); }
|
||||||
|
|
||||||
|
bool __nac3_nditer_has_next64(NDIter<int64_t>* iter) { return iter->has_next(); }
|
||||||
|
|
||||||
|
void __nac3_nditer_next(NDIter<int32_t>* iter) { iter->next(); }
|
||||||
|
|
||||||
|
void __nac3_nditer_next64(NDIter<int64_t>* iter) { iter->next(); }
|
||||||
|
}
|
|
@ -0,0 +1,194 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/broadcast.hpp>
|
||||||
|
#include <irrt/ndarray/iter.hpp>
|
||||||
|
|
||||||
|
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace matmul {
|
||||||
|
|
||||||
|
/*
|
||||||
|
* In einsum notation, the output is the broadcasts performed by `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||||
|
*
|
||||||
|
* Example:
|
||||||
|
* Suppose `a_shape == [99, 1, 97, 4, 2]`
|
||||||
|
* and `b_shape == [ 1, 98, 1, 2, 5]`,
|
||||||
|
*
|
||||||
|
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||||
|
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||||
|
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||||
|
* ^^^^^^^^^^ ^^^^
|
||||||
|
* (by broadcast) (4x2 @ 2x5 => 4x5)
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void calculate_shapes(SizeT a_ndims, SizeT* a_shape, SizeT b_ndims,
|
||||||
|
SizeT* b_shape, SizeT final_ndims, SizeT* new_a_shape,
|
||||||
|
SizeT* new_b_shape, SizeT* dst_shape) {
|
||||||
|
debug_assert(SizeT, a_ndims >= 2);
|
||||||
|
debug_assert(SizeT, b_ndims >= 2);
|
||||||
|
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||||
|
|
||||||
|
const SizeT num_entries = 2;
|
||||||
|
ShapeEntry<SizeT> entries[num_entries] = {
|
||||||
|
{.ndims = a_ndims - 2, .shape = a_shape},
|
||||||
|
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||||
|
|
||||||
|
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
|
||||||
|
final_ndims - 2, new_a_shape);
|
||||||
|
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
|
||||||
|
final_ndims - 2, new_b_shape);
|
||||||
|
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
|
||||||
|
final_ndims - 2, dst_shape);
|
||||||
|
|
||||||
|
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||||
|
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||||
|
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||||
|
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||||
|
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||||
|
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Perform `np.matmul(a, b)` but the inputs are both rank >=2 matrices and `a.shape[:-2] == b.shape[:-2]`.
|
||||||
|
*
|
||||||
|
* The compatibility of `a` and `b` (for their `.shape[-2:]`) are asserted.
|
||||||
|
*
|
||||||
|
* Also see https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy-matmul.
|
||||||
|
*
|
||||||
|
* This function expects `dst_ndarray` to contain the following content when called:
|
||||||
|
* - `dst_ndarray->data` is allocated. Can be uninitialized.
|
||||||
|
* - `dst_ndarray->itemsize` is set to `sizeof(T)`.
|
||||||
|
* - `dst_ndarray->ndims` is set appropriately.
|
||||||
|
* - `dst_ndarray->shape` is set appropriately.
|
||||||
|
* - `dst_ndarray->strides` is ignored.
|
||||||
|
*
|
||||||
|
* Moreover, the shapes of `a_ndarray`, `b_ndarray`, and `dst_ndarray` **must be the same**. This implies
|
||||||
|
*/
|
||||||
|
template <typename SizeT, typename T>
|
||||||
|
void matmul_at_least_2d(NDArray<SizeT>* a_ndarray, NDArray<SizeT>* b_ndarray,
|
||||||
|
NDArray<SizeT>* dst_ndarray) {
|
||||||
|
// All inputs' ndims should be >= 2 and be the same.
|
||||||
|
debug_assert_eq(SizeT, a_ndarray->ndims, b_ndarray->ndims);
|
||||||
|
debug_assert_eq(SizeT, a_ndarray->ndims, dst_ndarray->ndims);
|
||||||
|
debug_assert(SizeT, a_ndarray->ndims >= 2);
|
||||||
|
|
||||||
|
debug_assert_eq(SizeT, a_ndarray->itemsize, sizeof(T));
|
||||||
|
debug_assert_eq(SizeT, b_ndarray->itemsize, sizeof(T));
|
||||||
|
debug_assert_eq(SizeT, dst_ndarray->itemsize, sizeof(T));
|
||||||
|
|
||||||
|
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||||
|
// Check that the shapes are the same.
|
||||||
|
for (SizeT i = 0; i < a_ndarray->ndims - 2; i++) {
|
||||||
|
if (dst_ndarray->shape[0] != a_ndarray->shape[0]) {
|
||||||
|
raise_debug_assert(
|
||||||
|
SizeT, "Bad shape. At axis {0}, a has {1}, dst has {2}", i,
|
||||||
|
a_ndarray->shape[i], dst_ndarray->shape[i]);
|
||||||
|
}
|
||||||
|
if (dst_ndarray->shape[0] != b_ndarray->shape[0]) {
|
||||||
|
raise_debug_assert(
|
||||||
|
SizeT, "Bad shape. At axis {0}, b has {1}, dst has {2}", i,
|
||||||
|
b_ndarray->shape[i], dst_ndarray->shape[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Number of dimensions dedicated to stacking
|
||||||
|
// e.g., [4, 6, 1, 2, 3]
|
||||||
|
// ^^^^^^^ count these
|
||||||
|
const SizeT u = a_ndarray->ndims - 2; // Alias
|
||||||
|
|
||||||
|
SizeT* a_mat_shape = a_ndarray->shape + u;
|
||||||
|
SizeT* b_mat_shape = b_ndarray->shape + u;
|
||||||
|
SizeT* dst_mat_shape = dst_ndarray->shape + u;
|
||||||
|
|
||||||
|
// Assert that dst_ndarray has the correct shape
|
||||||
|
debug_assert_eq(SizeT, dst_mat_shape[0], a_mat_shape[0]);
|
||||||
|
debug_assert_eq(SizeT, dst_mat_shape[1], b_mat_shape[1]);
|
||||||
|
|
||||||
|
// Check that a and b are compatible for matmul
|
||||||
|
if (a_mat_shape[1] != b_mat_shape[0]) {
|
||||||
|
// This is a custom error message. Different from NumPy.
|
||||||
|
raise_exception(
|
||||||
|
SizeT, EXN_VALUE_ERROR,
|
||||||
|
"Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||||
|
a_mat_shape[1], b_mat_shape[0], NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Iterate through shape[:-2]. i.e,
|
||||||
|
// Given a = [5, 4, 3, m, p] and b = [5, 4, 3, p, n]. We iterate through [5, 4, 3].
|
||||||
|
SizeT* indices =
|
||||||
|
(SizeT*)__builtin_alloca(sizeof(SizeT) * dst_ndarray->ndims);
|
||||||
|
SizeT* mat_indices = indices + u;
|
||||||
|
NDIter<SizeT> iter;
|
||||||
|
iter.initialize(u, dst_ndarray->shape, dst_ndarray->strides,
|
||||||
|
dst_ndarray->data, indices);
|
||||||
|
|
||||||
|
for (; iter.has_next(); iter.next()) {
|
||||||
|
for (SizeT i = 0; i < dst_mat_shape[0]; i++) {
|
||||||
|
for (SizeT j = 0; j < dst_mat_shape[1]; j++) {
|
||||||
|
// `indices` is being reused to index into different ndarrays.
|
||||||
|
mat_indices[0] = i;
|
||||||
|
mat_indices[1] = j;
|
||||||
|
T* d = ndarray::basic::get_ptr<SizeT, T>(dst_ndarray, indices);
|
||||||
|
*d = 0;
|
||||||
|
|
||||||
|
for (SizeT k = 0; k < a_ndarray->shape[1]; k++) {
|
||||||
|
mat_indices[0] = i;
|
||||||
|
mat_indices[1] = k;
|
||||||
|
T* a =
|
||||||
|
ndarray::basic::get_ptr<SizeT, T>(a_ndarray, indices);
|
||||||
|
|
||||||
|
mat_indices[0] = k;
|
||||||
|
mat_indices[1] = j;
|
||||||
|
T* b =
|
||||||
|
ndarray::basic::get_ptr<SizeT, T>(b_ndarray, indices);
|
||||||
|
|
||||||
|
*d += (*a) * (*b);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace matmul
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::matmul;
|
||||||
|
|
||||||
|
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t* a_shape,
|
||||||
|
int32_t b_ndims, int32_t* b_shape,
|
||||||
|
int32_t final_ndims,
|
||||||
|
int32_t* new_a_shape,
|
||||||
|
int32_t* new_b_shape,
|
||||||
|
int32_t* dst_shape) {
|
||||||
|
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims,
|
||||||
|
new_a_shape, new_b_shape, dst_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t* a_shape,
|
||||||
|
int64_t b_ndims, int64_t* b_shape,
|
||||||
|
int64_t final_ndims,
|
||||||
|
int64_t* new_a_shape,
|
||||||
|
int64_t* new_b_shape,
|
||||||
|
int64_t* dst_shape) {
|
||||||
|
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims,
|
||||||
|
new_a_shape, new_b_shape, dst_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_float64_matmul_at_least_2d(NDArray<int32_t>* a_ndarray,
|
||||||
|
NDArray<int32_t>* b_ndarray,
|
||||||
|
NDArray<int32_t>* dst_ndarray) {
|
||||||
|
matmul_at_least_2d<int32_t, double>(a_ndarray, b_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_float64_matmul_at_least_2d64(
|
||||||
|
NDArray<int64_t>* a_ndarray, NDArray<int64_t>* b_ndarray,
|
||||||
|
NDArray<int64_t>* dst_ndarray) {
|
||||||
|
matmul_at_least_2d<int64_t, double>(a_ndarray, b_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,106 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace reshape {
|
||||||
|
/**
|
||||||
|
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||||
|
*
|
||||||
|
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||||
|
* modified to contain the resolved dimension.
|
||||||
|
*
|
||||||
|
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||||
|
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||||
|
*
|
||||||
|
* @param size The `.size` of `<ndarray>`
|
||||||
|
* @param new_ndims Number of elements in `new_shape`
|
||||||
|
* @param new_shape Target shape to reshape to
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims,
|
||||||
|
SizeT* new_shape) {
|
||||||
|
// Is there a -1 in `new_shape`?
|
||||||
|
bool neg1_exists = false;
|
||||||
|
// Location of -1, only initialized if `neg1_exists` is true
|
||||||
|
SizeT neg1_axis_i;
|
||||||
|
// The computed ndarray size of `new_shape`
|
||||||
|
SizeT new_size = 1;
|
||||||
|
|
||||||
|
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
|
||||||
|
SizeT dim = new_shape[axis_i];
|
||||||
|
if (dim < 0) {
|
||||||
|
if (dim == -1) {
|
||||||
|
if (neg1_exists) {
|
||||||
|
// Multiple `-1` found. Throw an error.
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"can only specify one unknown dimension",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
} else {
|
||||||
|
neg1_exists = true;
|
||||||
|
neg1_axis_i = axis_i;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// TODO: What? In `np.reshape` any negative dimensions is
|
||||||
|
// treated like its `-1`.
|
||||||
|
//
|
||||||
|
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||||
|
//
|
||||||
|
// It is not documented by numpy.
|
||||||
|
// Throw an error for now...
|
||||||
|
|
||||||
|
raise_exception(
|
||||||
|
SizeT, EXN_VALUE_ERROR,
|
||||||
|
"Found non -1 negative dimension {0} on axis {1}", dim,
|
||||||
|
axis_i, NO_PARAM);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
new_size *= dim;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool can_reshape;
|
||||||
|
if (neg1_exists) {
|
||||||
|
// Let `x` be the unknown dimension
|
||||||
|
// Solve `x * <new_size> = <size>`
|
||||||
|
if (new_size == 0 && size == 0) {
|
||||||
|
// `x` has infinitely many solutions
|
||||||
|
can_reshape = false;
|
||||||
|
} else if (new_size == 0 && size != 0) {
|
||||||
|
// `x` has no solutions
|
||||||
|
can_reshape = false;
|
||||||
|
} else if (size % new_size != 0) {
|
||||||
|
// `x` has no integer solutions
|
||||||
|
can_reshape = false;
|
||||||
|
} else {
|
||||||
|
can_reshape = true;
|
||||||
|
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
can_reshape = (new_size == size);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!can_reshape) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"cannot reshape array of size {0} into given shape",
|
||||||
|
size, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace reshape
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
void __nac3_ndarray_resolve_and_check_new_shape(int32_t size, int32_t new_ndims,
|
||||||
|
int32_t* new_shape) {
|
||||||
|
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_resolve_and_check_new_shape64(int64_t size,
|
||||||
|
int64_t new_ndims,
|
||||||
|
int64_t* new_shape) {
|
||||||
|
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,145 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Notes on `np.transpose(<array>, <axes>)`
|
||||||
|
*
|
||||||
|
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||||
|
* but it is not documented in numpy.
|
||||||
|
*
|
||||||
|
* Supporting it for now.
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace transpose {
|
||||||
|
/**
|
||||||
|
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||||
|
*
|
||||||
|
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||||
|
* is specified but the user, use this function to do assertions on it.
|
||||||
|
*
|
||||||
|
* @param ndims The number of dimensions of `<array>`
|
||||||
|
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||||
|
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||||
|
* @param axes The user specified `<axes>`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
|
||||||
|
if (ndims != num_axes) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Optimize this
|
||||||
|
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
|
||||||
|
for (SizeT i = 0; i < ndims; i++) axe_specified[i] = false;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < ndims; i++) {
|
||||||
|
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||||
|
if (axis == slice::OUT_OF_BOUNDS) {
|
||||||
|
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||||
|
raise_exception(
|
||||||
|
SizeT, EXN_VALUE_ERROR,
|
||||||
|
"axis {0} is out of bounds for array of dimension {1}", axis,
|
||||||
|
ndims, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (axe_specified[axis]) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"repeated axis in transpose", NO_PARAM, NO_PARAM,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
axe_specified[axis] = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||||
|
*
|
||||||
|
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||||
|
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||||
|
*
|
||||||
|
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||||
|
*
|
||||||
|
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||||
|
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged
|
||||||
|
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||||
|
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||||
|
*
|
||||||
|
* @param src_ndarray The NDArray to build a transpose view on
|
||||||
|
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||||
|
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||||
|
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray,
|
||||||
|
SizeT num_axes, const SizeT* axes) {
|
||||||
|
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||||
|
const auto ndims = src_ndarray->ndims;
|
||||||
|
|
||||||
|
if (axes != nullptr) assert_transpose_axes(ndims, num_axes, axes);
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||||
|
if (axes == nullptr) {
|
||||||
|
// `np.transpose(<array>, axes=None)`
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||||
|
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||||
|
* is reversing the order of strides and shape.
|
||||||
|
*
|
||||||
|
* This is a fast implementation to handle this special (but very common) case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||||
|
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||||
|
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// `np.transpose(<array>, <axes>)`
|
||||||
|
|
||||||
|
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||||
|
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||||
|
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||||
|
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||||
|
|
||||||
|
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||||
|
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace transpose
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::transpose;
|
||||||
|
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
|
||||||
|
NDArray<int32_t>* dst_ndarray, int32_t num_axes,
|
||||||
|
const int32_t* axes) {
|
||||||
|
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
|
||||||
|
NDArray<int64_t>* dst_ndarray, int64_t num_axes,
|
||||||
|
const int64_t* axes) {
|
||||||
|
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,167 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/slice.hpp>
|
||||||
|
#include <irrt/util.hpp>
|
||||||
|
|
||||||
|
#include "exception.hpp"
|
||||||
|
|
||||||
|
// The type of an index or a value describing the length of a
|
||||||
|
// range/slice is always `int32_t`.
|
||||||
|
using SliceIndex = int32_t;
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief A Python-like slice with resolved indices.
|
||||||
|
*
|
||||||
|
* "Resolved indices" means that `start` and `stop` must be positive and are
|
||||||
|
* bound to a known length.
|
||||||
|
*/
|
||||||
|
struct Slice {
|
||||||
|
SliceIndex start;
|
||||||
|
SliceIndex stop;
|
||||||
|
SliceIndex step;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Calculate and return the length / the number of the slice.
|
||||||
|
*
|
||||||
|
* If this were a Python range, this function would be `len(range(start, stop, step))`.
|
||||||
|
*/
|
||||||
|
SliceIndex len() {
|
||||||
|
SliceIndex diff = stop - start;
|
||||||
|
if (diff > 0 && step > 0) {
|
||||||
|
return ((diff - 1) / step) + 1;
|
||||||
|
} else if (diff < 0 && step < 0) {
|
||||||
|
return ((diff + 1) / step) + 1;
|
||||||
|
} else {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace slice {
|
||||||
|
/**
|
||||||
|
* @brief Resolve a slice index under a given length like Python indexing.
|
||||||
|
*
|
||||||
|
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
|
||||||
|
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
|
||||||
|
*
|
||||||
|
* If `length` is 0, 0 is returned for any value of `index`.
|
||||||
|
*
|
||||||
|
* If `index` is out of bounds, clamps the returned value between `0` and
|
||||||
|
* `length - 1` (inclusive).
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
SliceIndex resolve_index_in_length_clamped(SliceIndex length,
|
||||||
|
SliceIndex index) {
|
||||||
|
if (index < 0) {
|
||||||
|
return max<SliceIndex>(length + index, 0);
|
||||||
|
} else {
|
||||||
|
return min<SliceIndex>(length, index);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const SliceIndex OUT_OF_BOUNDS = -1;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Like `resolve_index_in_length_clamped`, but returns `OUT_OF_BOUNDS`
|
||||||
|
* if `index` is out of bounds.
|
||||||
|
*/
|
||||||
|
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
|
||||||
|
SliceIndex resolved = index < 0 ? length + index : index;
|
||||||
|
if (0 <= resolved && resolved < length) {
|
||||||
|
return resolved;
|
||||||
|
} else {
|
||||||
|
return OUT_OF_BOUNDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace slice
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief A Python-like slice with **unresolved** indices.
|
||||||
|
*/
|
||||||
|
struct UserSlice {
|
||||||
|
bool start_defined;
|
||||||
|
SliceIndex start;
|
||||||
|
|
||||||
|
bool stop_defined;
|
||||||
|
SliceIndex stop;
|
||||||
|
|
||||||
|
bool step_defined;
|
||||||
|
SliceIndex step;
|
||||||
|
|
||||||
|
UserSlice() { this->reset(); }
|
||||||
|
|
||||||
|
void reset() {
|
||||||
|
this->start_defined = false;
|
||||||
|
this->stop_defined = false;
|
||||||
|
this->step_defined = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_start(SliceIndex start) {
|
||||||
|
this->start_defined = true;
|
||||||
|
this->start = start;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_stop(SliceIndex stop) {
|
||||||
|
this->stop_defined = true;
|
||||||
|
this->stop = stop;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_step(SliceIndex step) {
|
||||||
|
this->step_defined = true;
|
||||||
|
this->step = step;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Resolve this slice.
|
||||||
|
*
|
||||||
|
* In Python, this would be `slice(start, stop, step).indices(length)`.
|
||||||
|
*
|
||||||
|
* @return A `Slice` with the resolved indices.
|
||||||
|
*/
|
||||||
|
Slice indices(SliceIndex length) {
|
||||||
|
Slice result;
|
||||||
|
|
||||||
|
result.step = step_defined ? step : 1;
|
||||||
|
bool step_is_negative = result.step < 0;
|
||||||
|
|
||||||
|
if (start_defined) {
|
||||||
|
result.start =
|
||||||
|
slice::resolve_index_in_length_clamped(length, start);
|
||||||
|
} else {
|
||||||
|
result.start = step_is_negative ? length - 1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (stop_defined) {
|
||||||
|
result.stop = slice::resolve_index_in_length_clamped(length, stop);
|
||||||
|
} else {
|
||||||
|
result.stop = step_is_negative ? -1 : length;
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Like `.indices()` but with assertions.
|
||||||
|
*/
|
||||||
|
template <typename SizeT>
|
||||||
|
Slice indices_checked(SliceIndex length) {
|
||||||
|
// TODO: Switch to `SizeT length`
|
||||||
|
|
||||||
|
if (length < 0) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"length should not be negative, got {0}", length,
|
||||||
|
NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (this->step_defined && this->step == 0) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
return this->indices(length);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
|
@ -0,0 +1,101 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template <typename T>
|
||||||
|
const T& max(const T& a, const T& b) {
|
||||||
|
return a > b ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
const T& min(const T& a, const T& b) {
|
||||||
|
return a > b ? b : a;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
bool arrays_match(int len, T* as, T* bs) {
|
||||||
|
for (int i = 0; i < len; i++) {
|
||||||
|
if (as[i] != bs[i]) return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace cstr_utils {
|
||||||
|
/**
|
||||||
|
* @brief Return true if `str` is empty.
|
||||||
|
*/
|
||||||
|
bool is_empty(const char* str) { return str[0] == '\0'; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Implementation of `strcmp()`
|
||||||
|
*/
|
||||||
|
int8_t compare(const char* a, const char* b) {
|
||||||
|
uint32_t i = 0;
|
||||||
|
while (true) {
|
||||||
|
if (a[i] < b[i]) {
|
||||||
|
return -1;
|
||||||
|
} else if (a[i] > b[i]) {
|
||||||
|
return 1;
|
||||||
|
} else {
|
||||||
|
if (a[i] == '\0') {
|
||||||
|
return 0;
|
||||||
|
} else {
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Return true two strings have the same content.
|
||||||
|
*/
|
||||||
|
int8_t equal(const char* a, const char* b) { return compare(a, b) == 0; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Implementation of `strlen()`.
|
||||||
|
*/
|
||||||
|
uint32_t length(const char* str) {
|
||||||
|
uint32_t length = 0;
|
||||||
|
while (*str != '\0') {
|
||||||
|
length++;
|
||||||
|
str++;
|
||||||
|
}
|
||||||
|
return length;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Copy a null-terminated string to a buffer with limited size and guaranteed null-termination.
|
||||||
|
*
|
||||||
|
* `dst_max_size` must be greater than 0, otherwise this function has undefined behavior.
|
||||||
|
*
|
||||||
|
* This function attempts to copy everything from `src` from `dst`, and *always* null-terminates `dst`.
|
||||||
|
*
|
||||||
|
* If the size of `dst` is too small, the final byte (`dst[dst_max_size - 1]`) of `dst` will be set to
|
||||||
|
* the null terminator.
|
||||||
|
*
|
||||||
|
* @param src String to copy from.
|
||||||
|
* @param dst Buffer to copy string to.
|
||||||
|
* @param dst_max_size
|
||||||
|
* Number of bytes of this buffer, including the space needed for the null terminator.
|
||||||
|
* Must be greater than 0.
|
||||||
|
* @return If `dst` is too small to contain everything in `src`.
|
||||||
|
*/
|
||||||
|
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
|
||||||
|
for (uint32_t i = 0; i < dst_max_size; i++) {
|
||||||
|
bool is_last = i + 1 == dst_max_size;
|
||||||
|
if (is_last && src[i] != '\0') {
|
||||||
|
dst[i] = '\0';
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (src[i] == '\0') {
|
||||||
|
dst[i] = '\0';
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = src[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
} // namespace cstr_utils
|
||||||
|
} // namespace
|
|
@ -0,0 +1,24 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG
|
||||||
|
#define IRRT_DEBUG_ASSERT
|
||||||
|
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||||
|
#else
|
||||||
|
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <irrt/core.hpp>
|
||||||
|
#include <irrt/debug.hpp>
|
||||||
|
#include <irrt/exception.hpp>
|
||||||
|
#include <irrt/int_defs.hpp>
|
||||||
|
#include <irrt/list.hpp>
|
||||||
|
#include <irrt/ndarray/array.hpp>
|
||||||
|
#include <irrt/ndarray/basic.hpp>
|
||||||
|
#include <irrt/ndarray/broadcast.hpp>
|
||||||
|
#include <irrt/ndarray/def.hpp>
|
||||||
|
#include <irrt/ndarray/indexing.hpp>
|
||||||
|
#include <irrt/ndarray/iter.hpp>
|
||||||
|
#include <irrt/ndarray/product.hpp>
|
||||||
|
#include <irrt/ndarray/reshape.hpp>
|
||||||
|
#include <irrt/ndarray/transpose.hpp>
|
||||||
|
#include <irrt/util.hpp>
|
|
@ -0,0 +1,25 @@
|
||||||
|
// This file will be compiled like a real C++ program,
|
||||||
|
// and we do have the luxury to use the standard libraries.
|
||||||
|
// That is if the nix flakes do not have issues... especially on msys2...
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdlib>
|
||||||
|
|
||||||
|
// Special macro to inform `#include <irrt/*>` that we are testing.
|
||||||
|
#define IRRT_TESTING
|
||||||
|
|
||||||
|
// Note that failure unit tests are not supported.
|
||||||
|
|
||||||
|
#include <test/test_core.hpp>
|
||||||
|
#include <test/test_ndarray_basic.hpp>
|
||||||
|
#include <test/test_ndarray_broadcast.hpp>
|
||||||
|
#include <test/test_ndarray_indexing.hpp>
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
test::core::run();
|
||||||
|
test::ndarray_basic::run();
|
||||||
|
test::ndarray_indexing::run();
|
||||||
|
test::ndarray_broadcast::run();
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -0,0 +1,11 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <irrt_everything.hpp>
|
||||||
|
#include <test/util.hpp>
|
||||||
|
|
||||||
|
/*
|
||||||
|
Include this header for every test_*.cpp
|
||||||
|
*/
|
|
@ -0,0 +1,16 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <test/includes.hpp>
|
||||||
|
|
||||||
|
namespace test {
|
||||||
|
namespace core {
|
||||||
|
void test_int_exp() {
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
assert_values_match(125L, __nac3_int_exp_impl<int64_t>(5, 3));
|
||||||
|
assert_values_match(3125L, __nac3_int_exp_impl<int64_t>(5, 5));
|
||||||
|
}
|
||||||
|
|
||||||
|
void run() { test_int_exp(); }
|
||||||
|
} // namespace core
|
||||||
|
} // namespace test
|
|
@ -0,0 +1,30 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <test/includes.hpp>
|
||||||
|
|
||||||
|
namespace test {
|
||||||
|
namespace ndarray_basic {
|
||||||
|
void test_calc_size_from_shape_normal() {
|
||||||
|
// Test shapes with normal values
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
int64_t shape[4] = {2, 3, 5, 7};
|
||||||
|
assert_values_match(
|
||||||
|
210L, ndarray::basic::util::calc_size_from_shape<int64_t>(4, shape));
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_calc_size_from_shape_has_zero() {
|
||||||
|
// Test shapes with 0 in them
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
int64_t shape[4] = {2, 0, 5, 7};
|
||||||
|
assert_values_match(
|
||||||
|
0L, ndarray::basic::util::calc_size_from_shape<int64_t>(4, shape));
|
||||||
|
}
|
||||||
|
|
||||||
|
void run() {
|
||||||
|
test_calc_size_from_shape_normal();
|
||||||
|
test_calc_size_from_shape_has_zero();
|
||||||
|
}
|
||||||
|
} // namespace ndarray_basic
|
||||||
|
} // namespace test
|
|
@ -0,0 +1,127 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <test/includes.hpp>
|
||||||
|
|
||||||
|
namespace test {
|
||||||
|
namespace ndarray_broadcast {
|
||||||
|
void test_can_broadcast_shape() {
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
assert_values_match(true,
|
||||||
|
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){3}, 5, (int32_t[]){1, 1, 1, 1, 3}));
|
||||||
|
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){3}, 2, (int32_t[]){3, 1}));
|
||||||
|
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){3}, 1, (int32_t[]){3}));
|
||||||
|
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){1}, 1, (int32_t[]){3}));
|
||||||
|
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){1}, 1, (int32_t[]){1}));
|
||||||
|
assert_values_match(
|
||||||
|
true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
3, (int32_t[]){256, 256, 3}, 3, (int32_t[]){256, 1, 3}));
|
||||||
|
assert_values_match(true,
|
||||||
|
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){3}));
|
||||||
|
assert_values_match(false,
|
||||||
|
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){2}));
|
||||||
|
assert_values_match(true,
|
||||||
|
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){1}));
|
||||||
|
|
||||||
|
// In cases when the shapes contain zero(es)
|
||||||
|
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){0}, 1, (int32_t[]){1}));
|
||||||
|
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
1, (int32_t[]){0}, 1, (int32_t[]){2}));
|
||||||
|
assert_values_match(true,
|
||||||
|
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
4, (int32_t[]){0, 4, 0, 0}, 1, (int32_t[]){1}));
|
||||||
|
assert_values_match(
|
||||||
|
true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 1, 1, 1}));
|
||||||
|
assert_values_match(
|
||||||
|
true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 4, 1, 1}));
|
||||||
|
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 3}));
|
||||||
|
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||||
|
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 0}));
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_ndarray_broadcast() {
|
||||||
|
/*
|
||||||
|
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
|
||||||
|
# >>> [[19.9 29.9 39.9 49.9]]
|
||||||
|
#
|
||||||
|
# array = np.broadcast_to(array, (2, 3, 4))
|
||||||
|
# >>> [[[19.9 29.9 39.9 49.9]
|
||||||
|
# >>> [19.9 29.9 39.9 49.9]
|
||||||
|
# >>> [19.9 29.9 39.9 49.9]]
|
||||||
|
# >>> [[19.9 29.9 39.9 49.9]
|
||||||
|
# >>> [19.9 29.9 39.9 49.9]
|
||||||
|
# >>> [19.9 29.9 39.9 49.9]]]
|
||||||
|
#
|
||||||
|
# assery array.strides == (0, 0, 8)
|
||||||
|
|
||||||
|
*/
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
double in_data[4] = {19.9, 29.9, 39.9, 49.9};
|
||||||
|
const int32_t in_ndims = 2;
|
||||||
|
int32_t in_shape[in_ndims] = {1, 4};
|
||||||
|
int32_t in_strides[in_ndims] = {};
|
||||||
|
NDArray<int32_t> ndarray = {.data = (uint8_t*)in_data,
|
||||||
|
.itemsize = sizeof(double),
|
||||||
|
.ndims = in_ndims,
|
||||||
|
.shape = in_shape,
|
||||||
|
.strides = in_strides};
|
||||||
|
ndarray::basic::set_strides_by_shape(&ndarray);
|
||||||
|
|
||||||
|
const int32_t dst_ndims = 3;
|
||||||
|
int32_t dst_shape[dst_ndims] = {2, 3, 4};
|
||||||
|
int32_t dst_strides[dst_ndims] = {};
|
||||||
|
NDArray<int32_t> dst_ndarray = {
|
||||||
|
.ndims = dst_ndims, .shape = dst_shape, .strides = dst_strides};
|
||||||
|
|
||||||
|
ndarray::broadcast::broadcast_to(&ndarray, &dst_ndarray);
|
||||||
|
|
||||||
|
assert_arrays_match(dst_ndims, ((int32_t[]){0, 0, 8}), dst_ndarray.strides);
|
||||||
|
|
||||||
|
assert_values_match(19.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 0, 0}))));
|
||||||
|
assert_values_match(29.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 0, 1}))));
|
||||||
|
assert_values_match(39.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 0, 2}))));
|
||||||
|
assert_values_match(49.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 0, 3}))));
|
||||||
|
assert_values_match(19.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 1, 0}))));
|
||||||
|
assert_values_match(29.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 1, 1}))));
|
||||||
|
assert_values_match(39.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 1, 2}))));
|
||||||
|
assert_values_match(49.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){0, 1, 3}))));
|
||||||
|
assert_values_match(49.9,
|
||||||
|
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, ((int32_t[]){1, 2, 3}))));
|
||||||
|
}
|
||||||
|
|
||||||
|
void run() {
|
||||||
|
test_can_broadcast_shape();
|
||||||
|
test_ndarray_broadcast();
|
||||||
|
}
|
||||||
|
} // namespace ndarray_broadcast
|
||||||
|
} // namespace test
|
|
@ -0,0 +1,165 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <test/includes.hpp>
|
||||||
|
|
||||||
|
namespace test {
|
||||||
|
namespace ndarray_indexing {
|
||||||
|
void test_normal_1() {
|
||||||
|
/*
|
||||||
|
Reference Python code:
|
||||||
|
```python
|
||||||
|
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
|
||||||
|
# array([[ 0., 1., 2., 3.],
|
||||||
|
# [ 4., 5., 6., 7.],
|
||||||
|
# [ 8., 9., 10., 11.]])
|
||||||
|
|
||||||
|
dst_ndarray = ndarray[-2:, 1::2]
|
||||||
|
# array([[ 5., 7.],
|
||||||
|
# [ 9., 11.]])
|
||||||
|
|
||||||
|
assert dst_ndarray.shape == (2, 2)
|
||||||
|
assert dst_ndarray.strides == (32, 16)
|
||||||
|
assert dst_ndarray[0, 0] == 5.0
|
||||||
|
assert dst_ndarray[0, 1] == 7.0
|
||||||
|
assert dst_ndarray[1, 0] == 9.0
|
||||||
|
assert dst_ndarray[1, 1] == 11.0
|
||||||
|
```
|
||||||
|
*/
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
// Prepare src_ndarray
|
||||||
|
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
|
||||||
|
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
|
||||||
|
int64_t src_itemsize = sizeof(double);
|
||||||
|
const int64_t src_ndims = 2;
|
||||||
|
int64_t src_shape[src_ndims] = {3, 4};
|
||||||
|
int64_t src_strides[src_ndims] = {};
|
||||||
|
NDArray<int64_t> src_ndarray = {.data = (uint8_t *)src_data,
|
||||||
|
.itemsize = src_itemsize,
|
||||||
|
.ndims = src_ndims,
|
||||||
|
.shape = src_shape,
|
||||||
|
.strides = src_strides};
|
||||||
|
ndarray::basic::set_strides_by_shape(&src_ndarray);
|
||||||
|
|
||||||
|
// Prepare dst_ndarray
|
||||||
|
const int64_t dst_ndims = 2;
|
||||||
|
int64_t dst_shape[dst_ndims] = {999, 999}; // Empty values
|
||||||
|
int64_t dst_strides[dst_ndims] = {999, 999}; // Empty values
|
||||||
|
NDArray<int64_t> dst_ndarray = {.data = nullptr,
|
||||||
|
.ndims = dst_ndims,
|
||||||
|
.shape = dst_shape,
|
||||||
|
.strides = dst_strides};
|
||||||
|
|
||||||
|
// Create the subscripts in `ndarray[-2::, 1::2]`
|
||||||
|
UserSlice subscript_1;
|
||||||
|
subscript_1.set_start(-2);
|
||||||
|
|
||||||
|
UserSlice subscript_2;
|
||||||
|
subscript_2.set_start(1);
|
||||||
|
subscript_2.set_step(2);
|
||||||
|
|
||||||
|
const int64_t num_indexes = 2;
|
||||||
|
NDIndex indexes[num_indexes] = {
|
||||||
|
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_1},
|
||||||
|
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
|
||||||
|
|
||||||
|
ndarray::indexing::index(num_indexes, indexes, &src_ndarray, &dst_ndarray);
|
||||||
|
|
||||||
|
int64_t expected_shape[dst_ndims] = {2, 2};
|
||||||
|
int64_t expected_strides[dst_ndims] = {32, 16};
|
||||||
|
|
||||||
|
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
|
||||||
|
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
|
||||||
|
|
||||||
|
// dst_ndarray[0, 0]
|
||||||
|
assert_values_match(5.0,
|
||||||
|
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, (int64_t[dst_ndims]){0, 0})));
|
||||||
|
// dst_ndarray[0, 1]
|
||||||
|
assert_values_match(7.0,
|
||||||
|
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, (int64_t[dst_ndims]){0, 1})));
|
||||||
|
// dst_ndarray[1, 0]
|
||||||
|
assert_values_match(9.0,
|
||||||
|
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, (int64_t[dst_ndims]){1, 0})));
|
||||||
|
// dst_ndarray[1, 1]
|
||||||
|
assert_values_match(11.0,
|
||||||
|
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, (int64_t[dst_ndims]){1, 1})));
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_normal_2() {
|
||||||
|
/*
|
||||||
|
```python
|
||||||
|
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
|
||||||
|
# array([[ 0., 1., 2., 3.],
|
||||||
|
# [ 4., 5., 6., 7.],
|
||||||
|
# [ 8., 9., 10., 11.]])
|
||||||
|
|
||||||
|
dst_ndarray = ndarray[2, ::-2]
|
||||||
|
# array([11., 9.])
|
||||||
|
|
||||||
|
assert dst_ndarray.shape == (2,)
|
||||||
|
assert dst_ndarray.strides == (-16,)
|
||||||
|
assert dst_ndarray[0] == 11.0
|
||||||
|
assert dst_ndarray[1] == 9.0
|
||||||
|
```
|
||||||
|
*/
|
||||||
|
BEGIN_TEST();
|
||||||
|
|
||||||
|
// Prepare src_ndarray
|
||||||
|
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
|
||||||
|
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
|
||||||
|
int64_t src_itemsize = sizeof(double);
|
||||||
|
const int64_t src_ndims = 2;
|
||||||
|
int64_t src_shape[src_ndims] = {3, 4};
|
||||||
|
int64_t src_strides[src_ndims] = {};
|
||||||
|
NDArray<int64_t> src_ndarray = {.data = (uint8_t *)src_data,
|
||||||
|
.itemsize = src_itemsize,
|
||||||
|
.ndims = src_ndims,
|
||||||
|
.shape = src_shape,
|
||||||
|
.strides = src_strides};
|
||||||
|
ndarray::basic::set_strides_by_shape(&src_ndarray);
|
||||||
|
|
||||||
|
// Prepare dst_ndarray
|
||||||
|
const int64_t dst_ndims = 1;
|
||||||
|
int64_t dst_shape[dst_ndims] = {999}; // Empty values
|
||||||
|
int64_t dst_strides[dst_ndims] = {999}; // Empty values
|
||||||
|
NDArray<int64_t> dst_ndarray = {.data = nullptr,
|
||||||
|
.ndims = dst_ndims,
|
||||||
|
.shape = dst_shape,
|
||||||
|
.strides = dst_strides};
|
||||||
|
|
||||||
|
// Create the subscripts in `ndarray[2, ::-2]`
|
||||||
|
int64_t subscript_1 = 2;
|
||||||
|
|
||||||
|
UserSlice subscript_2;
|
||||||
|
subscript_2.set_step(-2);
|
||||||
|
|
||||||
|
const int64_t num_indexes = 2;
|
||||||
|
NDIndex indexes[num_indexes] = {
|
||||||
|
{.type = ND_INDEX_TYPE_SINGLE_ELEMENT, .data = (uint8_t *)&subscript_1},
|
||||||
|
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
|
||||||
|
|
||||||
|
ndarray::indexing::index(num_indexes, indexes, &src_ndarray, &dst_ndarray);
|
||||||
|
|
||||||
|
int64_t expected_shape[dst_ndims] = {2};
|
||||||
|
int64_t expected_strides[dst_ndims] = {-16};
|
||||||
|
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
|
||||||
|
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
|
||||||
|
|
||||||
|
assert_values_match(11.0,
|
||||||
|
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, (int64_t[dst_ndims]){0})));
|
||||||
|
assert_values_match(9.0,
|
||||||
|
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||||
|
&dst_ndarray, (int64_t[dst_ndims]){1})));
|
||||||
|
}
|
||||||
|
|
||||||
|
void run() {
|
||||||
|
test_normal_1();
|
||||||
|
test_normal_2();
|
||||||
|
}
|
||||||
|
} // namespace ndarray_indexing
|
||||||
|
} // namespace test
|
|
@ -0,0 +1,131 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdlib>
|
||||||
|
|
||||||
|
template <class T>
|
||||||
|
void print_value(const T& value);
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const bool& value) {
|
||||||
|
printf("%s", value ? "true" : "false");
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const int8_t& value) {
|
||||||
|
printf("%d", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const int32_t& value) {
|
||||||
|
printf("%d", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const int64_t& value) {
|
||||||
|
printf("%d", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const uint8_t& value) {
|
||||||
|
printf("%u", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const uint32_t& value) {
|
||||||
|
printf("%u", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const uint64_t& value) {
|
||||||
|
printf("%d", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const float& value) {
|
||||||
|
printf("%f", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void print_value(const double& value) {
|
||||||
|
printf("%f", value);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __begin_test(const char* function_name, const char* file, int line) {
|
||||||
|
printf("######### Running %s @ %s:%d\n", function_name, file, line);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
|
||||||
|
|
||||||
|
void test_fail() {
|
||||||
|
printf("[!] Test failed. Exiting with status code 1.\n");
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void debug_print_array(int len, const T* as) {
|
||||||
|
printf("[");
|
||||||
|
for (int i = 0; i < len; i++) {
|
||||||
|
if (i != 0) printf(", ");
|
||||||
|
print_value(as[i]);
|
||||||
|
}
|
||||||
|
printf("]");
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_assertion_passed(const char* file, int line) {
|
||||||
|
printf("[*] Assertion passed on %s:%d\n", file, line);
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_assertion_failed(const char* file, int line) {
|
||||||
|
printf("[!] Assertion failed on %s:%d\n", file, line);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __assert_true(const char* file, int line, bool cond) {
|
||||||
|
if (cond) {
|
||||||
|
print_assertion_passed(file, line);
|
||||||
|
} else {
|
||||||
|
print_assertion_failed(file, line);
|
||||||
|
test_fail();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define assert_true(cond) __assert_true(__FILE__, __LINE__, cond)
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void __assert_arrays_match(const char* file, int line, int len,
|
||||||
|
const T* expected, const T* got) {
|
||||||
|
if (arrays_match(len, expected, got)) {
|
||||||
|
print_assertion_passed(file, line);
|
||||||
|
} else {
|
||||||
|
print_assertion_failed(file, line);
|
||||||
|
printf("Expect = ");
|
||||||
|
debug_print_array(len, expected);
|
||||||
|
printf("\n");
|
||||||
|
printf(" Got = ");
|
||||||
|
debug_print_array(len, got);
|
||||||
|
printf("\n");
|
||||||
|
test_fail();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define assert_arrays_match(len, expected, got) \
|
||||||
|
__assert_arrays_match(__FILE__, __LINE__, len, expected, got)
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void __assert_values_match(const char* file, int line, T expected, T got) {
|
||||||
|
if (expected == got) {
|
||||||
|
print_assertion_passed(file, line);
|
||||||
|
} else {
|
||||||
|
print_assertion_failed(file, line);
|
||||||
|
printf("Expect = ");
|
||||||
|
print_value(expected);
|
||||||
|
printf("\n");
|
||||||
|
printf(" Got = ");
|
||||||
|
print_value(got);
|
||||||
|
printf("\n");
|
||||||
|
test_fail();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define assert_values_match(expected, got) \
|
||||||
|
__assert_values_match(__FILE__, __LINE__, expected, got)
|
File diff suppressed because it is too large
Load Diff
|
@ -2,7 +2,7 @@ use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{
|
classes::{
|
||||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
|
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
|
||||||
ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
ProxyValue, RangeValue, UntypedArrayLikeAccessor,
|
||||||
},
|
},
|
||||||
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
||||||
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
||||||
|
@ -12,6 +12,10 @@ use crate::{
|
||||||
call_memcpy_generic,
|
call_memcpy_generic,
|
||||||
},
|
},
|
||||||
need_sret, numpy,
|
need_sret, numpy,
|
||||||
|
object::{
|
||||||
|
ndarray::{scalar::split_scalar_or_ndarray, NDArrayObject, NDArrayOut},
|
||||||
|
AnyObject,
|
||||||
|
},
|
||||||
stmt::{
|
stmt::{
|
||||||
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
||||||
gen_var,
|
gen_var,
|
||||||
|
@ -19,11 +23,7 @@ use crate::{
|
||||||
CodeGenContext, CodeGenTask, CodeGenerator,
|
CodeGenContext, CodeGenTask, CodeGenerator,
|
||||||
},
|
},
|
||||||
symbol_resolver::{SymbolValue, ValueEnum},
|
symbol_resolver::{SymbolValue, ValueEnum},
|
||||||
toplevel::{
|
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
|
||||||
helper::PrimDef,
|
|
||||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
|
||||||
DefinitionId, TopLevelDef,
|
|
||||||
},
|
|
||||||
typecheck::{
|
typecheck::{
|
||||||
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
||||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
||||||
|
@ -32,7 +32,7 @@ use crate::{
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
types::{AnyType, BasicType, BasicTypeEnum},
|
types::{AnyType, BasicType, BasicTypeEnum},
|
||||||
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
|
values::{BasicValue, BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue},
|
||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::{chain, izip, Either, Itertools};
|
use itertools::{chain, izip, Either, Itertools};
|
||||||
|
@ -43,6 +43,12 @@ use nac3parser::ast::{
|
||||||
use std::iter::{repeat, repeat_with};
|
use std::iter::{repeat, repeat_with};
|
||||||
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
||||||
|
|
||||||
|
use super::{
|
||||||
|
model::*,
|
||||||
|
object::ndarray::indexing::util::gen_ndarray_subscript_ndindexes,
|
||||||
|
structure::{CSlice, Exception, ExceptionId},
|
||||||
|
};
|
||||||
|
|
||||||
pub fn get_subst_key(
|
pub fn get_subst_key(
|
||||||
unifier: &mut Unifier,
|
unifier: &mut Unifier,
|
||||||
obj: Option<Type>,
|
obj: Option<Type>,
|
||||||
|
@ -298,31 +304,14 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
None
|
None
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Constant::Str(v) => {
|
Constant::Str(s) => Some(self.gen_string(generator, s).value.into()),
|
||||||
assert!(self.unifier.unioned(ty, self.primitives.str));
|
|
||||||
if let Some(v) = self.const_strings.get(v) {
|
|
||||||
Some(*v)
|
|
||||||
} else {
|
|
||||||
let str_ptr = self
|
|
||||||
.builder
|
|
||||||
.build_global_string_ptr(v, "const")
|
|
||||||
.map(|v| v.as_pointer_value().into())
|
|
||||||
.unwrap();
|
|
||||||
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
||||||
let ty = self.get_llvm_type(generator, self.primitives.str);
|
|
||||||
let val =
|
|
||||||
ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into();
|
|
||||||
self.const_strings.insert(v.to_string(), val);
|
|
||||||
Some(val)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Constant::Ellipsis => {
|
Constant::Ellipsis => {
|
||||||
let msg = self.gen_string(generator, "NotImplementedError");
|
let msg = self.gen_string(generator, "NotImplementedError");
|
||||||
|
|
||||||
self.raise_exn(
|
self.raise_exn(
|
||||||
generator,
|
generator,
|
||||||
"0:NotImplementedError",
|
"0:NotImplementedError",
|
||||||
msg.into(),
|
msg,
|
||||||
[None, None, None],
|
[None, None, None],
|
||||||
self.current_loc,
|
self.current_loc,
|
||||||
);
|
);
|
||||||
|
@ -582,98 +571,107 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Helper function for generating a LLVM variable storing a [String].
|
/// Helper function for generating a LLVM variable storing a [String].
|
||||||
pub fn gen_string<G, S>(&mut self, generator: &mut G, s: S) -> StructValue<'ctx>
|
pub fn gen_string<G>(&mut self, generator: &mut G, string: &str) -> Struct<'ctx, CSlice>
|
||||||
where
|
where
|
||||||
G: CodeGenerator + ?Sized,
|
G: CodeGenerator + ?Sized,
|
||||||
S: Into<String>,
|
|
||||||
{
|
{
|
||||||
self.gen_const(generator, &Constant::Str(s.into()), self.primitives.str)
|
self.const_strings.get(string).copied().unwrap_or_else(|| {
|
||||||
.map(BasicValueEnum::into_struct_value)
|
let sizet_model = IntModel(SizeT);
|
||||||
.unwrap()
|
let pbyte_model = PtrModel(IntModel(Byte));
|
||||||
|
let cslice_model = StructModel(CSlice);
|
||||||
|
|
||||||
|
let base = self.builder.build_global_string_ptr(string, "constant_string").unwrap();
|
||||||
|
let base = pbyte_model.believe_value(base.as_pointer_value());
|
||||||
|
|
||||||
|
let len = sizet_model.constant(generator, self.ctx, string.len() as u64);
|
||||||
|
|
||||||
|
let cslice = cslice_model.create_const(generator, self.ctx, base, len);
|
||||||
|
|
||||||
|
self.const_strings.insert(string.to_owned(), cslice);
|
||||||
|
|
||||||
|
cslice
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn raise_exn<G: CodeGenerator + ?Sized>(
|
pub fn raise_exn<G: CodeGenerator + ?Sized>(
|
||||||
&mut self,
|
&mut self,
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
name: &str,
|
name: &str,
|
||||||
msg: BasicValueEnum<'ctx>,
|
msg: Struct<'ctx, CSlice>,
|
||||||
params: [Option<IntValue<'ctx>>; 3],
|
params: [Option<Int<'ctx, Int64>>; 3],
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
let zelf = if let Some(exception_val) = self.exception_val {
|
let exn_model = StructModel(Exception);
|
||||||
exception_val
|
let exn_id_model = IntModel(ExceptionId::default());
|
||||||
} else {
|
|
||||||
let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type();
|
let exn_id =
|
||||||
let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into();
|
exn_id_model.constant(generator, self.ctx, self.resolver.get_string_id(name) as u64);
|
||||||
let zelf = generator.gen_var_alloc(self, zelf_ty, Some("exn")).unwrap();
|
let exn = self.exception_val.unwrap_or_else(|| {
|
||||||
*self.exception_val.insert(zelf)
|
let exn = exn_model.var_alloca(generator, self, Some("exn")).unwrap();
|
||||||
};
|
*self.exception_val.insert(exn)
|
||||||
let int32 = self.ctx.i32_type();
|
|
||||||
let zero = int32.const_zero();
|
|
||||||
unsafe {
|
|
||||||
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
|
|
||||||
let id = self.resolver.get_string_id(name);
|
|
||||||
self.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
|
|
||||||
let ptr = self
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
|
|
||||||
.unwrap();
|
|
||||||
self.builder.build_store(ptr, msg).unwrap();
|
|
||||||
let i64_zero = self.ctx.i64_type().const_zero();
|
|
||||||
for (i, attr_ind) in [6, 7, 8].iter().enumerate() {
|
|
||||||
let ptr = self
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
zelf,
|
|
||||||
&[zero, int32.const_int(*attr_ind, false)],
|
|
||||||
"exn.param",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
let val = params[i].map_or(i64_zero, |v| {
|
|
||||||
self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext").unwrap()
|
|
||||||
});
|
});
|
||||||
self.builder.build_store(ptr, val).unwrap();
|
|
||||||
|
exn.set(self, |f| f.id, exn_id);
|
||||||
|
exn.set(self, |f| f.msg, msg);
|
||||||
|
for (i, param) in params.iter().enumerate() {
|
||||||
|
if let Some(param) = param {
|
||||||
|
exn.set(self, |f| f.params[i], *param);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
gen_raise(generator, self, Some(&zelf.into()), loc);
|
|
||||||
|
gen_raise(generator, self, Some(exn), loc);
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn make_assert<G: CodeGenerator + ?Sized>(
|
pub fn make_assert<G: CodeGenerator + ?Sized>(
|
||||||
&mut self,
|
&mut self,
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
cond: IntValue<'ctx>,
|
cond: IntValue<'ctx>, // IntType can have arbitrary bit width
|
||||||
err_name: &str,
|
err_name: &str,
|
||||||
err_msg: &str,
|
err_msg: &str,
|
||||||
params: [Option<IntValue<'ctx>>; 3],
|
params: [Option<IntValue<'ctx>>; 3],
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
|
let param_model = IntModel(Int64);
|
||||||
|
let params = params
|
||||||
|
.map(|p| p.map(|p| param_model.s_extend_or_bit_cast(generator, self, p, "param")));
|
||||||
|
|
||||||
let err_msg = self.gen_string(generator, err_msg);
|
let err_msg = self.gen_string(generator, err_msg);
|
||||||
self.make_assert_impl(generator, cond, err_name, err_msg.into(), params, loc);
|
self.make_assert_impl(generator, cond, err_name, err_msg, params, loc);
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn make_assert_impl<G: CodeGenerator + ?Sized>(
|
pub fn make_assert_impl<G: CodeGenerator + ?Sized>(
|
||||||
&mut self,
|
&mut self,
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
cond: IntValue<'ctx>,
|
cond: IntValue<'ctx>, // IntType can have arbitrary bit width
|
||||||
err_name: &str,
|
err_name: &str,
|
||||||
err_msg: BasicValueEnum<'ctx>,
|
err_msg: Struct<'ctx, CSlice>,
|
||||||
params: [Option<IntValue<'ctx>>; 3],
|
params: [Option<Int<'ctx, Int64>>; 3],
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
let i1 = self.ctx.bool_type();
|
let bool_model = IntModel(Bool);
|
||||||
let i1_true = i1.const_all_ones();
|
|
||||||
// we assume that the condition is most probably true, so the normal path is the most
|
// We assume that the condition is most probably true, so the normal path is the most
|
||||||
// probable path
|
// probable path even if this assumption is violated, it does not matter as exception unwinding is.
|
||||||
// even if this assumption is violated, it does not matter as exception unwinding is
|
let cond = call_expect(
|
||||||
// slow anyway...
|
self,
|
||||||
let cond = call_expect(self, cond, i1_true, Some("expect"));
|
generator.bool_to_i1(self, cond),
|
||||||
|
bool_model.const_true(generator, self.ctx).value,
|
||||||
|
Some("expect"),
|
||||||
|
);
|
||||||
|
|
||||||
let current_bb = self.builder.get_insert_block().unwrap();
|
let current_bb = self.builder.get_insert_block().unwrap();
|
||||||
let current_fun = current_bb.get_parent().unwrap();
|
let current_fun = current_bb.get_parent().unwrap();
|
||||||
|
|
||||||
let then_block = self.ctx.insert_basic_block_after(current_bb, "succ");
|
let then_block = self.ctx.insert_basic_block_after(current_bb, "succ");
|
||||||
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
|
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
|
||||||
|
|
||||||
self.builder.build_conditional_branch(cond, then_block, exn_block).unwrap();
|
self.builder.build_conditional_branch(cond, then_block, exn_block).unwrap();
|
||||||
|
|
||||||
|
// Inserting into `exn_block`
|
||||||
self.builder.position_at_end(exn_block);
|
self.builder.position_at_end(exn_block);
|
||||||
self.raise_exn(generator, err_name, err_msg, params, loc);
|
self.raise_exn(generator, err_name, err_msg, params, loc);
|
||||||
|
|
||||||
|
// Continuation
|
||||||
self.builder.position_at_end(then_block);
|
self.builder.position_at_end(then_block);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1539,99 +1537,52 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
{
|
{
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let left = AnyObject { ty: ty1, value: left_val };
|
||||||
|
let right = AnyObject { ty: ty1, value: right_val };
|
||||||
|
|
||||||
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
let left = split_scalar_or_ndarray(generator, ctx, left).as_ndarray(generator, ctx);
|
||||||
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
let right = split_scalar_or_ndarray(generator, ctx, right).as_ndarray(generator, ctx);
|
||||||
|
|
||||||
if is_ndarray1 && is_ndarray2 {
|
debug_assert!(ctx.unifier.unioned(left.dtype, right.dtype)); // Typechecker ensures this.
|
||||||
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
|
|
||||||
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
|
|
||||||
|
|
||||||
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
let common_dtype = left.dtype;
|
||||||
|
|
||||||
let left_val =
|
let out = match op.variant {
|
||||||
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None);
|
BinopVariant::Normal => NDArrayOut::NewNDArray { dtype: common_dtype },
|
||||||
let right_val =
|
BinopVariant::AugAssign => NDArrayOut::WriteToNDArray { ndarray: left },
|
||||||
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None);
|
|
||||||
|
|
||||||
let res = if op.base == Operator::MatMult {
|
|
||||||
// MatMult is the only binop which is not an elementwise op
|
|
||||||
numpy::ndarray_matmul_2d(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
ndarray_dtype1,
|
|
||||||
match op.variant {
|
|
||||||
BinopVariant::Normal => None,
|
|
||||||
BinopVariant::AugAssign => Some(left_val),
|
|
||||||
},
|
|
||||||
left_val,
|
|
||||||
right_val,
|
|
||||||
)?
|
|
||||||
} else {
|
|
||||||
numpy::ndarray_elementwise_binop_impl(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
ndarray_dtype1,
|
|
||||||
match op.variant {
|
|
||||||
BinopVariant::Normal => None,
|
|
||||||
BinopVariant::AugAssign => Some(left_val),
|
|
||||||
},
|
|
||||||
(left_val.as_base_value().into(), false),
|
|
||||||
(right_val.as_base_value().into(), false),
|
|
||||||
|generator, ctx, (lhs, rhs)| {
|
|
||||||
gen_binop_expr_with_values(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
(&Some(ndarray_dtype1), lhs),
|
|
||||||
op,
|
|
||||||
(&Some(ndarray_dtype2), rhs),
|
|
||||||
ctx.current_loc,
|
|
||||||
)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ndarray_dtype1,
|
|
||||||
)
|
|
||||||
},
|
|
||||||
)?
|
|
||||||
};
|
};
|
||||||
|
|
||||||
Ok(Some(res.as_base_value().into()))
|
if op.base == Operator::MatMult {
|
||||||
|
// Handle `left @ right`
|
||||||
|
let result = NDArrayObject::matmul(generator, ctx, left, right, out)
|
||||||
|
.split_unsized(generator, ctx);
|
||||||
|
Ok(Some(ValueEnum::Dynamic(result.to_basic_value_enum())))
|
||||||
} else {
|
} else {
|
||||||
let (ndarray_dtype, _) =
|
// For other operators like +, -, etc...; do them element-wise-ly
|
||||||
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
|
let result = NDArrayObject::broadcasting_starmap(
|
||||||
let ndarray_val = NDArrayValue::from_ptr_val(
|
|
||||||
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
|
|
||||||
llvm_usize,
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
let res = numpy::ndarray_elementwise_binop_impl(
|
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
ndarray_dtype,
|
&[left, right],
|
||||||
match op.variant {
|
out,
|
||||||
BinopVariant::Normal => None,
|
|generator, ctx, scalars| {
|
||||||
BinopVariant::AugAssign => Some(ndarray_val),
|
let left_scalar = scalars[0];
|
||||||
},
|
let right_scalar = scalars[1];
|
||||||
(left_val, !is_ndarray1),
|
|
||||||
(right_val, !is_ndarray2),
|
let result = gen_binop_expr_with_values(
|
||||||
|generator, ctx, (lhs, rhs)| {
|
|
||||||
gen_binop_expr_with_values(
|
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
(&Some(ndarray_dtype), lhs),
|
(&Some(left_scalar.ty), left_scalar.value),
|
||||||
op,
|
op,
|
||||||
(&Some(ndarray_dtype), rhs),
|
(&Some(right_scalar.ty), right_scalar.value),
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
)?
|
)?
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
.to_basic_value_enum(ctx, generator, common_dtype)?;
|
||||||
|
|
||||||
|
Ok(AnyObject { value: result, ty: common_dtype })
|
||||||
},
|
},
|
||||||
)?;
|
)?;
|
||||||
|
Ok(Some(ValueEnum::Dynamic(result.instance.value.as_basic_value_enum())))
|
||||||
Ok(Some(res.as_base_value().into()))
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
||||||
|
@ -1722,6 +1673,7 @@ pub fn gen_binop_expr<'ctx, G: CodeGenerator>(
|
||||||
|
|
||||||
/// Generates LLVM IR for a unary operator expression using the [`Type`] and
|
/// Generates LLVM IR for a unary operator expression using the [`Type`] and
|
||||||
/// [LLVM value][`BasicValueEnum`] of the operands.
|
/// [LLVM value][`BasicValueEnum`] of the operands.
|
||||||
|
#[allow(clippy::only_used_in_recursion)]
|
||||||
pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
@ -1789,40 +1741,42 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||||
_ => val.into(),
|
_ => val.into(),
|
||||||
}
|
}
|
||||||
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
todo!()
|
||||||
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
|
||||||
|
|
||||||
let val = NDArrayValue::from_ptr_val(val.into_pointer_value(), llvm_usize, None);
|
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
// let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||||
|
|
||||||
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
// let val = NDArrayValue::from_ptr_val(val.into_pointer_value(), llvm_usize, None);
|
||||||
// passing it to the elementwise codegen function
|
|
||||||
let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
|
||||||
if op == ast::Unaryop::Invert {
|
|
||||||
ast::Unaryop::Not
|
|
||||||
} else {
|
|
||||||
unreachable!(
|
|
||||||
"ufunc {} not supported for ndarray[bool, N]",
|
|
||||||
op.op_info().method_name,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
op
|
|
||||||
};
|
|
||||||
|
|
||||||
let res = numpy::ndarray_elementwise_unaryop_impl(
|
// // ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
||||||
generator,
|
// // passing it to the elementwise codegen function
|
||||||
ctx,
|
// let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
||||||
ndarray_dtype,
|
// if op == ast::Unaryop::Invert {
|
||||||
None,
|
// ast::Unaryop::Not
|
||||||
val,
|
// } else {
|
||||||
|generator, ctx, val| {
|
// unreachable!(
|
||||||
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
|
// "ufunc {} not supported for ndarray[bool, N]",
|
||||||
.unwrap()
|
// op.op_info().method_name,
|
||||||
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
// )
|
||||||
},
|
// }
|
||||||
)?;
|
// } else {
|
||||||
|
// op
|
||||||
|
// };
|
||||||
|
|
||||||
res.as_base_value().into()
|
// let res = numpy::ndarray_elementwise_unaryop_impl(
|
||||||
|
// generator,
|
||||||
|
// ctx,
|
||||||
|
// ndarray_dtype,
|
||||||
|
// None,
|
||||||
|
// val,
|
||||||
|
// |generator, ctx, val| {
|
||||||
|
// gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
|
||||||
|
// .unwrap()
|
||||||
|
// .to_basic_value_enum(ctx, generator, ndarray_dtype)
|
||||||
|
// },
|
||||||
|
// )?;
|
||||||
|
|
||||||
|
// res.as_base_value().into()
|
||||||
} else {
|
} else {
|
||||||
unimplemented!()
|
unimplemented!()
|
||||||
}))
|
}))
|
||||||
|
@ -2266,338 +2220,6 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates code for a subscript expression on an `ndarray`.
|
|
||||||
///
|
|
||||||
/// * `ty` - The `Type` of the `NDArray` elements.
|
|
||||||
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
|
|
||||||
/// * `v` - The `NDArray` value.
|
|
||||||
/// * `slice` - The slice expression used to subscript into the `ndarray`.
|
|
||||||
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ty: Type,
|
|
||||||
ndims: Type,
|
|
||||||
v: NDArrayValue<'ctx>,
|
|
||||||
slice: &Expr<Option<Type>>,
|
|
||||||
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
||||||
let llvm_i1 = ctx.ctx.bool_type();
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
|
|
||||||
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
|
|
||||||
unreachable!()
|
|
||||||
};
|
|
||||||
|
|
||||||
let ndims = values
|
|
||||||
.iter()
|
|
||||||
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
|
|
||||||
.collect::<Result<Vec<_>, _>>()
|
|
||||||
.map_err(|val| {
|
|
||||||
format!(
|
|
||||||
"Expected non-negative literal for ndarray.ndims, got {}",
|
|
||||||
i128::try_from(val).unwrap()
|
|
||||||
)
|
|
||||||
})?;
|
|
||||||
|
|
||||||
assert!(!ndims.is_empty());
|
|
||||||
|
|
||||||
// The number of dimensions subscripted by the index expression.
|
|
||||||
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
|
|
||||||
// dimension will remove a dimension.
|
|
||||||
let subscripted_dims = match &slice.node {
|
|
||||||
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
|
|
||||||
if let ExprKind::Slice { .. } = &value_subexpr.node {
|
|
||||||
acc
|
|
||||||
} else {
|
|
||||||
acc + 1
|
|
||||||
}
|
|
||||||
}),
|
|
||||||
|
|
||||||
ExprKind::Slice { .. } => 0,
|
|
||||||
_ => 1,
|
|
||||||
};
|
|
||||||
|
|
||||||
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
|
|
||||||
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
let ndarray_ty =
|
|
||||||
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
|
|
||||||
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
|
||||||
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
|
||||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
|
|
||||||
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
|
|
||||||
|
|
||||||
// Check that len is non-zero
|
|
||||||
let len = v.load_ndims(ctx);
|
|
||||||
ctx.make_assert(
|
|
||||||
generator,
|
|
||||||
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
|
|
||||||
"0:IndexError",
|
|
||||||
"too many indices for array: array is {0}-dimensional but 1 were indexed",
|
|
||||||
[Some(len), None, None],
|
|
||||||
slice.location,
|
|
||||||
);
|
|
||||||
|
|
||||||
// Normalizes a possibly-negative index to its corresponding positive index
|
|
||||||
let normalize_index = |generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
index: IntValue<'ctx>,
|
|
||||||
dim: u64| {
|
|
||||||
gen_if_else_expr_callback(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
|_, ctx| {
|
|
||||||
Ok(ctx
|
|
||||||
.builder
|
|
||||||
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
|
|
||||||
.unwrap())
|
|
||||||
},
|
|
||||||
|_, _| Ok(Some(index)),
|
|
||||||
|generator, ctx| {
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
|
|
||||||
let len = unsafe {
|
|
||||||
v.dim_sizes().get_typed_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(dim, true),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
let index = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_add(
|
|
||||||
len,
|
|
||||||
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
|
|
||||||
},
|
|
||||||
)
|
|
||||||
.map(|v| v.map(BasicValueEnum::into_int_value))
|
|
||||||
};
|
|
||||||
|
|
||||||
// Converts a slice expression into a slice-range tuple
|
|
||||||
let expr_to_slice = |generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
node: &ExprKind<Option<Type>>,
|
|
||||||
dim: u64| {
|
|
||||||
match node {
|
|
||||||
ExprKind::Constant { value: Constant::Int(v), .. } => {
|
|
||||||
let Some(index) =
|
|
||||||
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
|
|
||||||
else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
|
||||||
}
|
|
||||||
|
|
||||||
ExprKind::Slice { lower, upper, step } => {
|
|
||||||
let dim_sz = unsafe {
|
|
||||||
v.dim_sizes().get_typed_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(dim, false),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
|
|
||||||
}
|
|
||||||
|
|
||||||
_ => {
|
|
||||||
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
|
|
||||||
let index = index
|
|
||||||
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
|
||||||
.into_int_value();
|
|
||||||
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
let make_indices_arr = |generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>|
|
|
||||||
-> Result<_, String> {
|
|
||||||
Ok(if let ExprKind::Tuple { elts, .. } = &slice.node {
|
|
||||||
let llvm_int_ty = ctx.get_llvm_type(generator, elts[0].custom.unwrap());
|
|
||||||
let index_addr = generator.gen_array_var_alloc(
|
|
||||||
ctx,
|
|
||||||
llvm_int_ty,
|
|
||||||
llvm_usize.const_int(elts.len() as u64, false),
|
|
||||||
None,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
for (i, elt) in elts.iter().enumerate() {
|
|
||||||
let Some(index) = generator.gen_expr(ctx, elt)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
let index = index
|
|
||||||
.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?
|
|
||||||
.into_int_value();
|
|
||||||
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
let store_ptr = unsafe {
|
|
||||||
index_addr.ptr_offset_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(i as u64, false),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
ctx.builder.build_store(store_ptr, index).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
Some(index_addr)
|
|
||||||
} else if let Some(index) = generator.gen_expr(ctx, slice)? {
|
|
||||||
let llvm_int_ty = ctx.get_llvm_type(generator, slice.custom.unwrap());
|
|
||||||
let index_addr = generator.gen_array_var_alloc(
|
|
||||||
ctx,
|
|
||||||
llvm_int_ty,
|
|
||||||
llvm_usize.const_int(1u64, false),
|
|
||||||
None,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let index =
|
|
||||||
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
|
|
||||||
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
|
|
||||||
|
|
||||||
let store_ptr = unsafe {
|
|
||||||
index_addr.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
|
||||||
};
|
|
||||||
ctx.builder.build_store(store_ptr, index).unwrap();
|
|
||||||
|
|
||||||
Some(index_addr)
|
|
||||||
} else {
|
|
||||||
None
|
|
||||||
})
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some(if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
|
|
||||||
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
|
||||||
|
|
||||||
v.data().get(ctx, generator, &index_addr, None).into()
|
|
||||||
} else {
|
|
||||||
match &slice.node {
|
|
||||||
ExprKind::Tuple { elts, .. } => {
|
|
||||||
let slices = elts
|
|
||||||
.iter()
|
|
||||||
.enumerate()
|
|
||||||
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
|
|
||||||
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
|
|
||||||
.collect::<Result<Vec<_>, _>>()?;
|
|
||||||
if slices.len() < elts.len() {
|
|
||||||
return Ok(None);
|
|
||||||
}
|
|
||||||
|
|
||||||
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
|
|
||||||
|
|
||||||
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
|
|
||||||
}
|
|
||||||
|
|
||||||
ExprKind::Slice { .. } => {
|
|
||||||
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
|
|
||||||
return Ok(None);
|
|
||||||
};
|
|
||||||
|
|
||||||
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
|
|
||||||
}
|
|
||||||
|
|
||||||
_ => {
|
|
||||||
// Accessing an element from a multi-dimensional `ndarray`
|
|
||||||
|
|
||||||
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
|
||||||
|
|
||||||
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
|
||||||
// elements over
|
|
||||||
let subscripted_ndarray =
|
|
||||||
generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
|
|
||||||
let ndarray = NDArrayValue::from_ptr_val(subscripted_ndarray, llvm_usize, None);
|
|
||||||
|
|
||||||
let num_dims = v.load_ndims(ctx);
|
|
||||||
ndarray.store_ndims(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
|
|
||||||
.unwrap(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
||||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(
|
|
||||||
ndarray.load_ndims(ctx),
|
|
||||||
llvm_usize.size_of().get_type(),
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
let v_dims_src_ptr = unsafe {
|
|
||||||
v.dim_sizes().ptr_offset_unchecked(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
&llvm_usize.const_int(1, false),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
call_memcpy_generic(
|
|
||||||
ctx,
|
|
||||||
ndarray.dim_sizes().base_ptr(ctx, generator),
|
|
||||||
v_dims_src_ptr,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
|
|
||||||
.map(Into::into)
|
|
||||||
.unwrap(),
|
|
||||||
llvm_i1.const_zero(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_num_elems = call_ndarray_calc_size(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
|
||||||
(None, None),
|
|
||||||
);
|
|
||||||
let ndarray_num_elems = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
|
|
||||||
.unwrap();
|
|
||||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
|
||||||
|
|
||||||
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
|
|
||||||
call_memcpy_generic(
|
|
||||||
ctx,
|
|
||||||
ndarray.data().base_ptr(ctx, generator),
|
|
||||||
v_data_src_ptr,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_mul(
|
|
||||||
ndarray_num_elems,
|
|
||||||
llvm_ndarray_data_t.size_of().unwrap(),
|
|
||||||
"",
|
|
||||||
)
|
|
||||||
.map(Into::into)
|
|
||||||
.unwrap(),
|
|
||||||
llvm_i1.const_zero(),
|
|
||||||
);
|
|
||||||
|
|
||||||
ndarray.as_base_value().into()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// See [`CodeGenerator::gen_expr`].
|
/// See [`CodeGenerator::gen_expr`].
|
||||||
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
|
@ -3069,7 +2691,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
ctx.raise_exn(
|
ctx.raise_exn(
|
||||||
generator,
|
generator,
|
||||||
"0:UnwrapNoneError",
|
"0:UnwrapNoneError",
|
||||||
err_msg.into(),
|
err_msg,
|
||||||
[None, None, None],
|
[None, None, None],
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
);
|
);
|
||||||
|
@ -3237,18 +2859,23 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
v.data().get(ctx, generator, &index, None).into()
|
v.data().get(ctx, generator, &index, None).into()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
let Some(ndarray) = generator.gen_expr(ctx, value)? else {
|
||||||
|
|
||||||
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
|
||||||
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
|
||||||
.into_pointer_value()
|
|
||||||
} else {
|
|
||||||
return Ok(None);
|
return Ok(None);
|
||||||
};
|
};
|
||||||
let v = NDArrayValue::from_ptr_val(v, usize, None);
|
|
||||||
|
|
||||||
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
|
let ndarray_ty = value.custom.unwrap();
|
||||||
|
let ndarray = ndarray.to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
|
let indexes = gen_ndarray_subscript_ndindexes(generator, ctx, slice)?;
|
||||||
|
let result = ndarray
|
||||||
|
.index(generator, ctx, &indexes, "index_result")
|
||||||
|
.split_unsized(generator, ctx)
|
||||||
|
.to_basic_value_enum();
|
||||||
|
return Ok(Some(ValueEnum::Dynamic(result)));
|
||||||
}
|
}
|
||||||
TypeEnum::TTuple { .. } => {
|
TypeEnum::TTuple { .. } => {
|
||||||
let index: u32 =
|
let index: u32 =
|
||||||
|
@ -3291,3 +2918,44 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
_ => unimplemented!(),
|
_ => unimplemented!(),
|
||||||
}))
|
}))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Generate LLVM IR for an [`ExprKind::Slice`]
|
||||||
|
#[allow(clippy::type_complexity)]
|
||||||
|
pub fn gen_slice<'ctx, G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
lower: &Option<Box<Expr<Option<Type>>>>,
|
||||||
|
upper: &Option<Box<Expr<Option<Type>>>>,
|
||||||
|
step: &Option<Box<Expr<Option<Type>>>>,
|
||||||
|
) -> Result<
|
||||||
|
(
|
||||||
|
Option<Instance<'ctx, IntModel<Int32>>>,
|
||||||
|
Option<Instance<'ctx, IntModel<Int32>>>,
|
||||||
|
Option<Instance<'ctx, IntModel<Int32>>>,
|
||||||
|
),
|
||||||
|
String,
|
||||||
|
> {
|
||||||
|
let i32_model = IntModel(Int32); // TODO: Switch to usize
|
||||||
|
|
||||||
|
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
|
||||||
|
Ok(match value_expr {
|
||||||
|
None => None,
|
||||||
|
Some(value_expr) => {
|
||||||
|
let value_expr = generator
|
||||||
|
.gen_expr(ctx, value_expr)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
|
||||||
|
|
||||||
|
let value_expr = i32_model.check_value(generator, ctx.ctx, value_expr).unwrap();
|
||||||
|
|
||||||
|
Some(value_expr)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
};
|
||||||
|
|
||||||
|
let lower = help(lower)?;
|
||||||
|
let upper = help(upper)?;
|
||||||
|
let step = help(step)?;
|
||||||
|
|
||||||
|
Ok((lower, upper, step))
|
||||||
|
}
|
||||||
|
|
|
@ -1,5 +1,12 @@
|
||||||
|
use crate::symbol_resolver::SymbolResolver;
|
||||||
use crate::typecheck::typedef::Type;
|
use crate::typecheck::typedef::Type;
|
||||||
|
|
||||||
|
mod test;
|
||||||
|
|
||||||
|
use super::model::*;
|
||||||
|
use super::object::ndarray::broadcast::ShapeEntry;
|
||||||
|
use super::object::ndarray::indexing::{NDIndex, UserSlice};
|
||||||
|
use super::structure::{List, NDArray, NDIter};
|
||||||
use super::{
|
use super::{
|
||||||
classes::{
|
classes::{
|
||||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
|
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
|
||||||
|
@ -9,6 +16,8 @@ use super::{
|
||||||
};
|
};
|
||||||
use crate::codegen::classes::TypedArrayLikeAccessor;
|
use crate::codegen::classes::TypedArrayLikeAccessor;
|
||||||
use crate::codegen::stmt::gen_for_callback_incrementing;
|
use crate::codegen::stmt::gen_for_callback_incrementing;
|
||||||
|
use function::{get_sizet_dependent_function_name, CallFunction};
|
||||||
|
use inkwell::values::BasicValue;
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
context::Context,
|
context::Context,
|
||||||
|
@ -414,14 +423,27 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
.unwrap();
|
.unwrap();
|
||||||
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
|
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
|
||||||
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
|
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
|
||||||
|
|
||||||
|
// TODO: Temporary fix. Rewrite `list_slice_assignment` later
|
||||||
|
// Exception params should have been i64
|
||||||
|
{
|
||||||
|
let param_model = IntModel(Int64);
|
||||||
|
|
||||||
|
let src_slice_len =
|
||||||
|
param_model.s_extend_or_bit_cast(generator, ctx, src_slice_len, "src_slice_len");
|
||||||
|
let dest_slice_len =
|
||||||
|
param_model.s_extend_or_bit_cast(generator, ctx, dest_slice_len, "dest_slice_len");
|
||||||
|
let dest_idx_2 = param_model.s_extend_or_bit_cast(generator, ctx, dest_idx.2, "dest_idx_2");
|
||||||
|
|
||||||
ctx.make_assert(
|
ctx.make_assert(
|
||||||
generator,
|
generator,
|
||||||
cond,
|
cond,
|
||||||
"0:ValueError",
|
"0:ValueError",
|
||||||
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
||||||
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
|
[Some(src_slice_len.value), Some(dest_slice_len.value), Some(dest_idx_2.value)],
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
);
|
);
|
||||||
|
}
|
||||||
|
|
||||||
let new_len = {
|
let new_len = {
|
||||||
let args = vec![
|
let args = vec![
|
||||||
|
@ -873,7 +895,7 @@ pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
/// containing the indices used for accessing `array` corresponding to the index of the broadcast
|
||||||
/// array `broadcast_idx`.
|
/// array `broadcast_idx`.
|
||||||
pub fn call_ndarray_calc_broadcast_index<
|
pub fn call_ndarray_calc_broadcast_index<
|
||||||
'ctx,
|
'ctx,
|
||||||
|
@ -928,3 +950,337 @@ pub fn call_ndarray_calc_broadcast_index<
|
||||||
Box::new(|_, v| v.into()),
|
Box::new(|_, v| v.into()),
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_throw_dummy_error<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'_, '_>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_throw_dummy_error");
|
||||||
|
CallFunction::begin(generator, ctx, &name).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
|
||||||
|
pub fn setup_irrt_exceptions<'ctx>(
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
module: &Module<'ctx>,
|
||||||
|
symbol_resolver: &dyn SymbolResolver,
|
||||||
|
) {
|
||||||
|
let exn_id_type = ctx.i32_type();
|
||||||
|
|
||||||
|
let errors = &[
|
||||||
|
("EXN_INDEX_ERROR", "0:IndexError"),
|
||||||
|
("EXN_VALUE_ERROR", "0:ValueError"),
|
||||||
|
("EXN_ASSERTION_ERROR", "0:AssertionError"),
|
||||||
|
("EXN_RUNTIME_ERROR", "0:RuntimeError"),
|
||||||
|
("EXN_TYPE_ERROR", "0:TypeError"),
|
||||||
|
];
|
||||||
|
|
||||||
|
for (irrt_name, symbol_name) in errors {
|
||||||
|
let exn_id = symbol_resolver.get_string_id(symbol_name);
|
||||||
|
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
|
||||||
|
|
||||||
|
let global = module.get_global(irrt_name).unwrap_or_else(|| {
|
||||||
|
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
|
||||||
|
});
|
||||||
|
global.set_initializer(&exn_id);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_list_slice_assign<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dst: Ptr<'ctx, StructModel<List<IntModel<Byte>>>>,
|
||||||
|
src: Ptr<'ctx, StructModel<List<IntModel<Byte>>>>,
|
||||||
|
itemsize: Int<'ctx, SizeT>,
|
||||||
|
user_slice: Ptr<'ctx, StructModel<UserSlice>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_list_slice_assign");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(dst)
|
||||||
|
.arg(src)
|
||||||
|
.arg(itemsize)
|
||||||
|
.arg(user_slice)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndims: Int<'ctx, SizeT>,
|
||||||
|
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_util_assert_shape_no_negative",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray_ndims: Int<'ctx, SizeT>,
|
||||||
|
ndarray_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
output_ndims: Int<'ctx, SizeT>,
|
||||||
|
output_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_util_assert_output_shape_same",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(ndarray_ndims)
|
||||||
|
.arg(ndarray_shape)
|
||||||
|
.arg(output_ndims)
|
||||||
|
.arg(output_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
pndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(pndarray).returning_auto("size")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
pndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(pndarray).returning_auto("nbytes")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
pndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(pndarray).returning_auto("len")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray_ptr: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(ndarray_ptr).returning_auto("is_c_contiguous")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
pndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
index: Int<'ctx, SizeT>,
|
||||||
|
) -> Ptr<'ctx, IntModel<Byte>> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(pndarray).arg(index).returning_auto("pelement")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
pdnarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) {
|
||||||
|
let name =
|
||||||
|
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(pdnarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
dst_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
num_indexes: Int<'ctx, SizeT>,
|
||||||
|
indexes: Ptr<'ctx, StructModel<NDIndex>>,
|
||||||
|
src_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
dst_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(num_indexes)
|
||||||
|
.arg(indexes)
|
||||||
|
.arg(src_ndarray)
|
||||||
|
.arg(dst_ndarray)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
dst_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
num_shape_entries: Int<'ctx, SizeT>,
|
||||||
|
shape_entries: Ptr<'ctx, StructModel<ShapeEntry>>,
|
||||||
|
dst_ndims: Int<'ctx, SizeT>,
|
||||||
|
dst_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(num_shape_entries)
|
||||||
|
.arg(shape_entries)
|
||||||
|
.arg(dst_ndims)
|
||||||
|
.arg(dst_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
size: Int<'ctx, SizeT>,
|
||||||
|
new_ndims: Int<'ctx, SizeT>,
|
||||||
|
new_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_resolve_and_check_new_shape",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(size)
|
||||||
|
.arg(new_ndims)
|
||||||
|
.arg(new_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
dst_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
num_axes: Int<'ctx, SizeT>,
|
||||||
|
axes: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(src_ndarray)
|
||||||
|
.arg(dst_ndarray)
|
||||||
|
.arg(num_axes)
|
||||||
|
.arg(axes)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
|
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
a_ndims: Int<'ctx, SizeT>,
|
||||||
|
a_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
b_ndims: Int<'ctx, SizeT>,
|
||||||
|
b_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
final_ndims: Int<'ctx, SizeT>,
|
||||||
|
new_a_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
new_b_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
dst_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name =
|
||||||
|
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(a_ndims)
|
||||||
|
.arg(a_shape)
|
||||||
|
.arg(b_ndims)
|
||||||
|
.arg(b_shape)
|
||||||
|
.arg(final_ndims)
|
||||||
|
.arg(new_a_shape)
|
||||||
|
.arg(new_b_shape)
|
||||||
|
.arg(dst_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_float64_matmul_at_least_2d<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
a_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
b_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
dst_ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_ndarray_float64_matmul_at_least_2d",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name)
|
||||||
|
.arg(a_ndarray)
|
||||||
|
.arg(b_ndarray)
|
||||||
|
.arg(dst_ndarray)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: Ptr<'ctx, StructModel<List<IntModel<Byte>>>>,
|
||||||
|
ndims: Int<'ctx, SizeT>,
|
||||||
|
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
"__nac3_array_set_and_validate_list_shape",
|
||||||
|
);
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: Ptr<'ctx, StructModel<List<IntModel<Byte>>>>,
|
||||||
|
ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
) {
|
||||||
|
let name =
|
||||||
|
get_sizet_dependent_function_name(generator, ctx, "__nac3_array_write_list_to_array");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
iter: Ptr<'ctx, StructModel<NDIter>>,
|
||||||
|
ndarray: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
indices: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
iter: Ptr<'ctx, StructModel<NDIter>>,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
iter: Ptr<'ctx, StructModel<NDIter>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
|
||||||
|
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
|
||||||
|
}
|
||||||
|
|
|
@ -0,0 +1,26 @@
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use std::{path::Path, process::Command};
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn run_irrt_test() {
|
||||||
|
assert!(
|
||||||
|
cfg!(feature = "test"),
|
||||||
|
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
|
||||||
|
);
|
||||||
|
|
||||||
|
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
|
||||||
|
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
|
||||||
|
|
||||||
|
if !output.status.success() {
|
||||||
|
eprintln!("irrt_test failed with status {}:", output.status);
|
||||||
|
eprintln!("====== stdout ======");
|
||||||
|
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
|
||||||
|
eprintln!("====== stderr ======");
|
||||||
|
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
|
||||||
|
eprintln!("====================");
|
||||||
|
|
||||||
|
panic!("irrt_test failed");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,7 +1,7 @@
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
|
codegen::classes::{ListType, ProxyType, RangeType},
|
||||||
symbol_resolver::{StaticValue, SymbolResolver},
|
symbol_resolver::{StaticValue, SymbolResolver},
|
||||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
|
||||||
typecheck::{
|
typecheck::{
|
||||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||||
|
@ -24,6 +24,7 @@ use inkwell::{
|
||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
|
use model::*;
|
||||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||||
use parking_lot::{Condvar, Mutex};
|
use parking_lot::{Condvar, Mutex};
|
||||||
use std::collections::{HashMap, HashSet};
|
use std::collections::{HashMap, HashSet};
|
||||||
|
@ -32,8 +33,8 @@ use std::sync::{
|
||||||
Arc,
|
Arc,
|
||||||
};
|
};
|
||||||
use std::thread;
|
use std::thread;
|
||||||
|
use structure::{CSlice, Exception, NDArray};
|
||||||
|
|
||||||
pub mod builtin_fns;
|
|
||||||
pub mod classes;
|
pub mod classes;
|
||||||
pub mod concrete_type;
|
pub mod concrete_type;
|
||||||
pub mod expr;
|
pub mod expr;
|
||||||
|
@ -41,8 +42,12 @@ pub mod extern_fns;
|
||||||
mod generator;
|
mod generator;
|
||||||
pub mod irrt;
|
pub mod irrt;
|
||||||
pub mod llvm_intrinsics;
|
pub mod llvm_intrinsics;
|
||||||
|
pub mod model;
|
||||||
pub mod numpy;
|
pub mod numpy;
|
||||||
|
pub mod numpy_new;
|
||||||
|
pub mod object;
|
||||||
pub mod stmt;
|
pub mod stmt;
|
||||||
|
pub mod structure;
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod test;
|
mod test;
|
||||||
|
@ -168,11 +173,11 @@ pub struct CodeGenContext<'ctx, 'a> {
|
||||||
pub registry: &'a WorkerRegistry,
|
pub registry: &'a WorkerRegistry,
|
||||||
|
|
||||||
/// Cache for constant strings.
|
/// Cache for constant strings.
|
||||||
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>,
|
pub const_strings: HashMap<String, Struct<'ctx, CSlice>>,
|
||||||
|
|
||||||
/// [`BasicBlock`] containing all `alloca` statements for the current function.
|
/// [`BasicBlock`] containing all `alloca` statements for the current function.
|
||||||
pub init_bb: BasicBlock<'ctx>,
|
pub init_bb: BasicBlock<'ctx>,
|
||||||
pub exception_val: Option<PointerValue<'ctx>>,
|
pub exception_val: Option<Ptr<'ctx, StructModel<Exception>>>,
|
||||||
|
|
||||||
/// The header and exit basic blocks of a loop in this context. See
|
/// The header and exit basic blocks of a loop in this context. See
|
||||||
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
|
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
|
||||||
|
@ -489,12 +494,8 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
}
|
}
|
||||||
|
|
||||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
let pndarray_model = PtrModel(StructModel(NDArray));
|
||||||
let element_type = get_llvm_type(
|
pndarray_model.get_type(generator, ctx).as_basic_type_enum()
|
||||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
|
||||||
);
|
|
||||||
|
|
||||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => unreachable!(
|
_ => unreachable!(
|
||||||
|
@ -700,43 +701,19 @@ pub fn gen_func_impl<
|
||||||
..primitives
|
..primitives
|
||||||
};
|
};
|
||||||
|
|
||||||
let mut type_cache: HashMap<_, _> = [
|
let cslice_model = StructModel(CSlice);
|
||||||
|
let pexn_model = PtrModel(StructModel(Exception));
|
||||||
|
|
||||||
|
let mut type_cache: HashMap<_, BasicTypeEnum<'ctx>> = [
|
||||||
(primitives.int32, context.i32_type().into()),
|
(primitives.int32, context.i32_type().into()),
|
||||||
(primitives.int64, context.i64_type().into()),
|
(primitives.int64, context.i64_type().into()),
|
||||||
(primitives.uint32, context.i32_type().into()),
|
(primitives.uint32, context.i32_type().into()),
|
||||||
(primitives.uint64, context.i64_type().into()),
|
(primitives.uint64, context.i64_type().into()),
|
||||||
(primitives.float, context.f64_type().into()),
|
(primitives.float, context.f64_type().into()),
|
||||||
(primitives.bool, context.i8_type().into()),
|
(primitives.bool, context.i8_type().into()),
|
||||||
(primitives.str, {
|
(primitives.str, cslice_model.get_type(generator, context).into()),
|
||||||
let name = "str";
|
|
||||||
match module.get_struct_type(name) {
|
|
||||||
None => {
|
|
||||||
let str_type = context.opaque_struct_type("str");
|
|
||||||
let fields = [
|
|
||||||
context.i8_type().ptr_type(AddressSpace::default()).into(),
|
|
||||||
generator.get_size_type(context).into(),
|
|
||||||
];
|
|
||||||
str_type.set_body(&fields, false);
|
|
||||||
str_type.into()
|
|
||||||
}
|
|
||||||
Some(t) => t.as_basic_type_enum(),
|
|
||||||
}
|
|
||||||
}),
|
|
||||||
(primitives.range, RangeType::new(context).as_base_type().into()),
|
(primitives.range, RangeType::new(context).as_base_type().into()),
|
||||||
(primitives.exception, {
|
(primitives.exception, pexn_model.get_type(generator, context).into()),
|
||||||
let name = "Exception";
|
|
||||||
if let Some(t) = module.get_struct_type(name) {
|
|
||||||
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
|
|
||||||
} else {
|
|
||||||
let exception = context.opaque_struct_type("Exception");
|
|
||||||
let int32 = context.i32_type().into();
|
|
||||||
let int64 = context.i64_type().into();
|
|
||||||
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
|
|
||||||
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
|
|
||||||
exception.set_body(&fields, false);
|
|
||||||
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
|
|
||||||
}
|
|
||||||
}),
|
|
||||||
]
|
]
|
||||||
.iter()
|
.iter()
|
||||||
.copied()
|
.copied()
|
||||||
|
|
|
@ -0,0 +1,40 @@
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, BasicTypeEnum},
|
||||||
|
values::BasicValueEnum,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::CodeGenerator;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyModel<'ctx>(pub BasicTypeEnum<'ctx>);
|
||||||
|
pub type Anything<'ctx> = Instance<'ctx, AnyModel<'ctx>>;
|
||||||
|
|
||||||
|
impl<'ctx> Model<'ctx> for AnyModel<'ctx> {
|
||||||
|
type Value = BasicValueEnum<'ctx>;
|
||||||
|
type Type = BasicTypeEnum<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
) -> Self::Type {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &mut G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
if ty == self.0 {
|
||||||
|
Ok(())
|
||||||
|
} else {
|
||||||
|
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,122 @@
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{ArrayType, BasicType, BasicTypeEnum},
|
||||||
|
values::ArrayValue,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// A Model for an [`ArrayType`].
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct ArrayModel<Element> {
|
||||||
|
pub len: u32,
|
||||||
|
pub element: Element,
|
||||||
|
}
|
||||||
|
pub type Array<'ctx, Element> = Instance<'ctx, ArrayModel<Element>>;
|
||||||
|
|
||||||
|
impl<'ctx, Element: Model<'ctx>> Model<'ctx> for ArrayModel<Element> {
|
||||||
|
type Value = ArrayValue<'ctx>;
|
||||||
|
type Type = ArrayType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.element.get_type(generator, ctx).array_type(self.len)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let BasicTypeEnum::ArrayType(ty) = ty else {
|
||||||
|
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
if ty.len() != self.len {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
|
||||||
|
ty.len(),
|
||||||
|
self.len
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
self.element
|
||||||
|
.check_type(generator, ctx, ty.get_element_type())
|
||||||
|
.map_err(|err| err.under_context("an ArrayType"))?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Element: Model<'ctx>> Ptr<'ctx, ArrayModel<Element>> {
|
||||||
|
/// Get the pointer to the `i`-th (0-based) array element.
|
||||||
|
pub fn at<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
i: u32,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Element> {
|
||||||
|
assert!(i < self.model.0.len);
|
||||||
|
|
||||||
|
let zero = ctx.ctx.i32_type().const_zero();
|
||||||
|
let i = ctx.ctx.i32_type().const_int(u64::from(i), false);
|
||||||
|
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], name).unwrap() };
|
||||||
|
|
||||||
|
PtrModel(self.model.0.element).check_value(generator, ctx.ctx, ptr).unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`ArrayModel`] but length is strongly-typed.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct NArrayModel<const LEN: u32, Element>(pub Element);
|
||||||
|
pub type NArray<'ctx, const LEN: u32, Element> = Instance<'ctx, NArrayModel<LEN, Element>>;
|
||||||
|
|
||||||
|
impl<'ctx, const LEN: u32, Element: Model<'ctx>> NArrayModel<LEN, Element> {
|
||||||
|
/// Forget the `LEN` constant generic and get an [`ArrayModel`] with the same length.
|
||||||
|
pub fn forget_len(&self) -> ArrayModel<Element> {
|
||||||
|
ArrayModel { element: self.0, len: LEN }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, const LEN: u32, Element: Model<'ctx>> Model<'ctx> for NArrayModel<LEN, Element> {
|
||||||
|
type Value = ArrayValue<'ctx>;
|
||||||
|
type Type = ArrayType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
// Convenient implementation
|
||||||
|
self.forget_len().get_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
// Convenient implementation
|
||||||
|
self.forget_len().check_type(generator, ctx, ty)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, const LEN: u32, Element: Model<'ctx>> Ptr<'ctx, NArrayModel<LEN, Element>> {
|
||||||
|
/// Get the pointer to the `i`-th (0-based) array element.
|
||||||
|
pub fn at_const<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
i: u32,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Element> {
|
||||||
|
assert!(i < LEN);
|
||||||
|
|
||||||
|
let zero = ctx.ctx.i32_type().const_zero();
|
||||||
|
let i = ctx.ctx.i32_type().const_int(u64::from(i), false);
|
||||||
|
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], name).unwrap() };
|
||||||
|
|
||||||
|
PtrModel(self.model.0 .0).check_value(generator, ctx.ctx, ptr).unwrap()
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,123 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{context::Context, types::*, values::*};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct ModelError(pub String);
|
||||||
|
|
||||||
|
impl ModelError {
|
||||||
|
pub(super) fn under_context(mut self, context: &str) -> Self {
|
||||||
|
self.0.push_str(" ... in ");
|
||||||
|
self.0.push_str(context);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
|
||||||
|
type Type: BasicType<'ctx>;
|
||||||
|
|
||||||
|
/// Return the [`BasicType`] of this model.
|
||||||
|
#[must_use]
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
|
||||||
|
|
||||||
|
/// Check if a [`BasicType`] is the same type of this model.
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError>;
|
||||||
|
|
||||||
|
/// Create an instance from a value with [`Instance::model`] being this model.
|
||||||
|
///
|
||||||
|
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
|
||||||
|
#[must_use]
|
||||||
|
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
|
||||||
|
Instance { model: *self, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
|
||||||
|
/// Wrap it into an [`Instance`] if it is.
|
||||||
|
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
value: V,
|
||||||
|
) -> Result<Instance<'ctx, Self>, ModelError> {
|
||||||
|
let value = value.as_basic_value_enum();
|
||||||
|
self.check_type(generator, ctx, value.get_type())
|
||||||
|
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
|
||||||
|
|
||||||
|
let Ok(value) = Self::Value::try_from(value) else {
|
||||||
|
unreachable!("check_type() has bad implementation")
|
||||||
|
};
|
||||||
|
Ok(self.believe_value(value))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allocate a value on the stack and return its pointer.
|
||||||
|
fn alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Self> {
|
||||||
|
let pmodel = PtrModel(*self);
|
||||||
|
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), name).unwrap();
|
||||||
|
pmodel.believe_value(p)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allocate an array on the stack and return its pointer.
|
||||||
|
fn array_alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
len: IntValue<'ctx>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Self> {
|
||||||
|
let pmodel = PtrModel(*self);
|
||||||
|
let p =
|
||||||
|
ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, name).unwrap();
|
||||||
|
pmodel.believe_value(p)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn var_alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> Result<Ptr<'ctx, Self>, String> {
|
||||||
|
let pmodel = PtrModel(*self);
|
||||||
|
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||||
|
let p = generator.gen_var_alloc(ctx, ty, name)?;
|
||||||
|
Ok(pmodel.believe_value(p))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn array_var_alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
len: IntValue<'ctx>,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
) -> Result<Ptr<'ctx, Self>, String> {
|
||||||
|
// TODO: Remove ArraySliceValue
|
||||||
|
let pmodel = PtrModel(*self);
|
||||||
|
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||||
|
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
|
||||||
|
Ok(pmodel.believe_value(PointerValue::from(p)))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct Instance<'ctx, M: Model<'ctx>> {
|
||||||
|
/// The model of this instance.
|
||||||
|
pub model: M,
|
||||||
|
/// The value of this instance.
|
||||||
|
///
|
||||||
|
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
|
||||||
|
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
|
||||||
|
pub value: M::Value,
|
||||||
|
}
|
|
@ -0,0 +1,88 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{context::Context, types::FloatType, values::FloatValue};
|
||||||
|
|
||||||
|
use crate::codegen::CodeGenerator;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx>;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Float32;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Float64;
|
||||||
|
|
||||||
|
impl<'ctx> FloatKind<'ctx> for Float32 {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx> {
|
||||||
|
ctx.f32_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> FloatKind<'ctx> for Float64 {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx> {
|
||||||
|
ctx.f64_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
|
||||||
|
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
) -> FloatType<'ctx> {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct FloatModel<N>(pub N);
|
||||||
|
pub type Float<'ctx, N> = Instance<'ctx, FloatModel<N>>;
|
||||||
|
|
||||||
|
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for FloatModel<N> {
|
||||||
|
type Value = FloatValue<'ctx>;
|
||||||
|
type Type = FloatType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_float_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = FloatType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let exp_ty = self.0.get_float_type(generator, ctx);
|
||||||
|
|
||||||
|
// TODO: Inkwell does not have get_bit_width for FloatType?
|
||||||
|
// TODO: Quick hack for now, but does this actually work?
|
||||||
|
if ty != exp_ty {
|
||||||
|
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,125 @@
|
||||||
|
use inkwell::{
|
||||||
|
attributes::{Attribute, AttributeLoc},
|
||||||
|
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
|
||||||
|
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
|
||||||
|
};
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
|
||||||
|
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'_, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> String {
|
||||||
|
let mut name = name.to_owned();
|
||||||
|
match generator.get_size_type(ctx.ctx).get_bit_width() {
|
||||||
|
32 => {}
|
||||||
|
64 => name.push_str("64"),
|
||||||
|
bit_width => {
|
||||||
|
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
name
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
struct Arg<'ctx> {
|
||||||
|
ty: BasicMetadataTypeEnum<'ctx>,
|
||||||
|
val: BasicMetadataValueEnum<'ctx>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A structure to construct & call an LLVM function.
|
||||||
|
///
|
||||||
|
/// This is a helper to reduce IRRT Inkwell function call boilerplate
|
||||||
|
// TODO: Remove the lifetimes somehow? There is 4 of them.
|
||||||
|
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
|
||||||
|
generator: &'d mut G,
|
||||||
|
ctx: &'b CodeGenContext<'ctx, 'a>,
|
||||||
|
/// Function name
|
||||||
|
name: &'c str,
|
||||||
|
/// Call arguments
|
||||||
|
args: Vec<Arg<'ctx>>,
|
||||||
|
/// LLVM function Attributes
|
||||||
|
attrs: Vec<&'static str>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
|
||||||
|
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
|
||||||
|
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Push a list of LLVM function attributes to the function declaration.
|
||||||
|
#[must_use]
|
||||||
|
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
|
||||||
|
self.attrs = attrs;
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Push a call argument to the function call.
|
||||||
|
#[allow(clippy::needless_pass_by_value)]
|
||||||
|
#[must_use]
|
||||||
|
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
|
||||||
|
let arg = Arg {
|
||||||
|
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
|
||||||
|
val: arg.value.as_basic_value_enum().into(),
|
||||||
|
};
|
||||||
|
self.args.push(arg);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call the function and expect the function to return a value of type of `return_model`.
|
||||||
|
#[must_use]
|
||||||
|
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
|
||||||
|
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
|
||||||
|
|
||||||
|
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
|
||||||
|
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
|
||||||
|
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
|
||||||
|
ret
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
|
||||||
|
#[must_use]
|
||||||
|
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
|
||||||
|
self.returning(name, M::default())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call the function and expect the function to return a void-type.
|
||||||
|
pub fn returning_void(self) {
|
||||||
|
let ret_ty = self.ctx.ctx.void_type();
|
||||||
|
|
||||||
|
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
|
||||||
|
where
|
||||||
|
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
|
||||||
|
{
|
||||||
|
// Get the LLVM function.
|
||||||
|
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
|
||||||
|
// Declare the function if it doesn't exist.
|
||||||
|
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
|
||||||
|
|
||||||
|
let func_type = make_fn_type(&tys);
|
||||||
|
let func = self.ctx.module.add_function(self.name, func_type, None);
|
||||||
|
|
||||||
|
for attr in &self.attrs {
|
||||||
|
func.add_attribute(
|
||||||
|
AttributeLoc::Function,
|
||||||
|
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
func
|
||||||
|
});
|
||||||
|
|
||||||
|
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
|
||||||
|
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,275 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{context::Context, types::IntType, values::IntValue, IntPredicate};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx>;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Bool;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Byte;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Int32;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Int64;
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct SizeT;
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Bool {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.bool_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Byte {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.i8_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Int32 {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.i32_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for Int64 {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
ctx.i64_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for SizeT {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
generator.get_size_type(ctx)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
|
||||||
|
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
_generator: &G,
|
||||||
|
_ctx: &'ctx Context,
|
||||||
|
) -> IntType<'ctx> {
|
||||||
|
self.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct IntModel<N>(pub N);
|
||||||
|
pub type Int<'ctx, N> = Instance<'ctx, IntModel<N>>;
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for IntModel<N> {
|
||||||
|
type Value = IntValue<'ctx>;
|
||||||
|
type Type = IntType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_int_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = IntType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let exp_ty = self.0.get_int_type(generator, ctx);
|
||||||
|
if ty.get_bit_width() != exp_ty.get_bit_width() {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting IntType to have {} bit(s), but got {} bit(s)",
|
||||||
|
exp_ty.get_bit_width(),
|
||||||
|
ty.get_bit_width()
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> IntModel<N> {
|
||||||
|
pub fn constant<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
value: u64,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value = self.get_type(generator, ctx).const_int(value, false);
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn const_0<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
self.constant(generator, ctx, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn const_1<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
self.constant(generator, ctx, 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn const_all_1s<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value = self.get_type(generator, ctx).const_all_ones();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), name)
|
||||||
|
.unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn truncate<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value =
|
||||||
|
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), name).unwrap();
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl IntModel<Bool> {
|
||||||
|
#[must_use]
|
||||||
|
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
self.constant(generator, ctx, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
self.constant(generator, ctx, 1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, N: IntKind<'ctx>> Int<'ctx, N> {
|
||||||
|
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, NewN> {
|
||||||
|
IntModel(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
to_int_kind: NewN,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, NewN> {
|
||||||
|
IntModel(to_int_kind).truncate(generator, ctx, self.value, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn add(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
other: Int<'ctx, N>,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value = ctx.builder.build_int_add(self.value, other.value, name).unwrap();
|
||||||
|
self.model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn sub(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
other: Int<'ctx, N>,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value = ctx.builder.build_int_sub(self.value, other.value, name).unwrap();
|
||||||
|
self.model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn mul(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
other: Int<'ctx, N>,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, N> {
|
||||||
|
let value = ctx.builder.build_int_mul(self.value, other.value, name).unwrap();
|
||||||
|
self.model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn compare(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
op: IntPredicate,
|
||||||
|
other: Int<'ctx, N>,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
let bool_model = IntModel(Bool);
|
||||||
|
let value = ctx.builder.build_int_compare(op, self.value, other.value, name).unwrap();
|
||||||
|
bool_model.believe_value(value)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,17 @@
|
||||||
|
mod any;
|
||||||
|
mod array;
|
||||||
|
mod core;
|
||||||
|
mod float;
|
||||||
|
pub mod function;
|
||||||
|
mod int;
|
||||||
|
mod ptr;
|
||||||
|
mod structure;
|
||||||
|
pub mod util;
|
||||||
|
|
||||||
|
pub use any::*;
|
||||||
|
pub use array::*;
|
||||||
|
pub use core::*;
|
||||||
|
pub use float::*;
|
||||||
|
pub use int::*;
|
||||||
|
pub use ptr::*;
|
||||||
|
pub use structure::*;
|
|
@ -0,0 +1,145 @@
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, BasicTypeEnum, PointerType},
|
||||||
|
values::{IntValue, PointerValue},
|
||||||
|
AddressSpace,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct PtrModel<Element>(pub Element);
|
||||||
|
pub type Ptr<'ctx, Element> = Instance<'ctx, PtrModel<Element>>;
|
||||||
|
|
||||||
|
impl<'ctx, Element: Model<'ctx>> Model<'ctx> for PtrModel<Element> {
|
||||||
|
type Value = PointerValue<'ctx>;
|
||||||
|
type Type = PointerType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = PointerType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let elem_ty = ty.get_element_type();
|
||||||
|
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
|
||||||
|
)));
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: inkwell `get_element_type()` will be deprecated.
|
||||||
|
// Remove the check for `get_element_type()` when the time comes.
|
||||||
|
self.0
|
||||||
|
.check_type(generator, ctx, elem_ty)
|
||||||
|
.map_err(|err| err.under_context("a PointerType"))?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Element: Model<'ctx>> PtrModel<Element> {
|
||||||
|
/// Return a ***constant*** nullptr.
|
||||||
|
pub fn nullptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Ptr<'ctx, Element> {
|
||||||
|
let ptr = self.get_type(generator, ctx).const_null();
|
||||||
|
self.believe_value(ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
|
||||||
|
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
ptr: PointerValue<'ctx>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Element> {
|
||||||
|
let ptr =
|
||||||
|
ctx.builder.build_pointer_cast(ptr, self.get_type(generator, ctx.ctx), name).unwrap();
|
||||||
|
self.believe_value(ptr)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Element: Model<'ctx>> Ptr<'ctx, Element> {
|
||||||
|
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn offset<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
offset: IntValue<'ctx>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Element> {
|
||||||
|
let new_ptr =
|
||||||
|
unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], name).unwrap() };
|
||||||
|
self.model.check_value(generator, ctx.ctx, new_ptr).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
|
||||||
|
#[must_use]
|
||||||
|
pub fn offset_const<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
offset: u64,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, Element> {
|
||||||
|
let offset = ctx.ctx.i32_type().const_int(offset, false);
|
||||||
|
self.offset(generator, ctx, offset, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Load the value with [`inkwell::builder::Builder::build_load`].
|
||||||
|
pub fn load<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> Instance<'ctx, Element> {
|
||||||
|
let value = ctx.builder.build_load(self.value, name).unwrap();
|
||||||
|
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store a value with [`inkwell::builder::Builder::build_store`].
|
||||||
|
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Element>) {
|
||||||
|
ctx.builder.build_store(self.value, value.value).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
|
||||||
|
pub fn pointer_cast<NewElement: Model<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
new_model: NewElement,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, NewElement> {
|
||||||
|
PtrModel(new_model).pointer_cast(generator, ctx, self.value, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
||||||
|
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
|
||||||
|
let bool_model = IntModel(Bool);
|
||||||
|
let value = ctx.builder.build_is_null(self.value, name).unwrap();
|
||||||
|
bool_model.believe_value(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
|
||||||
|
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
|
||||||
|
let bool_model = IntModel(Bool);
|
||||||
|
let value = ctx.builder.build_is_not_null(self.value, name).unwrap();
|
||||||
|
bool_model.believe_value(value)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,222 @@
|
||||||
|
use std::fmt;
|
||||||
|
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicType, BasicTypeEnum, StructType},
|
||||||
|
values::StructValue,
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct GepField<M> {
|
||||||
|
pub gep_index: u64,
|
||||||
|
pub name: &'static str,
|
||||||
|
pub model: M,
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait FieldTraversal<'ctx> {
|
||||||
|
type Out<M>;
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
|
||||||
|
|
||||||
|
/// Like [`FieldTraversal::visit`] but [`Model`] is automatically inferred from [`Default`] trait.
|
||||||
|
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
|
||||||
|
self.add(name, M::default())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct GepFieldTraversal {
|
||||||
|
gep_index_counter: u64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
|
||||||
|
type Out<M> = GepField<M>;
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||||
|
let gep_index = self.gep_index_counter;
|
||||||
|
self.gep_index_counter += 1;
|
||||||
|
Self::Out { gep_index, name, model }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||||
|
generator: &'a G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
field_types: Vec<BasicTypeEnum<'ctx>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
|
||||||
|
type Out<M> = ();
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
|
||||||
|
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
|
||||||
|
self.field_types.push(t);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||||
|
generator: &'a mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
index: u32,
|
||||||
|
scrutinee: StructType<'ctx>,
|
||||||
|
errors: Vec<ModelError>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
|
||||||
|
for CheckTypeFieldTraversal<'ctx, 'a, G>
|
||||||
|
{
|
||||||
|
type Out<M> = ();
|
||||||
|
|
||||||
|
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||||
|
let i = self.index;
|
||||||
|
self.index += 1;
|
||||||
|
|
||||||
|
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
|
||||||
|
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
|
||||||
|
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
|
||||||
|
}
|
||||||
|
} // Otherwise, it will be caught
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
|
||||||
|
|
||||||
|
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
|
||||||
|
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_struct_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> StructType<'ctx> {
|
||||||
|
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
|
||||||
|
self.traverse_fields(&mut traversal);
|
||||||
|
|
||||||
|
ctx.struct_type(&traversal.field_types, false)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct StructModel<S>(pub S);
|
||||||
|
pub type Struct<'ctx, S> = Instance<'ctx, StructModel<S>>;
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for StructModel<S> {
|
||||||
|
type Value = StructValue<'ctx>;
|
||||||
|
type Type = StructType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||||
|
self.0.get_struct_type(generator, ctx)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
ty: T,
|
||||||
|
) -> Result<(), ModelError> {
|
||||||
|
let ty = ty.as_basic_type_enum();
|
||||||
|
let Ok(ty) = StructType::try_from(ty) else {
|
||||||
|
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut traversal =
|
||||||
|
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
|
||||||
|
self.0.traverse_fields(&mut traversal);
|
||||||
|
|
||||||
|
let exp_num_fields = traversal.index;
|
||||||
|
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
|
||||||
|
if exp_num_fields != got_num_fields {
|
||||||
|
return Err(ModelError(format!(
|
||||||
|
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
if !traversal.errors.is_empty() {
|
||||||
|
return Err(traversal.errors[0].clone()); // TODO: Return other errors as well
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Struct<'ctx, S> {
|
||||||
|
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
get_field: GetField,
|
||||||
|
) -> Instance<'ctx, M>
|
||||||
|
where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
let field = get_field(self.model.0.fields());
|
||||||
|
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
|
||||||
|
field.model.check_value(generator, ctx, val).unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, S: StructKind<'ctx>> Ptr<'ctx, StructModel<S>> {
|
||||||
|
pub fn gep<M, GetField>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
get_field: GetField,
|
||||||
|
) -> Ptr<'ctx, M>
|
||||||
|
where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
let field = get_field(self.model.0 .0.fields());
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type(); // i64 would segfault
|
||||||
|
|
||||||
|
let ptr = unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.value,
|
||||||
|
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
|
||||||
|
field.name,
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
};
|
||||||
|
|
||||||
|
let ptr_model = PtrModel(field.model);
|
||||||
|
ptr_model.believe_value(ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||||
|
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
get_field: GetField,
|
||||||
|
name: &str,
|
||||||
|
) -> Instance<'ctx, M>
|
||||||
|
where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
self.gep(ctx, get_field).load(generator, ctx, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||||
|
pub fn set<M, GetField>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
get_field: GetField,
|
||||||
|
value: Instance<'ctx, M>,
|
||||||
|
) where
|
||||||
|
M: Model<'ctx>,
|
||||||
|
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||||
|
{
|
||||||
|
self.gep(ctx, get_field).store(ctx, value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Add an opaque struct type?
|
|
@ -0,0 +1,62 @@
|
||||||
|
use inkwell::{types::BasicType, values::IntValue};
|
||||||
|
|
||||||
|
/// `llvm.memcpy` but under the [`Model`] abstraction
|
||||||
|
use crate::codegen::{
|
||||||
|
llvm_intrinsics::call_memcpy_generic,
|
||||||
|
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
/// Convenience function.
|
||||||
|
///
|
||||||
|
/// Like [`call_memcpy_generic`] but with model abstractions and `is_volatile` set to `false`.
|
||||||
|
pub fn call_memcpy_model<'ctx, Item: Model<'ctx> + Default, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
dst_array: Ptr<'ctx, Item>,
|
||||||
|
src_array: Ptr<'ctx, Item>,
|
||||||
|
num_items: IntValue<'ctx>,
|
||||||
|
) {
|
||||||
|
let itemsize = Item::default().get_type(generator, ctx.ctx).size_of().unwrap();
|
||||||
|
let totalsize = ctx.builder.build_int_mul(itemsize, num_items, "totalsize").unwrap(); // TODO: Int types may not match.
|
||||||
|
let is_volatile = ctx.ctx.bool_type().const_zero();
|
||||||
|
call_memcpy_generic(ctx, dst_array.value, src_array.value, totalsize, is_volatile);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
|
||||||
|
/// The [`IntKind`] is automatically inferred.
|
||||||
|
pub fn gen_for_model_auto<'ctx, 'a, G, F, I>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
start: Int<'ctx, I>,
|
||||||
|
stop: Int<'ctx, I>,
|
||||||
|
step: Int<'ctx, I>,
|
||||||
|
body: F,
|
||||||
|
) -> Result<(), String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
F: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BreakContinueHooks<'ctx>,
|
||||||
|
Int<'ctx, I>,
|
||||||
|
) -> Result<(), String>,
|
||||||
|
I: IntKind<'ctx> + Default,
|
||||||
|
{
|
||||||
|
let int_model = IntModel(I::default());
|
||||||
|
|
||||||
|
gen_for_callback_incrementing(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
None,
|
||||||
|
start.value,
|
||||||
|
(stop.value, false),
|
||||||
|
|g, ctx, hooks, i| {
|
||||||
|
let i = int_model.believe_value(i);
|
||||||
|
body(g, ctx, hooks, i)
|
||||||
|
},
|
||||||
|
step.value,
|
||||||
|
)
|
||||||
|
}
|
|
@ -257,7 +257,7 @@ fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||||
ctx.ctx.bool_type().const_zero().into()
|
ctx.ctx.bool_type().const_zero().into()
|
||||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||||
ctx.gen_string(generator, "").into()
|
ctx.gen_string(generator, "").value.into()
|
||||||
} else {
|
} else {
|
||||||
unreachable!()
|
unreachable!()
|
||||||
}
|
}
|
||||||
|
@ -285,7 +285,7 @@ fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||||
ctx.ctx.bool_type().const_int(1, false).into()
|
ctx.ctx.bool_type().const_int(1, false).into()
|
||||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||||
ctx.gen_string(generator, "1").into()
|
ctx.gen_string(generator, "1").value.into()
|
||||||
} else {
|
} else {
|
||||||
unreachable!()
|
unreachable!()
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,210 @@
|
||||||
|
// TODO: Replace numpy.rs
|
||||||
|
|
||||||
|
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||||
|
use nac3parser::ast::StrRef;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::object::{ndarray::scalar::split_scalar_or_ndarray, tuple::TupleObject},
|
||||||
|
symbol_resolver::ValueEnum,
|
||||||
|
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys, DefinitionId},
|
||||||
|
typecheck::typedef::{FunSignature, Type},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{
|
||||||
|
irrt::call_nac3_ndarray_util_assert_shape_no_negative,
|
||||||
|
model::*,
|
||||||
|
object::{
|
||||||
|
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||||
|
AnyObject,
|
||||||
|
},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Generates LLVM IR for `np.broadcast_to`.
|
||||||
|
pub fn gen_ndarray_broadcast_to<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||||
|
fun: (&FunSignature, DefinitionId),
|
||||||
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 2);
|
||||||
|
|
||||||
|
// Parse argument #1 input
|
||||||
|
let input_ty = fun.0.args[0].ty;
|
||||||
|
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?;
|
||||||
|
let input = AnyObject { ty: input_ty, value: input };
|
||||||
|
|
||||||
|
// Parse argument #2 shape
|
||||||
|
let shape_ty = fun.0.args[1].ty;
|
||||||
|
let shape = args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
||||||
|
let shape = AnyObject { ty: shape_ty, value: shape };
|
||||||
|
|
||||||
|
// Define models
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
// Extract broadcast_ndims, this is the only way to get the
|
||||||
|
// ndims of the ndarray result statically.
|
||||||
|
let (_, broadcast_ndims_ty) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||||
|
let broadcast_ndims = extract_ndims(&ctx.unifier, broadcast_ndims_ty);
|
||||||
|
|
||||||
|
// Process `input`
|
||||||
|
let in_ndarray = split_scalar_or_ndarray(generator, ctx, input).as_ndarray(generator, ctx);
|
||||||
|
|
||||||
|
// Process `shape`
|
||||||
|
let (_, broadcast_shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
||||||
|
// NOTE: shape.size should equal to `broadcasted_ndims`.
|
||||||
|
let broadcast_ndims_llvm = sizet_model.constant(generator, ctx.ctx, broadcast_ndims);
|
||||||
|
call_nac3_ndarray_util_assert_shape_no_negative(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
broadcast_ndims_llvm,
|
||||||
|
broadcast_shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
// Create broadcast view
|
||||||
|
let broadcast_ndarray =
|
||||||
|
in_ndarray.broadcast_to(generator, ctx, broadcast_ndims, broadcast_shape);
|
||||||
|
|
||||||
|
Ok(broadcast_ndarray.instance.value.as_basic_value_enum())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates LLVM IR for `np.reshape`.
|
||||||
|
pub fn gen_ndarray_reshape<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||||
|
fun: (&FunSignature, DefinitionId),
|
||||||
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 2);
|
||||||
|
|
||||||
|
// Parse argument #1 input
|
||||||
|
let input_ty = fun.0.args[0].ty;
|
||||||
|
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?;
|
||||||
|
let input = AnyObject { ty: input_ty, value: input };
|
||||||
|
|
||||||
|
// Parse argument #2 shape
|
||||||
|
let shape_ty = fun.0.args[1].ty;
|
||||||
|
let shape = args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
||||||
|
let shape = AnyObject { ty: shape_ty, value: shape };
|
||||||
|
|
||||||
|
// Extract reshaped_ndims
|
||||||
|
let (_, reshaped_ndims_ty) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||||
|
let reshaped_ndims = extract_ndims(&ctx.unifier, reshaped_ndims_ty);
|
||||||
|
|
||||||
|
// Process `input`
|
||||||
|
let in_ndarray = split_scalar_or_ndarray(generator, ctx, input).as_ndarray(generator, ctx);
|
||||||
|
|
||||||
|
// Process the shape input from user and resolve negative indices.
|
||||||
|
// The resulting `new_shape`'s size should be equal to reshaped_ndims.
|
||||||
|
// This is ensured by the typechecker.
|
||||||
|
let (_, new_shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
||||||
|
let reshaped_ndarray = in_ndarray.reshape_or_copy(generator, ctx, reshaped_ndims, new_shape);
|
||||||
|
|
||||||
|
Ok(reshaped_ndarray.instance.value.as_basic_value_enum())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates LLVM IR for `np.arange`.
|
||||||
|
pub fn gen_ndarray_arange<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||||
|
fun: (&FunSignature, DefinitionId),
|
||||||
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 1);
|
||||||
|
|
||||||
|
// Parse argument #1 len
|
||||||
|
let input_ty = fun.0.args[0].ty;
|
||||||
|
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?.into_int_value();
|
||||||
|
|
||||||
|
// Implementation
|
||||||
|
let input_dim = IntModel(SizeT).s_extend_or_bit_cast(generator, ctx, input, "input_dim");
|
||||||
|
let ndarray = NDArrayObject::from_np_arange(generator, ctx, input_dim);
|
||||||
|
|
||||||
|
Ok(ndarray.instance.value.as_basic_value_enum())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates LLVM IR for `np.size`.
|
||||||
|
pub fn gen_ndarray_size<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||||
|
fun: (&FunSignature, DefinitionId),
|
||||||
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 1);
|
||||||
|
|
||||||
|
let ndarray_ty = fun.0.args[0].ty;
|
||||||
|
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
|
let size = ndarray.size(generator, ctx).truncate(generator, ctx, Int32, "size");
|
||||||
|
Ok(size.value.as_basic_value_enum())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates LLVM IR for `np.shape`.
|
||||||
|
pub fn gen_ndarray_shape<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||||
|
fun: (&FunSignature, DefinitionId),
|
||||||
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 1);
|
||||||
|
|
||||||
|
// Parse argument #1 ndarray
|
||||||
|
let ndarray_ty = fun.0.args[0].ty;
|
||||||
|
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||||
|
|
||||||
|
// Process ndarray
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
Ok(ndarray.make_shape_tuple(generator, ctx).value.as_basic_value_enum())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates LLVM IR for `<ndarray>.strides`.
|
||||||
|
pub fn gen_ndarray_strides<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||||
|
fun: (&FunSignature, DefinitionId),
|
||||||
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||||
|
// TODO: Code duplication: This function looks exactly like `gen_ndarray_shapes`.
|
||||||
|
|
||||||
|
assert!(obj.is_none());
|
||||||
|
assert_eq!(args.len(), 1);
|
||||||
|
|
||||||
|
// Parse argument #1 ndarray
|
||||||
|
let ndarray_ty = fun.0.args[0].ty;
|
||||||
|
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||||
|
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||||
|
|
||||||
|
// Process ndarray
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||||
|
|
||||||
|
let mut objects = Vec::with_capacity(ndarray.ndims as usize);
|
||||||
|
|
||||||
|
for i in 0..ndarray.ndims {
|
||||||
|
let dim = ndarray
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.strides, "")
|
||||||
|
.offset_const(generator, ctx, i, "")
|
||||||
|
.load(generator, ctx, "dim");
|
||||||
|
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
|
||||||
|
|
||||||
|
objects
|
||||||
|
.push(AnyObject { ty: ctx.primitives.int32, value: dim.value.as_basic_value_enum() });
|
||||||
|
}
|
||||||
|
|
||||||
|
let strides = TupleObject::create(generator, ctx, objects, "strides");
|
||||||
|
Ok(strides.value.as_basic_value_enum())
|
||||||
|
}
|
|
@ -0,0 +1,121 @@
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::{call_nac3_list_slice_assign, list_slice_assignment},
|
||||||
|
model::*,
|
||||||
|
object::ndarray::indexing::UserSlice,
|
||||||
|
structure::List,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{ndarray::indexing::RustUserSlice, AnyObject};
|
||||||
|
|
||||||
|
/// A NAC3 Python List object.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct ListObject<'ctx> {
|
||||||
|
/// Typechecker type of the list items
|
||||||
|
pub item_type: Type,
|
||||||
|
pub instance: Ptr<'ctx, StructModel<List<AnyModel<'ctx>>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ListObject<'ctx> {
|
||||||
|
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
|
||||||
|
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// Check typechecker type and extract `item_type`
|
||||||
|
let item_type = match &*ctx.unifier.get_ty(object.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, params, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
|
||||||
|
}
|
||||||
|
_ => {
|
||||||
|
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let item_model = AnyModel(ctx.get_llvm_type(generator, item_type));
|
||||||
|
let plist_model = PtrModel(StructModel(List { item: item_model }));
|
||||||
|
|
||||||
|
// Create object
|
||||||
|
let value = plist_model.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||||
|
ListObject { item_type, instance: value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `items` field as an opaque pointer.
|
||||||
|
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Ptr<'ctx, IntModel<Byte>> {
|
||||||
|
self.instance.get(generator, ctx, |f| f.items, "items").pointer_cast(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
IntModel(Byte),
|
||||||
|
"items_opaque",
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the value of this [`ListObject`] as a list with opaque items.
|
||||||
|
///
|
||||||
|
/// This function allocates on the stack to create the list, but the
|
||||||
|
/// reference to the `items` are preserved.
|
||||||
|
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Ptr<'ctx, StructModel<List<IntModel<Byte>>>> {
|
||||||
|
let opaque_list_model = StructModel(List { item: IntModel(Byte) });
|
||||||
|
let opaque_list_ptr = opaque_list_model.alloca(generator, ctx, "opaque_list_ptr");
|
||||||
|
|
||||||
|
// Copy items pointer
|
||||||
|
let items = self.get_opaque_items_ptr(generator, ctx);
|
||||||
|
opaque_list_ptr.set(ctx, |f| f.items, items);
|
||||||
|
|
||||||
|
// Copy len
|
||||||
|
let len = self.instance.get(generator, ctx, |f| f.len, "len");
|
||||||
|
opaque_list_ptr.set(ctx, |f| f.len, len);
|
||||||
|
|
||||||
|
opaque_list_ptr
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this list.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
self.instance.get(generator, ctx, |f| f.len, "list_len")
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn slice_assign_from<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
user_slice: &RustUserSlice<'ctx>,
|
||||||
|
source: ListObject<'ctx>,
|
||||||
|
) {
|
||||||
|
// Sanity check
|
||||||
|
assert!(ctx.unifier.unioned(self.item_type, source.item_type));
|
||||||
|
|
||||||
|
let user_slice_model = StructModel(UserSlice);
|
||||||
|
let puser_slice = user_slice_model.alloca(generator, ctx, "user_slice");
|
||||||
|
user_slice.write_to_user_slice(generator, ctx, puser_slice);
|
||||||
|
|
||||||
|
let itemsize = self.instance.model.get_type(generator, ctx.ctx).size_of();
|
||||||
|
|
||||||
|
call_nac3_list_slice_assign(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
self.get_opaque_list_ptr(generator, ctx),
|
||||||
|
source.instance.value,
|
||||||
|
itemsize,
|
||||||
|
user_slice,
|
||||||
|
);
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,608 @@
|
||||||
|
use inkwell::{
|
||||||
|
values::{BasicValue, BasicValueEnum, FloatValue, IntValue},
|
||||||
|
FloatPredicate, IntPredicate,
|
||||||
|
};
|
||||||
|
use itertools::Itertools;
|
||||||
|
use list::ListObject;
|
||||||
|
use ndarray::{NDArrayObject, NDArrayOut};
|
||||||
|
use range::RangeObject;
|
||||||
|
use tuple::TupleObject;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
toplevel::helper::PrimDef,
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{llvm_intrinsics, model::*, CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
pub mod list;
|
||||||
|
pub mod ndarray;
|
||||||
|
pub mod range;
|
||||||
|
pub mod tuple;
|
||||||
|
|
||||||
|
/// Convenience function to crash the program when types of arguments are not supported.
|
||||||
|
/// Used to be debugged with a stacktrace.
|
||||||
|
fn unsupported_type<I>(ctx: &CodeGenContext<'_, '_>, tys: I) -> !
|
||||||
|
where
|
||||||
|
I: IntoIterator<Item = Type>,
|
||||||
|
{
|
||||||
|
unreachable!(
|
||||||
|
"unsupported types found '{}'",
|
||||||
|
tys.into_iter().map(|ty| format!("'{}'", ctx.unifier.stringify(ty))).join(", "),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum FloorOrCeil {
|
||||||
|
Floor,
|
||||||
|
Ceil,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum MinOrMax {
|
||||||
|
Min,
|
||||||
|
Max,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn signed_ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||||
|
vec![ctx.primitives.int32, ctx.primitives.int64]
|
||||||
|
}
|
||||||
|
|
||||||
|
fn unsigned_ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||||
|
vec![ctx.primitives.uint32, ctx.primitives.uint64]
|
||||||
|
}
|
||||||
|
|
||||||
|
fn ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||||
|
vec![ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64]
|
||||||
|
}
|
||||||
|
|
||||||
|
fn int_like(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||||
|
vec![
|
||||||
|
ctx.primitives.bool,
|
||||||
|
ctx.primitives.int32,
|
||||||
|
ctx.primitives.int64,
|
||||||
|
ctx.primitives.uint32,
|
||||||
|
ctx.primitives.uint64,
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct AnyObject<'ctx> {
|
||||||
|
pub ty: Type,
|
||||||
|
pub value: BasicValueEnum<'ctx>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> AnyObject<'ctx> {
|
||||||
|
/// Returns true if this object's type is a [`TypeEnum::TObj`] and has the object ID as `prim`.
|
||||||
|
pub fn is_obj(&self, ctx: &mut CodeGenContext<'ctx, '_>, prim: PrimDef) -> bool {
|
||||||
|
match &*ctx.unifier.get_ty(self.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. } => *obj_id == prim.id(),
|
||||||
|
_ => false,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns true if this object's type is a [`TypeEnum::TTuple`]
|
||||||
|
pub fn is_tuple(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
matches!(&*ctx.unifier.get_ty(self.ty), TypeEnum::TTuple { .. })
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn into_tuple() {}
|
||||||
|
|
||||||
|
pub fn is_int32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned(self.ty, ctx.primitives.int32)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn into_int32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Int<'ctx, Int32> {
|
||||||
|
assert!(self.is_int32(ctx));
|
||||||
|
IntModel(Int32).believe_value(self.value.into_int_value())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_uint32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned(self.ty, ctx.primitives.uint32)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_int64(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned(self.ty, ctx.primitives.int64)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_uint64(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned(self.ty, ctx.primitives.uint64)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned(self.ty, ctx.primitives.bool)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns true if the object type is `bool`, `int32`, `int64`, `uint32`, or `uint64`.
|
||||||
|
pub fn is_int_like(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned_any(self.ty, int_like(ctx))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns true if the object type is `int32`, `int64`.
|
||||||
|
pub fn is_signed_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned_any(self.ty, signed_ints(ctx))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns true if the object type is `uint32`, `uint64`.
|
||||||
|
pub fn is_unsigned_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
ctx.unifier.unioned_any(self.ty, unsigned_ints(ctx))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn into_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||||
|
assert!(self.is_int_like(ctx));
|
||||||
|
self.value.into_int_value()
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
self.is_obj(ctx, PrimDef::Float)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn into_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Float<'ctx, Float64> {
|
||||||
|
assert!(self.is_float(ctx));
|
||||||
|
FloatModel(Float64).believe_value(self.value.into_float_value())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_ndarray(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||||
|
self.is_obj(ctx, PrimDef::NDArray)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn into_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
NDArrayObject::from_object(generator, ctx, *self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an object from a boolean from an i1.
|
||||||
|
///
|
||||||
|
/// NOTE: In NAC3, booleans are i8. This function does converts the input i1 to an i8.
|
||||||
|
pub fn from_bool(ctx: &mut CodeGenContext<'ctx, '_>, n: Int<'ctx, Bool>) -> AnyObject<'ctx> {
|
||||||
|
let llvm_i8 = ctx.ctx.i8_type();
|
||||||
|
let value = ctx.builder.build_int_z_extend(n.value, llvm_i8, "bool").unwrap();
|
||||||
|
AnyObject { value: value.as_basic_value_enum(), ty: ctx.primitives.bool }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Helper function to compare two scalars.
|
||||||
|
///
|
||||||
|
/// Only int-to-int and float-to-float comparisons are allowed.
|
||||||
|
///
|
||||||
|
/// Panic otherwise.
|
||||||
|
pub fn compare_int_or_float_by_predicate<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
lhs: AnyObject<'ctx>,
|
||||||
|
rhs: AnyObject<'ctx>,
|
||||||
|
int_predicate: IntPredicate,
|
||||||
|
float_predicate: FloatPredicate,
|
||||||
|
name: &str,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
assert!(ctx.unifier.unioned(lhs.ty, rhs.ty), "lhs and rhs type should be the same");
|
||||||
|
|
||||||
|
let bool_model = IntModel(Bool);
|
||||||
|
|
||||||
|
let common_ty = lhs.ty;
|
||||||
|
let result = if lhs.is_float(ctx) {
|
||||||
|
let lhs = lhs.into_float(ctx);
|
||||||
|
let rhs = rhs.into_float(ctx);
|
||||||
|
ctx.builder.build_float_compare(float_predicate, lhs.value, rhs.value, name).unwrap()
|
||||||
|
} else if ctx.unifier.unioned_any(common_ty, int_like(ctx)) {
|
||||||
|
let lhs = lhs.into_int(ctx);
|
||||||
|
let rhs = rhs.into_int(ctx);
|
||||||
|
ctx.builder.build_int_compare(int_predicate, lhs, rhs, name).unwrap()
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [lhs.ty, rhs.ty]);
|
||||||
|
};
|
||||||
|
|
||||||
|
bool_model.check_value(generator, ctx.ctx, result).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Helper function for `int32()`, `int64()`, `uint32()`, and `uint64()`.
|
||||||
|
///
|
||||||
|
/// TODO: Document me
|
||||||
|
fn cast_to_int_conversion<'a, G, HandleFloatFn>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ret_int_ty: Type,
|
||||||
|
handle_float: HandleFloatFn,
|
||||||
|
) -> AnyObject<'ctx>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
HandleFloatFn:
|
||||||
|
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, FloatValue<'ctx>) -> IntValue<'ctx>,
|
||||||
|
{
|
||||||
|
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
|
||||||
|
|
||||||
|
let result = if self.is_float(ctx) {
|
||||||
|
// Handle float to int
|
||||||
|
let n = self.into_float(ctx);
|
||||||
|
handle_float(generator, ctx, n.value)
|
||||||
|
} else if self.is_int_like(ctx) {
|
||||||
|
// Handle int to a new int type
|
||||||
|
let n = self.into_int(ctx);
|
||||||
|
if n.get_type().get_bit_width() <= ret_int_ty_llvm.get_bit_width() {
|
||||||
|
ctx.builder.build_int_z_extend(n, ret_int_ty_llvm, "zext").unwrap()
|
||||||
|
} else {
|
||||||
|
ctx.builder.build_int_truncate(n, ret_int_ty_llvm, "trunc").unwrap()
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty]);
|
||||||
|
};
|
||||||
|
|
||||||
|
assert_eq!(ret_int_ty_llvm.get_bit_width(), result.get_type().get_bit_width()); // Sanity check
|
||||||
|
AnyObject { value: result.into(), ty: ret_int_ty }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `int32()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_int32<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
self.cast_to_int_conversion(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ctx.primitives.int32,
|
||||||
|
|_generator, ctx, input| {
|
||||||
|
let n =
|
||||||
|
ctx.builder.build_float_to_signed_int(input, ctx.ctx.i64_type(), "").unwrap();
|
||||||
|
ctx.builder.build_int_truncate(n, ctx.ctx.i32_type(), "conv").unwrap()
|
||||||
|
},
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `int64()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_int64<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
self.cast_to_int_conversion(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ctx.primitives.int64,
|
||||||
|
|_generator, ctx, input| {
|
||||||
|
ctx.builder.build_float_to_signed_int(input, ctx.ctx.i64_type(), "").unwrap()
|
||||||
|
},
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `uint32()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_uint32<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
self.cast_to_int_conversion(generator, ctx, ctx.primitives.uint32, |_generator, ctx, n| {
|
||||||
|
let n_gez = ctx
|
||||||
|
.builder
|
||||||
|
.build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "")
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let to_int32 =
|
||||||
|
ctx.builder.build_float_to_signed_int(n, ctx.ctx.i32_type(), "").unwrap();
|
||||||
|
let to_uint64 =
|
||||||
|
ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap();
|
||||||
|
|
||||||
|
ctx.builder
|
||||||
|
.build_select(
|
||||||
|
n_gez,
|
||||||
|
ctx.builder.build_int_truncate(to_uint64, ctx.ctx.i32_type(), "").unwrap(),
|
||||||
|
to_int32,
|
||||||
|
"conv",
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.into_int_value()
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `uint64()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_uint64<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
self.cast_to_int_conversion(generator, ctx, ctx.primitives.uint64, |_generator, ctx, n| {
|
||||||
|
let val_gez = ctx
|
||||||
|
.builder
|
||||||
|
.build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "")
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let to_int64 =
|
||||||
|
ctx.builder.build_float_to_signed_int(n, ctx.ctx.i64_type(), "").unwrap();
|
||||||
|
let to_uint64 =
|
||||||
|
ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap();
|
||||||
|
|
||||||
|
ctx.builder.build_select(val_gez, to_uint64, to_int64, "conv").unwrap().into_int_value()
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get the `len()` of this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
// TODO: Switch to returning SizeT
|
||||||
|
let result = match &*ctx.unifier.get_ty_immutable(self.ty) {
|
||||||
|
TypeEnum::TTuple { .. } => {
|
||||||
|
let tuple = TupleObject::from_object(ctx, *self);
|
||||||
|
tuple.len(generator, ctx).truncate(generator, ctx, Int32, "tuple_len_32")
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let range = RangeObject::from_object(generator, ctx, *self);
|
||||||
|
range.len(generator, ctx)
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let list = ListObject::from_object(generator, ctx, *self);
|
||||||
|
list.len(generator, ctx).truncate(generator, ctx, Int32, "list_len_i32")
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, *self);
|
||||||
|
ndarray.len(generator, ctx).truncate(generator, ctx, Int32, "ndarray_len_i32")
|
||||||
|
}
|
||||||
|
_ => unreachable!(),
|
||||||
|
};
|
||||||
|
|
||||||
|
AnyObject { ty: ctx.primitives.int32, value: result.value.as_basic_value_enum() }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`AnyObject::call_bool`] but this returns an `Int<'ctx, Bool>` instead of an object.
|
||||||
|
pub fn bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Int<'ctx, Bool> {
|
||||||
|
let bool_model = IntModel(Bool);
|
||||||
|
if self.is_int_like(ctx) {
|
||||||
|
let n = self.into_int(ctx);
|
||||||
|
let n = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_compare(inkwell::IntPredicate::NE, n, n.get_type().const_zero(), "bool")
|
||||||
|
.unwrap();
|
||||||
|
bool_model.believe_value(n)
|
||||||
|
} else if self.is_float(ctx) {
|
||||||
|
let n = self.value.into_float_value();
|
||||||
|
let n = ctx
|
||||||
|
.builder
|
||||||
|
.build_float_compare(FloatPredicate::UNE, n, n.get_type().const_zero(), "bool")
|
||||||
|
.unwrap();
|
||||||
|
bool_model.believe_value(n)
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `bool()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||||
|
let n = self.bool(ctx);
|
||||||
|
AnyObject::from_bool(ctx, n)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `float()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||||
|
let f64_model = FloatModel(Float64);
|
||||||
|
let llvm_f64 = ctx.ctx.f64_type();
|
||||||
|
|
||||||
|
let result = if self.is_float(ctx) {
|
||||||
|
self.into_float(ctx)
|
||||||
|
} else if self.is_signed_int(ctx) || self.is_bool(ctx) {
|
||||||
|
let n = self.into_int(ctx);
|
||||||
|
let n = ctx.builder.build_signed_int_to_float(n, llvm_f64, "sitofp").unwrap();
|
||||||
|
f64_model.believe_value(n)
|
||||||
|
} else if self.is_unsigned_int(ctx) {
|
||||||
|
let n = self.into_int(ctx);
|
||||||
|
let n = ctx.builder.build_unsigned_int_to_float(n, llvm_f64, "uitofp").unwrap();
|
||||||
|
f64_model.believe_value(n)
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty]);
|
||||||
|
};
|
||||||
|
|
||||||
|
AnyObject { ty: ctx.primitives.float, value: result.value.as_basic_value_enum() }
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call `abs()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_abs<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Self {
|
||||||
|
if self.is_float(ctx) {
|
||||||
|
let n = self.value.into_float_value();
|
||||||
|
let n = llvm_intrinsics::call_float_fabs(ctx, n, Some("abs"));
|
||||||
|
AnyObject { value: n.into(), ty: ctx.primitives.float }
|
||||||
|
} else if self.is_unsigned_int(ctx) || self.is_signed_int(ctx) {
|
||||||
|
let is_poisoned = ctx.ctx.bool_type().const_zero(); // is_poisoned = false
|
||||||
|
|
||||||
|
let n = self.value.into_int_value();
|
||||||
|
let n = llvm_intrinsics::call_int_abs(ctx, n, is_poisoned, Some("abs"));
|
||||||
|
AnyObject { value: n.into(), ty: self.ty }
|
||||||
|
} else if self.is_ndarray(ctx) {
|
||||||
|
let ndarray = self.into_ndarray(generator, ctx);
|
||||||
|
ndarray
|
||||||
|
.map(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|
||||||
|
|generator, ctx, scalar| Ok(scalar.call_abs(generator, ctx)),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.to_any_object(ctx)
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call `round()` on this object.
|
||||||
|
//
|
||||||
|
// It is possible to specify which kind of int type to return.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_round<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ret_int_ty: Type,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
|
||||||
|
|
||||||
|
let result = if ctx.unifier.unioned(self.ty, ctx.primitives.float) {
|
||||||
|
let n = self.value.into_float_value();
|
||||||
|
let n = llvm_intrinsics::call_float_round(ctx, n, None);
|
||||||
|
ctx.builder.build_float_to_signed_int(n, ret_int_ty_llvm, "round").unwrap()
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty])
|
||||||
|
};
|
||||||
|
AnyObject { ty: ret_int_ty, value: result.as_basic_value_enum() }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `np_round()` on this object.
|
||||||
|
///
|
||||||
|
/// NOTE: `np.round()` has different behaviors than `round()` when in comes to "tie" cases and return type.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_np_round<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
if self.is_float(ctx) {
|
||||||
|
let n = self.into_float(ctx);
|
||||||
|
let n = llvm_intrinsics::call_float_rint(ctx, n.value, None);
|
||||||
|
AnyObject { ty: ctx.primitives.float, value: n.as_basic_value_enum() }
|
||||||
|
} else if self.is_ndarray(ctx) {
|
||||||
|
let ndarray = self.into_ndarray(generator, ctx);
|
||||||
|
ndarray
|
||||||
|
.map(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|
||||||
|
|generator, ctx, scalar| Ok(scalar.call_np_round(generator, ctx)),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.to_any_object(ctx)
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `min()` or `max()` on two objects.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_min_or_max(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
kind: MinOrMax,
|
||||||
|
a: AnyObject<'ctx>,
|
||||||
|
b: AnyObject<'ctx>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
if !ctx.unifier.unioned(a.ty, b.ty) {
|
||||||
|
unsupported_type(ctx, [a.ty, b.ty])
|
||||||
|
}
|
||||||
|
|
||||||
|
let common_ty = a.ty;
|
||||||
|
|
||||||
|
if a.is_float(ctx) {
|
||||||
|
let function = match kind {
|
||||||
|
MinOrMax::Min => llvm_intrinsics::call_float_minnum,
|
||||||
|
MinOrMax::Max => llvm_intrinsics::call_float_maxnum,
|
||||||
|
};
|
||||||
|
|
||||||
|
let a = a.into_float(ctx).value;
|
||||||
|
let b = b.into_float(ctx).value;
|
||||||
|
let result = function(ctx, a, b, None);
|
||||||
|
AnyObject { value: result.as_basic_value_enum(), ty: ctx.primitives.float }
|
||||||
|
} else if a.is_unsigned_int(ctx) || a.is_bool(ctx) {
|
||||||
|
// Treating bool has an unsigned int since that is convenient
|
||||||
|
let function = match kind {
|
||||||
|
MinOrMax::Min => llvm_intrinsics::call_int_umin,
|
||||||
|
MinOrMax::Max => llvm_intrinsics::call_int_umax,
|
||||||
|
};
|
||||||
|
|
||||||
|
let a = a.into_int(ctx);
|
||||||
|
let b = b.into_int(ctx);
|
||||||
|
let result = function(ctx, a, b, None);
|
||||||
|
AnyObject { value: result.as_basic_value_enum(), ty: common_ty }
|
||||||
|
} else if a.is_signed_int(ctx) {
|
||||||
|
let function = match kind {
|
||||||
|
MinOrMax::Min => llvm_intrinsics::call_int_smin,
|
||||||
|
MinOrMax::Max => llvm_intrinsics::call_int_smax,
|
||||||
|
};
|
||||||
|
|
||||||
|
let a = a.into_int(ctx);
|
||||||
|
let b = b.into_int(ctx);
|
||||||
|
let result = function(ctx, a, b, None);
|
||||||
|
AnyObject { value: result.as_basic_value_enum(), ty: common_ty }
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [common_ty])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `floor()` or `ceil()` on this object.
|
||||||
|
///
|
||||||
|
/// It is possible to specify which kind of int type to return.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_floor_or_ceil<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
kind: FloorOrCeil,
|
||||||
|
ret_int_ty: Type,
|
||||||
|
) -> Self {
|
||||||
|
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
|
||||||
|
|
||||||
|
if self.is_float(ctx) {
|
||||||
|
let function = match kind {
|
||||||
|
FloorOrCeil::Floor => llvm_intrinsics::call_float_floor,
|
||||||
|
FloorOrCeil::Ceil => llvm_intrinsics::call_float_ceil,
|
||||||
|
};
|
||||||
|
|
||||||
|
let n = self.into_float(ctx).value;
|
||||||
|
let n = function(ctx, n, None);
|
||||||
|
let n = ctx.builder.build_float_to_signed_int(n, ret_int_ty_llvm, "").unwrap();
|
||||||
|
AnyObject { ty: ret_int_ty, value: n.as_basic_value_enum() }
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call `np_floor()` or `np_ceil()` on this object.
|
||||||
|
#[must_use]
|
||||||
|
pub fn call_np_floor_or_ceil<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
kind: FloorOrCeil,
|
||||||
|
) -> Self {
|
||||||
|
// TODO:
|
||||||
|
if self.is_float(ctx) {
|
||||||
|
let function = match kind {
|
||||||
|
FloorOrCeil::Floor => llvm_intrinsics::call_float_floor,
|
||||||
|
FloorOrCeil::Ceil => llvm_intrinsics::call_float_ceil,
|
||||||
|
};
|
||||||
|
let n = self.into_float(ctx).value;
|
||||||
|
let n = function(ctx, n, None);
|
||||||
|
AnyObject { ty: ctx.primitives.float, value: n.as_basic_value_enum() }
|
||||||
|
} else if self.is_ndarray(ctx) {
|
||||||
|
let ndarray = self.into_ndarray(generator, ctx);
|
||||||
|
ndarray
|
||||||
|
.map(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
NDArrayOut::NewNDArray { dtype: ctx.primitives.float },
|
||||||
|
|generator, ctx, scalar| Ok(scalar.call_np_floor_or_ceil(generator, ctx, kind)),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.to_any_object(ctx)
|
||||||
|
} else {
|
||||||
|
unsupported_type(ctx, [self.ty])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,176 @@
|
||||||
|
use super::NDArrayObject;
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::{call_nac3_array_set_and_validate_list_shape, call_nac3_array_write_list_to_array},
|
||||||
|
model::*,
|
||||||
|
object::{list::ListObject, AnyObject},
|
||||||
|
stmt::gen_if_else_expr_callback,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
fn get_list_object_dtype_and_ndims<'ctx>(
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
) -> (Type, u64) {
|
||||||
|
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
||||||
|
|
||||||
|
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
||||||
|
let ndims = ndims + 1; // To count `list` itself.
|
||||||
|
|
||||||
|
(dtype, ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
fn from_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
||||||
|
let list_value = list.get_opaque_list_ptr(generator, ctx);
|
||||||
|
|
||||||
|
// Validate `list` has a consistent shape.
|
||||||
|
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||||
|
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||||
|
let ndims = sizet_model.constant(generator, ctx.ctx, ndims_int);
|
||||||
|
let shape = sizet_model.array_alloca(generator, ctx, ndims.value, "shape");
|
||||||
|
call_nac3_array_set_and_validate_list_shape(generator, ctx, list_value, ndims, shape);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int, "ndarray_from_list");
|
||||||
|
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
|
||||||
|
// Copy all contents from the list.
|
||||||
|
call_nac3_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// np_array without copy is only possible `list` is not nested.
|
||||||
|
|
||||||
|
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||||
|
// to the array pointer of `list`.
|
||||||
|
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||||
|
|
||||||
|
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||||
|
if ndims == 1 {
|
||||||
|
// `list` is not nested, does not need to copy.
|
||||||
|
let ndarray =
|
||||||
|
NDArrayObject::alloca(generator, ctx, dtype, 1, "ndarray_from_list_no_copy");
|
||||||
|
|
||||||
|
// Set data
|
||||||
|
let data = list.get_opaque_items_ptr(generator, ctx);
|
||||||
|
ndarray.instance.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
// Set shape
|
||||||
|
// dim = list->len;
|
||||||
|
// shape[0] = dim;
|
||||||
|
let shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||||
|
let dim = list.instance.get(generator, ctx, |f| f.len, "dim");
|
||||||
|
shape.offset(generator, ctx, zero.value, "pdim").store(ctx, dim);
|
||||||
|
|
||||||
|
// Set strides, the `data` is contiguous
|
||||||
|
ndarray.update_strides_by_shape(generator, ctx);
|
||||||
|
|
||||||
|
// Done
|
||||||
|
ndarray
|
||||||
|
} else {
|
||||||
|
// `list` is nested, it is impossible to not copy.
|
||||||
|
NDArrayObject::from_np_array_list_copy_impl(generator, ctx, list)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
list: ListObject<'ctx>,
|
||||||
|
copy: Int<'ctx, Bool>,
|
||||||
|
) -> Self {
|
||||||
|
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||||
|
|
||||||
|
let ndarray = gen_if_else_expr_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|_generator, _ctx| Ok(copy.value),
|
||||||
|
|generator, ctx| {
|
||||||
|
let ndarray = NDArrayObject::from_np_array_list_copy_impl(generator, ctx, list);
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
|generator, ctx| {
|
||||||
|
let ndarray =
|
||||||
|
NDArrayObject::from_np_array_list_try_no_copy_impl(generator, ctx, list);
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn from_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: NDArrayObject<'ctx>,
|
||||||
|
copy: Int<'ctx, Bool>,
|
||||||
|
) -> Self {
|
||||||
|
let ndarray_val = gen_if_else_expr_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|_generator, _ctx| Ok(copy.value),
|
||||||
|
|generator, ctx| {
|
||||||
|
let ndarray = ndarray.make_copy(generator, ctx, "np_array_copied_ndarray"); // Force copy
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
|_generator, _ctx| {
|
||||||
|
// No need to copy. Return `ndarray` itself.
|
||||||
|
Ok(Some(ndarray.instance.value))
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
NDArrayObject::from_value_and_unpacked_types(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ndarray_val,
|
||||||
|
ndarray.dtype,
|
||||||
|
ndarray.ndims,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn from_np_array<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
copy: Int<'ctx, Bool>,
|
||||||
|
) -> Self {
|
||||||
|
match &*ctx.unifier.get_ty(object.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let list = ListObject::from_object(generator, ctx, object);
|
||||||
|
NDArrayObject::from_np_array_list_impl(generator, ctx, list, copy)
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||||
|
NDArrayObject::from_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
||||||
|
}
|
||||||
|
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,161 @@
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{
|
||||||
|
call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to,
|
||||||
|
call_nac3_ndarray_util_assert_shape_no_negative,
|
||||||
|
},
|
||||||
|
model::*,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
/// Fields of [`ShapeEntry`]
|
||||||
|
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub ndims: F::Out<IntModel<SizeT>>,
|
||||||
|
pub shape: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT structure used in broadcasting.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct ShapeEntry;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create a broadcast view on this ndarray with a target shape.
|
||||||
|
///
|
||||||
|
/// The input shape will be checked to make sure that it contains no negative values.
|
||||||
|
///
|
||||||
|
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||||
|
/// The caller has to figure this out for this function.
|
||||||
|
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||||
|
#[must_use]
|
||||||
|
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
target_ndims: u64,
|
||||||
|
target_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
let target_ndims_llvm = IntModel(SizeT).constant(generator, ctx.ctx, target_ndims);
|
||||||
|
call_nac3_ndarray_util_assert_shape_no_negative(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
target_ndims_llvm,
|
||||||
|
target_shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
let broadcast_ndarray = NDArrayObject::alloca(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
self.dtype,
|
||||||
|
target_ndims,
|
||||||
|
"broadcast_ndarray_to_dst",
|
||||||
|
);
|
||||||
|
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
||||||
|
|
||||||
|
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
||||||
|
broadcast_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/// A result produced by [`broadcast_all_ndarrays`]
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct BroadcastAllResult<'ctx> {
|
||||||
|
/// The statically known `ndims` of the broadcast result.
|
||||||
|
pub ndims: u64,
|
||||||
|
/// The broadcasting shape.
|
||||||
|
pub shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
/// Broadcasted views on the inputs.
|
||||||
|
///
|
||||||
|
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||||
|
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||||
|
/// is the same as the input.
|
||||||
|
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
in_entries: &[(Ptr<'ctx, IntModel<SizeT>>, u64)],
|
||||||
|
broadcast_ndims: u64,
|
||||||
|
broadcast_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
let shape_model = StructModel(ShapeEntry);
|
||||||
|
|
||||||
|
// Prepare input shape entries
|
||||||
|
let num_shape_entries =
|
||||||
|
sizet_model.constant(generator, ctx.ctx, u64::try_from(in_entries.len()).unwrap());
|
||||||
|
let shape_entries =
|
||||||
|
shape_model.array_alloca(generator, ctx, num_shape_entries.value, "shape_entries");
|
||||||
|
for (i, (in_shape, in_ndims)) in in_entries.iter().enumerate() {
|
||||||
|
let i = sizet_model.constant(generator, ctx.ctx, i as u64).value;
|
||||||
|
let pshape_entry = shape_entries.offset(generator, ctx, i, "shape_entry");
|
||||||
|
|
||||||
|
let in_ndims = sizet_model.constant(generator, ctx.ctx, *in_ndims);
|
||||||
|
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
||||||
|
|
||||||
|
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
let broadcast_ndims = sizet_model.constant(generator, ctx.ctx, broadcast_ndims);
|
||||||
|
|
||||||
|
call_nac3_ndarray_broadcast_shapes(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
num_shape_entries,
|
||||||
|
shape_entries,
|
||||||
|
broadcast_ndims,
|
||||||
|
broadcast_shape,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
// TODO: DOCUMENT: Behaves like `np.broadcast()`, except returns results differently.
|
||||||
|
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarrays: &[Self],
|
||||||
|
) -> BroadcastAllResult<'ctx> {
|
||||||
|
assert!(!ndarrays.is_empty());
|
||||||
|
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
// Infer the broadcast output ndims.
|
||||||
|
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
||||||
|
|
||||||
|
let broadcast_ndims = sizet_model.constant(generator, ctx.ctx, broadcast_ndims_int);
|
||||||
|
let broadcast_shape =
|
||||||
|
sizet_model.array_alloca(generator, ctx, broadcast_ndims.value, "broadcast_shape");
|
||||||
|
|
||||||
|
let shape_entries = ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| {
|
||||||
|
(ndarray.instance.get(generator, ctx, |f| f.shape, "shape"), ndarray.ndims)
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
||||||
|
|
||||||
|
// Broadcast all the inputs to shape `dst_shape`.
|
||||||
|
let broadcast_ndarrays: Vec<_> = ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| {
|
||||||
|
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
|
||||||
|
BroadcastAllResult {
|
||||||
|
ndims: broadcast_ndims_int,
|
||||||
|
shape: broadcast_shape,
|
||||||
|
ndarrays: broadcast_ndarrays,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,238 @@
|
||||||
|
use inkwell::{values::BasicValueEnum, IntPredicate};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, object::AnyObject,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||||
|
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
) -> BasicValueEnum<'ctx> {
|
||||||
|
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
ctx.ctx.i32_type().const_zero().into()
|
||||||
|
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
ctx.ctx.i64_type().const_zero().into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||||
|
ctx.ctx.f64_type().const_zero().into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||||
|
ctx.ctx.bool_type().const_zero().into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||||
|
ctx.gen_string(generator, "").value.into()
|
||||||
|
} else {
|
||||||
|
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the one value in `np.ones()` of a `dtype`.
|
||||||
|
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
) -> BasicValueEnum<'ctx> {
|
||||||
|
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||||
|
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||||
|
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||||
|
.iter()
|
||||||
|
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||||
|
{
|
||||||
|
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||||
|
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||||
|
ctx.ctx.f64_type().const_float(1.0).into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||||
|
ctx.ctx.bool_type().const_int(1, false).into()
|
||||||
|
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||||
|
ctx.gen_string(generator, "1").value.into()
|
||||||
|
} else {
|
||||||
|
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create an ndarray like `np.empty`.
|
||||||
|
pub fn from_np_empty<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
// Validate `shape`
|
||||||
|
// TODO: Should the caller be responsible for this instead?
|
||||||
|
let ndims_llvm = IntModel(SizeT).constant(generator, ctx.ctx, ndims);
|
||||||
|
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims, "full_ndarray");
|
||||||
|
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.full`.
|
||||||
|
pub fn from_np_full<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
fill_value: AnyObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// Sanity check on `fill_value`'s dtype.
|
||||||
|
assert!(ctx.unifier.unioned(dtype, fill_value.ty));
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::from_np_empty(generator, ctx, dtype, ndims, shape);
|
||||||
|
ndarray.fill(generator, ctx, fill_value);
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.zero`.
|
||||||
|
pub fn from_np_zero<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||||
|
let fill_value = AnyObject { value: fill_value, ty: dtype };
|
||||||
|
NDArrayObject::from_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.ones`.
|
||||||
|
pub fn from_np_ones<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||||
|
let fill_value = AnyObject { value: fill_value, ty: dtype };
|
||||||
|
NDArrayObject::from_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.arange`.
|
||||||
|
/// The returned ndarray's `dtype` is always `float`
|
||||||
|
pub fn from_np_arange<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
length: Int<'ctx, SizeT>,
|
||||||
|
) -> Self {
|
||||||
|
let ndarray = NDArrayObject::alloca(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ctx.primitives.float,
|
||||||
|
1, // ndims = 1
|
||||||
|
"arange_ndarray",
|
||||||
|
);
|
||||||
|
|
||||||
|
// `ndarray.shape[0] = length`
|
||||||
|
ndarray
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.shape, "shape")
|
||||||
|
.offset_const(generator, ctx, 0, "dim")
|
||||||
|
.store(ctx, length);
|
||||||
|
|
||||||
|
// Create data and set elements
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
ndarray
|
||||||
|
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||||
|
// Get the index of the current element, convert that index to float, and write it.
|
||||||
|
// This is how we get [0.0, 1.0, 2.0, ...].
|
||||||
|
let index = nditer.get_index(generator, ctx);
|
||||||
|
let pelement = nditer.get_pointer(generator, ctx);
|
||||||
|
|
||||||
|
let val = ctx
|
||||||
|
.builder
|
||||||
|
.build_unsigned_int_to_float(index.value, ctx.ctx.f64_type(), "val")
|
||||||
|
.unwrap();
|
||||||
|
ctx.builder.build_store(pelement, val).unwrap();
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.eye`.
|
||||||
|
pub fn from_np_eye<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
nrows: Int<'ctx, SizeT>,
|
||||||
|
ncols: Int<'ctx, SizeT>,
|
||||||
|
offset: Int<'ctx, SizeT>,
|
||||||
|
) -> Self {
|
||||||
|
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||||
|
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca_dynamic_shape(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
dtype,
|
||||||
|
&[nrows, ncols],
|
||||||
|
"eye_ndarray",
|
||||||
|
);
|
||||||
|
|
||||||
|
// Create data and make the matrix like look np.eye()
|
||||||
|
ndarray.create_data(generator, ctx);
|
||||||
|
ndarray
|
||||||
|
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||||
|
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||||
|
// and this loop would not execute.
|
||||||
|
|
||||||
|
// Load up `row_i` and `col_i` from indices.
|
||||||
|
let row_i = nditer
|
||||||
|
.get_indices()
|
||||||
|
.offset_const(generator, ctx, 0, "")
|
||||||
|
.load(generator, ctx, "row_i");
|
||||||
|
let col_i = nditer
|
||||||
|
.get_indices()
|
||||||
|
.offset_const(generator, ctx, 1, "")
|
||||||
|
.load(generator, ctx, "col_i");
|
||||||
|
|
||||||
|
// Write to element
|
||||||
|
let be_one =
|
||||||
|
row_i.add(ctx, offset, "").compare(ctx, IntPredicate::EQ, col_i, "write_one");
|
||||||
|
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
|
||||||
|
|
||||||
|
let p = nditer.get_pointer(generator, ctx);
|
||||||
|
ctx.builder.build_store(p, value).unwrap();
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ndarray like `np.identity`.
|
||||||
|
pub fn from_np_identity<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
size: Int<'ctx, SizeT>,
|
||||||
|
) -> Self {
|
||||||
|
// Convenient implementation
|
||||||
|
let offset = IntModel(SizeT).const_0(generator, ctx.ctx);
|
||||||
|
NDArrayObject::from_np_eye(generator, ctx, dtype, size, size, offset)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,128 @@
|
||||||
|
use inkwell::{FloatPredicate, IntPredicate};
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
model::*,
|
||||||
|
object::{AnyObject, MinOrMax},
|
||||||
|
stmt::gen_if_callback,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Helper function to implement NAC3's builtin `np_min()`, `np_max()`, `np_argmin()`, and `np_argmax()`.
|
||||||
|
///
|
||||||
|
/// Generate LLVM IR to find the extremum and index of the **first** extremum value.
|
||||||
|
///
|
||||||
|
/// Care has also been taken to make the error messages match that of NumPy.
|
||||||
|
fn min_max_argmin_argmax_helper<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
kind: MinOrMax,
|
||||||
|
on_empty_err_msg: &str,
|
||||||
|
) -> (AnyObject<'ctx>, Int<'ctx, SizeT>) {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||||
|
|
||||||
|
// If the ndarray is empty, throw an error.
|
||||||
|
let is_empty = self.is_empty(generator, ctx);
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
is_empty.value,
|
||||||
|
"0:ValueError",
|
||||||
|
on_empty_err_msg,
|
||||||
|
[None, None, None],
|
||||||
|
ctx.current_loc,
|
||||||
|
);
|
||||||
|
|
||||||
|
// Setup and initialize the extremum to be the first element in the ndarray
|
||||||
|
let pextremum_index = sizet_model.alloca(generator, ctx, "extremum_index");
|
||||||
|
let pextremum = ctx.builder.build_alloca(dtype_llvm, "extremum").unwrap();
|
||||||
|
|
||||||
|
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||||
|
pextremum_index.store(ctx, zero);
|
||||||
|
|
||||||
|
let first_scalar = self.get_nth_scalar(generator, ctx, zero);
|
||||||
|
ctx.builder.build_store(pextremum, first_scalar.value).unwrap();
|
||||||
|
|
||||||
|
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||||
|
let old_extremum = ctx.builder.build_load(pextremum, "current_extremum").unwrap();
|
||||||
|
let old_extremum = AnyObject { ty: self.dtype, value: old_extremum };
|
||||||
|
|
||||||
|
let scalar = nditer.get_scalar(generator, ctx);
|
||||||
|
let new_extremum = AnyObject::call_min_or_max(ctx, kind, old_extremum, scalar);
|
||||||
|
|
||||||
|
gen_if_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|generator, ctx| {
|
||||||
|
// Is new_extremum is more extreme than old_extremum?
|
||||||
|
let cmp = AnyObject::compare_int_or_float_by_predicate(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
new_extremum,
|
||||||
|
old_extremum,
|
||||||
|
IntPredicate::NE,
|
||||||
|
FloatPredicate::ONE,
|
||||||
|
"",
|
||||||
|
);
|
||||||
|
Ok(cmp.value)
|
||||||
|
},
|
||||||
|
|generator, ctx| {
|
||||||
|
// Yes, update the extremum index
|
||||||
|
let index = nditer.get_index(generator, ctx);
|
||||||
|
pextremum_index.store(ctx, index);
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
|_generator, _ctx| {
|
||||||
|
// No, do nothing
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
)
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
// Finally return the extremum and extremum index.
|
||||||
|
let extremum_index = pextremum_index.load(generator, ctx, "extremum_index");
|
||||||
|
|
||||||
|
let extremum = ctx.builder.build_load(pextremum, "extremum_value").unwrap();
|
||||||
|
let extremum = AnyObject { ty: self.dtype, value: extremum };
|
||||||
|
|
||||||
|
(extremum, extremum_index)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Invoke NAC3's builtin `np_min()` or `np_max()`.
|
||||||
|
pub fn min_or_max<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
kind: MinOrMax,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let on_empty_err_msg = format!(
|
||||||
|
"zero-size array to reduction operation {} which has no identity",
|
||||||
|
match kind {
|
||||||
|
MinOrMax::Min => "minimum",
|
||||||
|
MinOrMax::Max => "maximum",
|
||||||
|
}
|
||||||
|
);
|
||||||
|
self.min_max_argmin_argmax_helper(generator, ctx, kind, &on_empty_err_msg).0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Invoke NAC3's builtin `np_argmin()` or `np_argmax()`.
|
||||||
|
pub fn argmin_or_argmax<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
kind: MinOrMax,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
let on_empty_err_msg = format!(
|
||||||
|
"attempt to get {} of an empty sequence",
|
||||||
|
match kind {
|
||||||
|
MinOrMax::Min => "argmin",
|
||||||
|
MinOrMax::Max => "argmax",
|
||||||
|
}
|
||||||
|
);
|
||||||
|
self.min_max_argmin_argmax_helper(generator, ctx, kind, &on_empty_err_msg).1
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,321 @@
|
||||||
|
use crate::codegen::{irrt::call_nac3_ndarray_index, model::*, CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
pub type NDIndexType = Byte;
|
||||||
|
|
||||||
|
/// Fields of [`NDIndex`]
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub type_: F::Out<IntModel<NDIndexType>>, // Defined to be uint8_t in IRRT
|
||||||
|
pub data: F::Out<PtrModel<IntModel<Byte>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT representation fo an ndarray subscript index.
|
||||||
|
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||||
|
pub struct NDIndex;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for NDIndex {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fields of [`UserSlice`]
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct UserSliceFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub start_defined: F::Out<IntModel<Bool>>,
|
||||||
|
pub start: F::Out<IntModel<Int32>>,
|
||||||
|
pub stop_defined: F::Out<IntModel<Bool>>,
|
||||||
|
pub stop: F::Out<IntModel<Int32>>,
|
||||||
|
pub step_defined: F::Out<IntModel<Bool>>,
|
||||||
|
pub step: F::Out<IntModel<Int32>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT representation of a user slice.
|
||||||
|
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||||
|
pub struct UserSlice;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for UserSlice {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = UserSliceFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
start_defined: traversal.add_auto("start_defined"),
|
||||||
|
start: traversal.add_auto("start"),
|
||||||
|
stop_defined: traversal.add_auto("stop_defined"),
|
||||||
|
stop: traversal.add_auto("stop"),
|
||||||
|
step_defined: traversal.add_auto("step_defined"),
|
||||||
|
step: traversal.add_auto("step"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A convenience structure to prepare a [`UserSlice`].
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct RustUserSlice<'ctx> {
|
||||||
|
pub start: Option<Int<'ctx, Int32>>,
|
||||||
|
pub stop: Option<Int<'ctx, Int32>>,
|
||||||
|
pub step: Option<Int<'ctx, Int32>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> RustUserSlice<'ctx> {
|
||||||
|
/// Write the contents to an LLVM [`UserSlice`].
|
||||||
|
pub fn write_to_user_slice<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
dst_slice_ptr: Ptr<'ctx, StructModel<UserSlice>>,
|
||||||
|
) {
|
||||||
|
let bool_model = IntModel(Bool);
|
||||||
|
|
||||||
|
let false_ = bool_model.constant(generator, ctx.ctx, 0);
|
||||||
|
let true_ = bool_model.constant(generator, ctx.ctx, 1);
|
||||||
|
|
||||||
|
// TODO: Code duplication. Probably okay...?
|
||||||
|
|
||||||
|
match self.start {
|
||||||
|
Some(start) => {
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
|
||||||
|
}
|
||||||
|
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
|
||||||
|
}
|
||||||
|
|
||||||
|
match self.stop {
|
||||||
|
Some(stop) => {
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
|
||||||
|
}
|
||||||
|
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
|
||||||
|
}
|
||||||
|
|
||||||
|
match self.step {
|
||||||
|
Some(step) => {
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
|
||||||
|
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
|
||||||
|
}
|
||||||
|
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A convenience enum variant to store the content and type of an NDIndex in high level.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub enum RustNDIndex<'ctx> {
|
||||||
|
SingleElement(Int<'ctx, Int32>), // TODO: To be SizeT
|
||||||
|
Slice(RustUserSlice<'ctx>),
|
||||||
|
NewAxis,
|
||||||
|
Ellipsis,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> RustNDIndex<'ctx> {
|
||||||
|
/// Get the value to set `NDIndex::type` for this variant.
|
||||||
|
fn get_type_id(&self) -> u64 {
|
||||||
|
// Defined in IRRT, must be in sync
|
||||||
|
match self {
|
||||||
|
RustNDIndex::SingleElement(_) => 0,
|
||||||
|
RustNDIndex::Slice(_) => 1,
|
||||||
|
RustNDIndex::NewAxis => 2,
|
||||||
|
RustNDIndex::Ellipsis => 3,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Write the contents to an LLVM [`NDIndex`].
|
||||||
|
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
dst_ndindex_ptr: Ptr<'ctx, StructModel<NDIndex>>,
|
||||||
|
) {
|
||||||
|
let ndindex_type_model = IntModel(NDIndexType::default());
|
||||||
|
let i32_model = IntModel(Int32);
|
||||||
|
let user_slice_model = StructModel(UserSlice);
|
||||||
|
|
||||||
|
// Set `dst_ndindex_ptr->type`
|
||||||
|
dst_ndindex_ptr
|
||||||
|
.gep(ctx, |f| f.type_)
|
||||||
|
.store(ctx, ndindex_type_model.constant(generator, ctx.ctx, self.get_type_id()));
|
||||||
|
|
||||||
|
// Set `dst_ndindex_ptr->data`
|
||||||
|
match self {
|
||||||
|
RustNDIndex::SingleElement(in_index) => {
|
||||||
|
let index_ptr = i32_model.alloca(generator, ctx, "index");
|
||||||
|
index_ptr.store(ctx, *in_index);
|
||||||
|
|
||||||
|
dst_ndindex_ptr
|
||||||
|
.gep(ctx, |f| f.data)
|
||||||
|
.store(ctx, index_ptr.pointer_cast(generator, ctx, IntModel(Byte), ""));
|
||||||
|
}
|
||||||
|
RustNDIndex::Slice(in_rust_slice) => {
|
||||||
|
let user_slice_ptr = user_slice_model.alloca(generator, ctx, "user_slice");
|
||||||
|
in_rust_slice.write_to_user_slice(generator, ctx, user_slice_ptr);
|
||||||
|
|
||||||
|
dst_ndindex_ptr
|
||||||
|
.gep(ctx, |f| f.data)
|
||||||
|
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, IntModel(Byte), ""));
|
||||||
|
}
|
||||||
|
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
|
||||||
|
pub fn alloca_ndindexes<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
in_ndindexes: &[RustNDIndex<'ctx>],
|
||||||
|
) -> (Int<'ctx, SizeT>, Ptr<'ctx, StructModel<NDIndex>>) {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
let ndindex_model = StructModel(NDIndex);
|
||||||
|
|
||||||
|
let num_ndindexes = sizet_model.constant(generator, ctx.ctx, in_ndindexes.len() as u64);
|
||||||
|
let ndindexes =
|
||||||
|
ndindex_model.array_alloca(generator, ctx, num_ndindexes.value, "ndindexes");
|
||||||
|
for (i, in_ndindex) in in_ndindexes.iter().enumerate() {
|
||||||
|
let i = sizet_model.constant(generator, ctx.ctx, i as u64);
|
||||||
|
let pndindex = ndindexes.offset(generator, ctx, i.value, "");
|
||||||
|
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
|
||||||
|
}
|
||||||
|
|
||||||
|
(num_ndindexes, ndindexes)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Get the ndims [`Type`] after indexing with a given slice.
|
||||||
|
#[must_use]
|
||||||
|
pub fn deduce_ndims_after_indexing_with(&self, indexes: &[RustNDIndex<'ctx>]) -> u64 {
|
||||||
|
let mut ndims = self.ndims;
|
||||||
|
for index in indexes {
|
||||||
|
match index {
|
||||||
|
RustNDIndex::SingleElement(_) => {
|
||||||
|
ndims -= 1; // Single elements decrements ndims
|
||||||
|
}
|
||||||
|
RustNDIndex::NewAxis => {
|
||||||
|
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
||||||
|
}
|
||||||
|
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ndims
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||||
|
///
|
||||||
|
/// This function behaves like NumPy's ndarray indexing, but if the indexes index
|
||||||
|
/// into a single element, an unsized ndarray is returned.
|
||||||
|
#[must_use]
|
||||||
|
pub fn index<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
indexes: &[RustNDIndex<'ctx>],
|
||||||
|
name: &str,
|
||||||
|
) -> Self {
|
||||||
|
let dst_ndims = self.deduce_ndims_after_indexing_with(indexes);
|
||||||
|
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims, name);
|
||||||
|
|
||||||
|
let (num_indexes, indexes) = RustNDIndex::alloca_ndindexes(generator, ctx, indexes);
|
||||||
|
call_nac3_ndarray_index(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
num_indexes,
|
||||||
|
indexes,
|
||||||
|
self.instance,
|
||||||
|
dst_ndarray.instance,
|
||||||
|
);
|
||||||
|
|
||||||
|
dst_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub mod util {
|
||||||
|
use itertools::Itertools;
|
||||||
|
use nac3parser::ast::{Constant, Expr, ExprKind};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{expr::gen_slice, model::*, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{RustNDIndex, RustUserSlice};
|
||||||
|
|
||||||
|
/// Generate LLVM code to transform an ndarray subscript expression to
|
||||||
|
/// its list of [`RustNDIndex`]
|
||||||
|
///
|
||||||
|
/// i.e.,
|
||||||
|
/// ```python
|
||||||
|
/// my_ndarray[::3, 1, :2:]
|
||||||
|
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
||||||
|
/// ```
|
||||||
|
pub fn gen_ndarray_subscript_ndindexes<'ctx, G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
subscript: &Expr<Option<Type>>,
|
||||||
|
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
||||||
|
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||||
|
let i32_model = IntModel(Int32);
|
||||||
|
|
||||||
|
// Annoying notes about `slice`
|
||||||
|
// - `my_array[5]`
|
||||||
|
// - slice is a `Constant`
|
||||||
|
// - `my_array[:5]`
|
||||||
|
// - slice is a `Slice`
|
||||||
|
// - `my_array[:]`
|
||||||
|
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||||
|
// - `my_array[:, :]`
|
||||||
|
// - slice is now a `Tuple` of two `Slice`-s
|
||||||
|
//
|
||||||
|
// In summary:
|
||||||
|
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||||
|
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||||
|
//
|
||||||
|
// So we first "flatten" out the slice expression
|
||||||
|
let index_exprs = match &subscript.node {
|
||||||
|
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
||||||
|
_ => vec![subscript],
|
||||||
|
};
|
||||||
|
|
||||||
|
// Process all index expressions
|
||||||
|
let mut rust_ndindexes: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
||||||
|
for index_expr in index_exprs {
|
||||||
|
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||||
|
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||||
|
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
||||||
|
// Handle slices
|
||||||
|
|
||||||
|
// Helper function here to deduce code duplication
|
||||||
|
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
|
||||||
|
RustNDIndex::Slice(RustUserSlice { start: lower, stop: upper, step })
|
||||||
|
} else if let ExprKind::Constant { value: Constant::Ellipsis, .. } = &index_expr.node {
|
||||||
|
// Handle '...'
|
||||||
|
RustNDIndex::Ellipsis
|
||||||
|
} else {
|
||||||
|
match &*ctx.unifier.get_ty(index_expr.custom.unwrap()) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
// Handle `np.newaxis` / `None`
|
||||||
|
RustNDIndex::NewAxis
|
||||||
|
}
|
||||||
|
_ => {
|
||||||
|
// Treat and handle everything else as a single element index.
|
||||||
|
let index =
|
||||||
|
generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
||||||
|
)?;
|
||||||
|
let index = i32_model.check_value(generator, ctx.ctx, index).unwrap();
|
||||||
|
|
||||||
|
RustNDIndex::SingleElement(index)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
rust_ndindexes.push(ndindex);
|
||||||
|
}
|
||||||
|
Ok(rust_ndindexes)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,200 @@
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
object::ndarray::{AnyObject, NDArrayObject},
|
||||||
|
stmt::gen_for_callback,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{nditer::NDIterHandle, scalar::ScalarOrNDArray, NDArrayOut};
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// TODO: Document me. Has complex behavior.
|
||||||
|
/// and explain why `ret_dtype` has to be specified beforehand.
|
||||||
|
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ndarrays: &[Self],
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
mapping: MappingFn,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
MappingFn: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
&[AnyObject<'ctx>],
|
||||||
|
) -> Result<AnyObject<'ctx>, String>,
|
||||||
|
{
|
||||||
|
// Broadcast inputs
|
||||||
|
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
|
||||||
|
|
||||||
|
let out_ndarray = match out {
|
||||||
|
NDArrayOut::NewNDArray { dtype } => {
|
||||||
|
// Create a new ndarray based on the broadcast shape.
|
||||||
|
let result_ndarray = NDArrayObject::alloca(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
dtype,
|
||||||
|
broadcast_result.ndims,
|
||||||
|
"mapped_ndarray",
|
||||||
|
);
|
||||||
|
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
|
||||||
|
result_ndarray.create_data(generator, ctx);
|
||||||
|
result_ndarray
|
||||||
|
}
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||||
|
// Use an existing ndarray.
|
||||||
|
|
||||||
|
// Check that its shape is compatible with the broadcast shape.
|
||||||
|
result_ndarray.check_can_be_written_by_out(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
broadcast_result.ndims,
|
||||||
|
broadcast_result.shape,
|
||||||
|
);
|
||||||
|
result_ndarray
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Map element-wise and store results into `mapped_ndarray`.
|
||||||
|
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
|
||||||
|
gen_for_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
Some("broadcast_starmap"),
|
||||||
|
|generator, ctx| {
|
||||||
|
// Create NDIters for all broadcasted input ndarrays.
|
||||||
|
let other_nditers = broadcast_result
|
||||||
|
.ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
|
||||||
|
.collect_vec();
|
||||||
|
Ok((nditer, other_nditers))
|
||||||
|
},
|
||||||
|
|generator, ctx, (out_nditer, _in_nditers)| {
|
||||||
|
// We can simply use `out_nditer`'s `has_next()`.
|
||||||
|
// `in_nditers`' `has_next()`s should return the same value.
|
||||||
|
Ok(out_nditer.has_next(generator, ctx).value)
|
||||||
|
},
|
||||||
|
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||||
|
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||||
|
// and write to `out_ndarray`.
|
||||||
|
|
||||||
|
let in_scalars =
|
||||||
|
in_nditers.iter().map(|nditer| nditer.get_scalar(generator, ctx)).collect_vec();
|
||||||
|
|
||||||
|
let result = mapping(generator, ctx, &in_scalars)?;
|
||||||
|
// Sanity check on result's ty
|
||||||
|
assert!(ctx.unifier.unioned(result.ty, out_ndarray.dtype));
|
||||||
|
|
||||||
|
let p = out_nditer.get_pointer(generator, ctx);
|
||||||
|
ctx.builder.build_store(p, result.value).unwrap();
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
|generator, ctx, (out_nditer, in_nditers)| {
|
||||||
|
// Advance all iterators
|
||||||
|
out_nditer.next(generator, ctx);
|
||||||
|
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(out_ndarray)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn map<'a, G, Mapping>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
mapping: Mapping,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Mapping: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
AnyObject<'ctx>,
|
||||||
|
) -> Result<AnyObject<'ctx>, String>,
|
||||||
|
{
|
||||||
|
NDArrayObject::broadcasting_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[*self],
|
||||||
|
out,
|
||||||
|
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||||
|
/// TODO: Document me. Has complex behavior.
|
||||||
|
/// and explain why `ret_dtype` has to be specified beforehand.
|
||||||
|
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
inputs: &[Self],
|
||||||
|
ret_dtype: Type,
|
||||||
|
mapping: MappingFn,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
MappingFn: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
&[AnyObject<'ctx>],
|
||||||
|
) -> Result<AnyObject<'ctx>, String>,
|
||||||
|
{
|
||||||
|
// Check if all inputs are AnyObjects
|
||||||
|
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
|
||||||
|
|
||||||
|
if let Some(scalars) = all_scalars {
|
||||||
|
let scalar = mapping(generator, ctx, &scalars)?;
|
||||||
|
|
||||||
|
// Sanity check on scalar's type
|
||||||
|
assert!(ctx.unifier.unioned(scalar.ty, ret_dtype));
|
||||||
|
|
||||||
|
Ok(ScalarOrNDArray::Scalar(scalar))
|
||||||
|
} else {
|
||||||
|
// Promote all input to ndarrays and map through them.
|
||||||
|
let inputs = inputs.iter().map(|input| input.as_ndarray(generator, ctx)).collect_vec();
|
||||||
|
let ndarray = NDArrayObject::broadcasting_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&inputs,
|
||||||
|
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||||
|
mapping,
|
||||||
|
)?;
|
||||||
|
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn map<'a, G, Mapping>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ret_dtype: Type,
|
||||||
|
mapping: Mapping,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Mapping: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
AnyObject<'ctx>,
|
||||||
|
) -> Result<AnyObject<'ctx>, String>,
|
||||||
|
{
|
||||||
|
ScalarOrNDArray::broadcasting_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[*self],
|
||||||
|
ret_dtype,
|
||||||
|
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,831 @@
|
||||||
|
pub mod array;
|
||||||
|
pub mod broadcast;
|
||||||
|
pub mod factory;
|
||||||
|
pub mod functions;
|
||||||
|
pub mod indexing;
|
||||||
|
pub mod mapping;
|
||||||
|
pub mod nalgebra;
|
||||||
|
pub mod nditer;
|
||||||
|
pub mod product;
|
||||||
|
pub mod scalar;
|
||||||
|
pub mod shape_util;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
irrt::{
|
||||||
|
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
|
||||||
|
call_nac3_ndarray_is_c_contiguous, call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
|
||||||
|
call_nac3_ndarray_resolve_and_check_new_shape, call_nac3_ndarray_set_strides_by_shape,
|
||||||
|
call_nac3_ndarray_size, call_nac3_ndarray_transpose,
|
||||||
|
call_nac3_ndarray_util_assert_output_shape_same,
|
||||||
|
},
|
||||||
|
model::*,
|
||||||
|
stmt::{gen_for_callback, BreakContinueHooks},
|
||||||
|
structure::{NDArray, SimpleNDArray},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
toplevel::{
|
||||||
|
helper::{create_ndims, extract_ndims},
|
||||||
|
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||||
|
},
|
||||||
|
typecheck::typedef::Type,
|
||||||
|
};
|
||||||
|
use indexing::RustNDIndex;
|
||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::BasicType,
|
||||||
|
values::{BasicValue, PointerValue},
|
||||||
|
AddressSpace, IntPredicate,
|
||||||
|
};
|
||||||
|
use nditer::NDIterHandle;
|
||||||
|
use scalar::ScalarOrNDArray;
|
||||||
|
use util::call_memcpy_model;
|
||||||
|
|
||||||
|
use super::{tuple::TupleObject, AnyObject};
|
||||||
|
|
||||||
|
/// A NAC3 Python ndarray object.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct NDArrayObject<'ctx> {
|
||||||
|
pub dtype: Type,
|
||||||
|
pub ndims: u64,
|
||||||
|
pub instance: Ptr<'ctx, StructModel<NDArray>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create an [`NDArrayObject`] from an LLVM value and its typechecker [`Type`].
|
||||||
|
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
||||||
|
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||||
|
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
||||||
|
/// `dtype` and `ndims`.
|
||||||
|
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
value: V,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
) -> Self {
|
||||||
|
let pndarray_model = PtrModel(StructModel(NDArray));
|
||||||
|
let value = pndarray_model.check_value(generator, ctx.ctx, value).unwrap();
|
||||||
|
NDArrayObject { dtype, ndims, instance: value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Forget that this is an ndarray and convert to an [`AnyObject`].
|
||||||
|
pub fn to_any_object(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||||
|
let ty = self.get_ndarray_type(ctx);
|
||||||
|
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a [`SimpleNDArray`] from the contents of this ndarray.
|
||||||
|
///
|
||||||
|
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
||||||
|
///
|
||||||
|
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
|
||||||
|
/// the returned [`SimpleNDArray`] and copy contents of this ndarray to there.
|
||||||
|
///
|
||||||
|
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`SimpleNDArray`]
|
||||||
|
/// will have the same `data` field as this ndarray.
|
||||||
|
///
|
||||||
|
/// The `item_model` sets the [`Model`] of the returned [`SimpleNDArray`]'s `Item` model, and should match the
|
||||||
|
/// `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics.
|
||||||
|
pub fn make_simple_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
item_model: Item,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, StructModel<SimpleNDArray<Item>>> {
|
||||||
|
// Sanity check on `self.dtype` and `item_model`.
|
||||||
|
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||||
|
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||||
|
|
||||||
|
let simple_ndarray_model = StructModel(SimpleNDArray { item: item_model });
|
||||||
|
|
||||||
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||||
|
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||||
|
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||||
|
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||||
|
|
||||||
|
// Allocate and setup the resulting [`SimpleNDArray`].
|
||||||
|
let result = simple_ndarray_model.alloca(generator, ctx, name);
|
||||||
|
|
||||||
|
// Set ndims and shape.
|
||||||
|
let ndims = self.get_ndims(generator, ctx.ctx);
|
||||||
|
result.set(ctx, |f| f.ndims, ndims);
|
||||||
|
|
||||||
|
let shape = self.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||||
|
result.set(ctx, |f| f.shape, shape);
|
||||||
|
|
||||||
|
// Set data, but we do things differently if this ndarray is contiguous.
|
||||||
|
let is_contiguous = self.is_c_contiguous(generator, ctx);
|
||||||
|
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into then_bb; This ndarray is contiguous.
|
||||||
|
let data = self.instance.get(generator, ctx, |f| f.data, "");
|
||||||
|
let data = data.pointer_cast(generator, ctx, item_model, "");
|
||||||
|
result.set(ctx, |f| f.data, data);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
|
||||||
|
// TODO: Reimplement this? This method does give us the contiguous `data`, but
|
||||||
|
// this creates a few extra bytes of useless information because an entire NDArray
|
||||||
|
// is allocated. Though this is super convenient.
|
||||||
|
let data = self.make_copy(generator, ctx, "").instance.get(generator, ctx, |f| f.data, "");
|
||||||
|
let data = data.pointer_cast(generator, ctx, item_model, "");
|
||||||
|
result.set(ctx, |f| f.data, data);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Reposition to end_bb for continuation
|
||||||
|
ctx.builder.position_at_end(end_bb);
|
||||||
|
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an [`NDArrayObject`] from a [`SimpleNDArray`].
|
||||||
|
///
|
||||||
|
/// This operation is super cheap. The newly created [`NDArray`] will not copy contents
|
||||||
|
/// from `simple_ndarray`, but only having its `data` and `shape` pointing to `simple_array`.
|
||||||
|
pub fn from_simple_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
simple_ndarray: Ptr<'ctx, StructModel<SimpleNDArray<Item>>>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
) -> Self {
|
||||||
|
// Sanity check on `dtype` and `simple_array`'s `Item` model.
|
||||||
|
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||||
|
simple_ndarray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||||
|
|
||||||
|
let byte_model = IntModel(Byte);
|
||||||
|
|
||||||
|
// TODO: Check if `ndims` is consistent with that in `simple_array`?
|
||||||
|
|
||||||
|
// Allocate the resulting ndarray.
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims, "from_simple_ndarray");
|
||||||
|
|
||||||
|
// Set data, shape by simply copying addresses.
|
||||||
|
let data = simple_ndarray
|
||||||
|
.get(generator, ctx, |f| f.data, "")
|
||||||
|
.pointer_cast(generator, ctx, byte_model, "data");
|
||||||
|
ndarray.instance.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
let shape = simple_ndarray.get(generator, ctx, |f| f.shape, "shape");
|
||||||
|
ndarray.instance.set(ctx, |f| f.shape, shape);
|
||||||
|
|
||||||
|
// Set strides. We know `data` is contiguous.
|
||||||
|
ndarray.update_strides_by_shape(generator, ctx);
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the typechecker ndarray type of this [`NDArrayObject`].
|
||||||
|
pub fn get_ndarray_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
|
||||||
|
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
|
||||||
|
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `np.size()` of this ndarray.
|
||||||
|
pub fn size<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
call_nac3_ndarray_size(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `ndarray.nbytes` of this ndarray.
|
||||||
|
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this ndarray.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
call_nac3_ndarray_len(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if this ndarray is C-contiguous.
|
||||||
|
///
|
||||||
|
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
||||||
|
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the pointer to the n-th (0-based) element.
|
||||||
|
///
|
||||||
|
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||||
|
///
|
||||||
|
/// There is no out-of-bounds check.
|
||||||
|
pub fn get_nth_pointer<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
nth: Int<'ctx, SizeT>,
|
||||||
|
name: &str,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||||
|
|
||||||
|
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
|
||||||
|
ctx.builder
|
||||||
|
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), name)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the n-th (0-based) scalar.
|
||||||
|
///
|
||||||
|
/// There is no out-of-bounds check.
|
||||||
|
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
nth: Int<'ctx, SizeT>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let p = self.get_nth_pointer(generator, ctx, nth, "value");
|
||||||
|
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||||
|
AnyObject { ty: self.dtype, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Set the n-th (0-based) scalar.
|
||||||
|
///
|
||||||
|
/// There is no out-of-bounds check.
|
||||||
|
pub fn set_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
nth: Int<'ctx, SizeT>,
|
||||||
|
scalar: AnyObject<'ctx>,
|
||||||
|
) {
|
||||||
|
// Sanity check on scalar's `dtype`
|
||||||
|
assert!(ctx.unifier.unioned(scalar.ty, self.dtype));
|
||||||
|
|
||||||
|
let pscalar = self.get_nth_pointer(generator, ctx, nth, "pscalar");
|
||||||
|
ctx.builder.build_store(pscalar, scalar.value).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
||||||
|
///
|
||||||
|
/// Please refer to the IRRT implementation to see its purpose.
|
||||||
|
pub fn update_strides_by_shape<G: CodeGenerator + ?Sized>(
|
||||||
|
self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy data from another ndarray.
|
||||||
|
///
|
||||||
|
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
||||||
|
/// do not matter. The copying order is determined by how their flattened views look.
|
||||||
|
///
|
||||||
|
/// Panics if the `dtype`s of ndarrays are different.
|
||||||
|
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src: NDArrayObject<'ctx>,
|
||||||
|
) {
|
||||||
|
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
|
||||||
|
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
|
||||||
|
///
|
||||||
|
/// `shape` and `strides` will be automatically allocated on the stack.
|
||||||
|
//e
|
||||||
|
/// The returned ndarray's content will be:
|
||||||
|
/// - `data`: set to `nullptr`.
|
||||||
|
/// - `itemsize`: set to the `sizeof()` of `dtype`.
|
||||||
|
/// - `ndims`: set to the value of `ndims`.
|
||||||
|
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
||||||
|
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
||||||
|
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
ndims: u64,
|
||||||
|
name: &str,
|
||||||
|
) -> Self {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
let ndarray_model = StructModel(NDArray);
|
||||||
|
let ndarray_data_model = PtrModel(IntModel(Byte));
|
||||||
|
|
||||||
|
let pndarray = ndarray_model.alloca(generator, ctx, name);
|
||||||
|
|
||||||
|
let data = ndarray_data_model.nullptr(generator, ctx.ctx);
|
||||||
|
pndarray.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
|
||||||
|
let itemsize =
|
||||||
|
sizet_model.s_extend_or_bit_cast(generator, ctx, itemsize, "alloca_itemsize");
|
||||||
|
pndarray.set(ctx, |f| f.itemsize, itemsize);
|
||||||
|
|
||||||
|
let ndims_val = sizet_model.constant(generator, ctx.ctx, ndims);
|
||||||
|
pndarray.set(ctx, |f| f.ndims, ndims_val);
|
||||||
|
|
||||||
|
let shape = sizet_model.array_alloca(generator, ctx, ndims_val.value, "alloca_shape");
|
||||||
|
pndarray.set(ctx, |f| f.shape, shape);
|
||||||
|
|
||||||
|
let strides = sizet_model.array_alloca(generator, ctx, ndims_val.value, "alloca_strides");
|
||||||
|
pndarray.set(ctx, |f| f.strides, strides);
|
||||||
|
|
||||||
|
NDArrayObject { dtype, ndims, instance: pndarray }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function.
|
||||||
|
/// Like [`NDArrayObject::alloca_uninitialized`] but directly takes the typechecker type of the ndarray.
|
||||||
|
pub fn alloca_ndarray_type<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray_ty: Type,
|
||||||
|
name: &str,
|
||||||
|
) -> Self {
|
||||||
|
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||||
|
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||||
|
Self::alloca(generator, ctx, dtype, ndims, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
|
||||||
|
///
|
||||||
|
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||||
|
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
shape: &[u64],
|
||||||
|
name: &str,
|
||||||
|
) -> Self {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64, name);
|
||||||
|
|
||||||
|
// Write shape
|
||||||
|
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||||
|
for (i, dim) in shape.iter().enumerate() {
|
||||||
|
let dim = sizet_model.constant(generator, ctx.ctx, *dim);
|
||||||
|
dst_shape.offset_const(generator, ctx, i as u64, "").store(ctx, dim);
|
||||||
|
}
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
|
||||||
|
///
|
||||||
|
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||||
|
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
dtype: Type,
|
||||||
|
shape: &[Int<'ctx, SizeT>],
|
||||||
|
name: &str,
|
||||||
|
) -> Self {
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64, name);
|
||||||
|
|
||||||
|
// Write shape
|
||||||
|
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||||
|
for (i, dim) in shape.iter().enumerate() {
|
||||||
|
dst_shape.offset_const(generator, ctx, i as u64, "").store(ctx, *dim);
|
||||||
|
}
|
||||||
|
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
|
||||||
|
///
|
||||||
|
/// The new ndarray will own its data and will be C-contiguous.
|
||||||
|
#[must_use]
|
||||||
|
pub fn make_copy<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> Self {
|
||||||
|
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims, name);
|
||||||
|
|
||||||
|
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx, "shape");
|
||||||
|
clone.copy_shape_from_array(generator, ctx, shape);
|
||||||
|
clone.create_data(generator, ctx);
|
||||||
|
clone.copy_data_from(generator, ctx, *self);
|
||||||
|
clone
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get this ndarray's `ndims` as an LLVM constant.
|
||||||
|
pub fn get_ndims<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
sizet_model.constant(generator, ctx, self.ndims)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get if this ndarray's `np.size` is `0` - containing no content.
|
||||||
|
pub fn is_empty<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let size = self.size(generator, ctx);
|
||||||
|
size.compare(ctx, IntPredicate::EQ, sizet_model.const_0(generator, ctx.ctx), "is_empty")
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
||||||
|
///
|
||||||
|
/// This is a staticially known property of ndarrays. This is why it is returning
|
||||||
|
/// a Rust boolean instead of a [`BasicValue`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn is_unsized(&self) -> bool {
|
||||||
|
self.ndims == 0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// If this ndarray is unsized, return its sole value as a [`AnyObject`]. Otherwise, do nothing.
|
||||||
|
pub fn split_unsized<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> ScalarOrNDArray<'ctx> {
|
||||||
|
if self.is_unsized() {
|
||||||
|
// NOTE: `np.size(self) == 0` here is never possible.
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||||
|
ScalarOrNDArray::Scalar(self.get_nth_scalar(generator, ctx, zero))
|
||||||
|
} else {
|
||||||
|
ScalarOrNDArray::NDArray(*self)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||||
|
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||||
|
///
|
||||||
|
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||||
|
///
|
||||||
|
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||||
|
pub fn create_data<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
let byte_model = IntModel(Byte);
|
||||||
|
|
||||||
|
let nbytes = self.nbytes(generator, ctx);
|
||||||
|
|
||||||
|
let data = byte_model.array_alloca(generator, ctx, nbytes.value, "data");
|
||||||
|
self.instance.set(ctx, |f| f.data, data);
|
||||||
|
|
||||||
|
self.update_strides_by_shape(generator, ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy shape dimensions from an array.
|
||||||
|
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let dst_shape = self.instance.get(generator, ctx, |f| f.shape, "dst_shape");
|
||||||
|
let num_items = self.get_ndims(generator, ctx.ctx).value;
|
||||||
|
call_memcpy_model(generator, ctx, dst_shape, src_shape, num_items);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy shape dimensions from an ndarray.
|
||||||
|
/// Panics if `ndims` mismatches.
|
||||||
|
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: NDArrayObject<'ctx>,
|
||||||
|
) {
|
||||||
|
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||||
|
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape, "src_shape");
|
||||||
|
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy strides dimensions from an array.
|
||||||
|
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_strides: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let dst_strides = self.instance.get(generator, ctx, |f| f.strides, "dst_strides");
|
||||||
|
let num_items = self.get_ndims(generator, ctx.ctx).value;
|
||||||
|
call_memcpy_model(generator, ctx, dst_strides, src_strides, num_items);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy strides dimensions from an ndarray.
|
||||||
|
/// Panics if `ndims` mismatches.
|
||||||
|
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: NDArrayObject<'ctx>,
|
||||||
|
) {
|
||||||
|
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||||
|
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides, "src_strides");
|
||||||
|
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Iterate through every element in the ndarray.
|
||||||
|
///
|
||||||
|
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
|
||||||
|
pub fn foreach<'a, G, F>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
body: F,
|
||||||
|
) -> Result<(), String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
F: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BreakContinueHooks<'ctx>,
|
||||||
|
NDIterHandle<'ctx>,
|
||||||
|
) -> Result<(), String>,
|
||||||
|
{
|
||||||
|
gen_for_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
Some("ndarray_foreach"),
|
||||||
|
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|
||||||
|
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|
||||||
|
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|
||||||
|
|generator, ctx, nditer| {
|
||||||
|
nditer.next(generator, ctx);
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Make sure the ndarray is at least `ndmin`-dimensional.
|
||||||
|
///
|
||||||
|
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
|
||||||
|
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
|
||||||
|
#[must_use]
|
||||||
|
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndmin: u64,
|
||||||
|
) -> Self {
|
||||||
|
if self.ndims < ndmin {
|
||||||
|
let mut indices = vec![];
|
||||||
|
for _ in self.ndims..ndmin {
|
||||||
|
indices.push(RustNDIndex::NewAxis);
|
||||||
|
}
|
||||||
|
indices.push(RustNDIndex::Ellipsis);
|
||||||
|
self.index(generator, ctx, &indices, "atleast_nd_ndarray")
|
||||||
|
} else {
|
||||||
|
*self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fill the ndarray with a scalar.
|
||||||
|
///
|
||||||
|
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
|
||||||
|
pub fn fill<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
scalar: AnyObject<'ctx>,
|
||||||
|
) {
|
||||||
|
// Sanity check on scalar's type.
|
||||||
|
assert!(ctx.unifier.unioned(self.dtype, scalar.ty));
|
||||||
|
|
||||||
|
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||||
|
let p = nditer.get_pointer(generator, ctx);
|
||||||
|
ctx.builder.build_store(p, scalar.value).unwrap();
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a reshaped view on this ndarray like `np.reshape()`.
|
||||||
|
///
|
||||||
|
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
|
||||||
|
///
|
||||||
|
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
|
||||||
|
///
|
||||||
|
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
|
||||||
|
/// * `new_shape` - The target shape to do `np.reshape()`.
|
||||||
|
#[must_use]
|
||||||
|
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
new_ndims: u64,
|
||||||
|
new_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) -> Self {
|
||||||
|
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
|
||||||
|
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
|
||||||
|
// without copying data. Look into how numpy does it.
|
||||||
|
|
||||||
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||||
|
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||||
|
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||||
|
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||||
|
|
||||||
|
let dst_ndarray =
|
||||||
|
NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims, "reshaped_ndarray");
|
||||||
|
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
|
||||||
|
|
||||||
|
// Reolsve negative indices
|
||||||
|
let size = self.size(generator, ctx);
|
||||||
|
let dst_ndims = dst_ndarray.get_ndims(generator, ctx.ctx);
|
||||||
|
let dst_shape =
|
||||||
|
dst_ndarray.instance.get(generator, ctx, |f| f.shape, "reshaped_ndarray_shape");
|
||||||
|
call_nac3_ndarray_resolve_and_check_new_shape(generator, ctx, size, dst_ndims, dst_shape);
|
||||||
|
|
||||||
|
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
|
||||||
|
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into then_bb: reshape is possible without copying
|
||||||
|
ctx.builder.position_at_end(then_bb);
|
||||||
|
dst_ndarray.update_strides_by_shape(generator, ctx);
|
||||||
|
dst_ndarray.instance.set(
|
||||||
|
ctx,
|
||||||
|
|f| f.data,
|
||||||
|
self.instance.get(generator, ctx, |f| f.data, "data"),
|
||||||
|
);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Inserting into else_bb: reshape is impossible without copying
|
||||||
|
ctx.builder.position_at_end(else_bb);
|
||||||
|
dst_ndarray.create_data(generator, ctx);
|
||||||
|
dst_ndarray.copy_data_from(generator, ctx, *self);
|
||||||
|
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||||
|
|
||||||
|
// Reposition for continuation
|
||||||
|
ctx.builder.position_at_end(end_bb);
|
||||||
|
|
||||||
|
dst_ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a flattened view of this ndarray, like `np.ravel()`.
|
||||||
|
///
|
||||||
|
/// Uses [`NDArrayObject::reshape_or_copy`] under-the-hood so ndarray may or may not be copied.
|
||||||
|
#[must_use]
|
||||||
|
pub fn ravel_or_copy<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Self {
|
||||||
|
// Define models
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let num0 = sizet_model.const_0(generator, ctx.ctx);
|
||||||
|
let num1 = sizet_model.const_1(generator, ctx.ctx);
|
||||||
|
let num_neg1 = sizet_model.const_all_1s(generator, ctx.ctx);
|
||||||
|
|
||||||
|
// Create `[-1]` and pass to `reshape_or_copy`.
|
||||||
|
let new_shape = sizet_model.array_alloca(generator, ctx, num1.value, "new_shape");
|
||||||
|
new_shape.offset(generator, ctx, num0.value, "").store(ctx, num_neg1);
|
||||||
|
|
||||||
|
self.reshape_or_copy(generator, ctx, 1, new_shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
|
||||||
|
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
|
||||||
|
#[must_use]
|
||||||
|
pub fn transpose<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
axes: Option<Ptr<'ctx, IntModel<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
// Define models
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let transposed_ndarray =
|
||||||
|
NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims, "transposed_ndarray");
|
||||||
|
|
||||||
|
let num_axes = self.get_ndims(generator, ctx.ctx);
|
||||||
|
|
||||||
|
// `axes = nullptr` if `axes` is unspecified.
|
||||||
|
let axes = axes.unwrap_or_else(|| PtrModel(sizet_model).nullptr(generator, ctx.ctx));
|
||||||
|
|
||||||
|
call_nac3_ndarray_transpose(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
self.instance,
|
||||||
|
transposed_ndarray.instance,
|
||||||
|
num_axes,
|
||||||
|
axes,
|
||||||
|
);
|
||||||
|
|
||||||
|
transposed_ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
||||||
|
///
|
||||||
|
/// Raise an exception if the shapes do not match.
|
||||||
|
pub fn check_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
out_ndims: u64,
|
||||||
|
out_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
) {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let ndarray_ndims = self.get_ndims(generator, ctx.ctx);
|
||||||
|
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||||
|
|
||||||
|
let output_ndims = sizet_model.constant(generator, ctx.ctx, out_ndims);
|
||||||
|
let output_shape = out_shape;
|
||||||
|
|
||||||
|
call_nac3_ndarray_util_assert_output_shape_same(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ndarray_ndims,
|
||||||
|
ndarray_shape,
|
||||||
|
output_ndims,
|
||||||
|
output_shape,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
|
||||||
|
///
|
||||||
|
/// The returned integers in the tuple are in int32.
|
||||||
|
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> TupleObject<'ctx> {
|
||||||
|
// TODO: Don't return a tuple of int32s.
|
||||||
|
|
||||||
|
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||||
|
|
||||||
|
for i in 0..self.ndims {
|
||||||
|
let dim = self
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.shape, "")
|
||||||
|
.offset_const(generator, ctx, i, "")
|
||||||
|
.load(generator, ctx, "dim");
|
||||||
|
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
|
||||||
|
|
||||||
|
objects.push(AnyObject {
|
||||||
|
ty: ctx.primitives.int32,
|
||||||
|
value: dim.value.as_basic_value_enum(),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
TupleObject::create(generator, ctx, objects, "shape")
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
|
||||||
|
///
|
||||||
|
/// The returned integers in the tuple are in int32.
|
||||||
|
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> TupleObject<'ctx> {
|
||||||
|
// TODO: Don't return a tuple of int32s.
|
||||||
|
|
||||||
|
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||||
|
|
||||||
|
for i in 0..self.ndims {
|
||||||
|
let dim = self
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.strides, "")
|
||||||
|
.offset_const(generator, ctx, i, "")
|
||||||
|
.load(generator, ctx, "dim");
|
||||||
|
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
|
||||||
|
|
||||||
|
objects.push(AnyObject {
|
||||||
|
ty: ctx.primitives.int32,
|
||||||
|
value: dim.value.as_basic_value_enum(),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
TupleObject::create(generator, ctx, objects, "strides")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// TODO: Document me
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum NDArrayOut<'ctx> {
|
||||||
|
NewNDArray { dtype: Type },
|
||||||
|
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
|
||||||
|
}
|
|
@ -0,0 +1,53 @@
|
||||||
|
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||||
|
|
||||||
|
use crate::codegen::{model::*, structure::SimpleNDArray, CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
pub fn perform_nalgebra_call<'ctx, 'a, const NUM_INPUTS: usize, const NUM_OUTPUTS: usize, G, F>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
inputs: [NDArrayObject<'ctx>; NUM_INPUTS],
|
||||||
|
output_ndims: [u64; NUM_OUTPUTS],
|
||||||
|
invoke_function: F,
|
||||||
|
) -> [NDArrayObject<'ctx>; NUM_OUTPUTS]
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
F: FnOnce(
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
[BasicValueEnum<'ctx>; NUM_INPUTS],
|
||||||
|
[BasicValueEnum<'ctx>; NUM_OUTPUTS],
|
||||||
|
),
|
||||||
|
{
|
||||||
|
// TODO: Allow stacked inputs. See NumPy docs.
|
||||||
|
|
||||||
|
let f64_model = FloatModel(Float64);
|
||||||
|
let simple_ndarray_model = StructModel(SimpleNDArray { item: f64_model });
|
||||||
|
|
||||||
|
// Prepare inputs & outputs and invoke
|
||||||
|
let inputs = inputs.map(|input| {
|
||||||
|
// Sanity check. Typechecker ensures this.
|
||||||
|
assert!(ctx.unifier.unioned(input.dtype, ctx.primitives.float));
|
||||||
|
|
||||||
|
input
|
||||||
|
.make_simple_ndarray(generator, ctx, FloatModel(Float64), "nalgebra_input")
|
||||||
|
.value
|
||||||
|
.as_basic_value_enum()
|
||||||
|
});
|
||||||
|
let outputs = [simple_ndarray_model.alloca(generator, ctx, "nalgebra_output"); NUM_OUTPUTS];
|
||||||
|
invoke_function(ctx, inputs, outputs.map(|output| output.value.as_basic_value_enum()));
|
||||||
|
|
||||||
|
// Turn the outputs into strided NDArrays
|
||||||
|
let mut output_i = 0;
|
||||||
|
outputs.map(|output| {
|
||||||
|
let out = NDArrayObject::from_simple_ndarray(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
output,
|
||||||
|
ctx.primitives.float,
|
||||||
|
output_ndims[output_i],
|
||||||
|
);
|
||||||
|
output_i += 1;
|
||||||
|
out
|
||||||
|
})
|
||||||
|
}
|
|
@ -0,0 +1,88 @@
|
||||||
|
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
|
||||||
|
model::*,
|
||||||
|
object::AnyObject,
|
||||||
|
structure::NDIter,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct NDIterHandle<'ctx> {
|
||||||
|
ndarray: NDArrayObject<'ctx>,
|
||||||
|
instance: Ptr<'ctx, StructModel<NDIter>>,
|
||||||
|
indices: Ptr<'ctx, IntModel<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDIterHandle<'ctx> {
|
||||||
|
pub fn new<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: NDArrayObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let nditer = StructModel(NDIter).alloca(generator, ctx, "nditer");
|
||||||
|
let ndims = ndarray.get_ndims(generator, ctx.ctx);
|
||||||
|
let indices = IntModel(SizeT).array_alloca(generator, ctx, ndims.value, "indices");
|
||||||
|
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
|
||||||
|
NDIterHandle { ndarray, instance: nditer, indices }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn has_next<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, Bool> {
|
||||||
|
call_nac3_nditer_has_next(generator, ctx, self.instance)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn next<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
call_nac3_nditer_next(generator, ctx, self.instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_pointer<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
|
||||||
|
|
||||||
|
let p = self.instance.get(generator, ctx, |f| f.element, "element");
|
||||||
|
ctx.builder
|
||||||
|
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_scalar<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> AnyObject<'ctx> {
|
||||||
|
let p = self.get_pointer(generator, ctx);
|
||||||
|
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||||
|
AnyObject { ty: self.ndarray.dtype, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
self.instance.get(generator, ctx, |f| f.nth, "index")
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_indices(&self) -> Ptr<'ctx, IntModel<SizeT>> {
|
||||||
|
self.indices
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,159 @@
|
||||||
|
use std::cmp::max;
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{
|
||||||
|
call_nac3_ndarray_float64_matmul_at_least_2d, call_nac3_ndarray_matmul_calculate_shapes,
|
||||||
|
},
|
||||||
|
model::*,
|
||||||
|
object::ndarray::indexing::RustNDIndex,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::{NDArrayObject, NDArrayOut};
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// TODO: Document me
|
||||||
|
fn matmul_helper<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
a: Self,
|
||||||
|
b: Self,
|
||||||
|
) -> Self {
|
||||||
|
assert!(a.ndims >= 2);
|
||||||
|
assert!(b.ndims >= 2);
|
||||||
|
|
||||||
|
assert!(ctx.unifier.unioned(ctx.primitives.float, a.dtype));
|
||||||
|
assert!(ctx.unifier.unioned(ctx.primitives.float, b.dtype));
|
||||||
|
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let final_ndims_int = max(a.ndims, b.ndims);
|
||||||
|
|
||||||
|
let a_ndims = a.get_ndims(generator, ctx.ctx);
|
||||||
|
let a_shape = a.instance.get(generator, ctx, |f| f.shape, "a_shape");
|
||||||
|
let b_ndims = b.get_ndims(generator, ctx.ctx);
|
||||||
|
let b_shape = b.instance.get(generator, ctx, |f| f.shape, "b_shape");
|
||||||
|
let final_ndims = sizet_model.constant(generator, ctx.ctx, final_ndims_int);
|
||||||
|
let new_a_shape =
|
||||||
|
sizet_model.array_alloca(generator, ctx, final_ndims.value, "new_a_shape");
|
||||||
|
let new_b_shape =
|
||||||
|
sizet_model.array_alloca(generator, ctx, final_ndims.value, "new_b_shape");
|
||||||
|
let dst_shape = sizet_model.array_alloca(generator, ctx, final_ndims.value, "dst_shape");
|
||||||
|
|
||||||
|
call_nac3_ndarray_matmul_calculate_shapes(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
a_ndims,
|
||||||
|
a_shape,
|
||||||
|
b_ndims,
|
||||||
|
b_shape,
|
||||||
|
final_ndims,
|
||||||
|
new_a_shape,
|
||||||
|
new_b_shape,
|
||||||
|
dst_shape,
|
||||||
|
);
|
||||||
|
|
||||||
|
let new_a = a.broadcast_to(generator, ctx, final_ndims_int, new_a_shape);
|
||||||
|
let new_b = b.broadcast_to(generator, ctx, final_ndims_int, new_b_shape);
|
||||||
|
let dst = NDArrayObject::alloca(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ctx.primitives.float,
|
||||||
|
final_ndims_int,
|
||||||
|
"matmul_result",
|
||||||
|
);
|
||||||
|
dst.copy_shape_from_array(generator, ctx, dst_shape);
|
||||||
|
dst.create_data(generator, ctx);
|
||||||
|
|
||||||
|
call_nac3_ndarray_float64_matmul_at_least_2d(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
new_a.instance,
|
||||||
|
new_b.instance,
|
||||||
|
dst.instance,
|
||||||
|
);
|
||||||
|
|
||||||
|
dst
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Perform `np.matmul` according to the rules in
|
||||||
|
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
|
||||||
|
///
|
||||||
|
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`].
|
||||||
|
pub fn matmul<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
a: Self,
|
||||||
|
b: Self,
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
// Sanity check, but type inference should prevent this.
|
||||||
|
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
|
||||||
|
|
||||||
|
/*
|
||||||
|
If both arguments are 2-D they are multiplied like conventional matrices.
|
||||||
|
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
|
||||||
|
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
|
||||||
|
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
|
||||||
|
*/
|
||||||
|
|
||||||
|
let new_a = if a.ndims == 1 {
|
||||||
|
// Prepend 1 to its dimensions
|
||||||
|
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis], "new_a")
|
||||||
|
} else {
|
||||||
|
a
|
||||||
|
};
|
||||||
|
|
||||||
|
let new_b = if b.ndims == 1 {
|
||||||
|
// Append 1 to its dimensions
|
||||||
|
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis], "new_a")
|
||||||
|
} else {
|
||||||
|
b
|
||||||
|
};
|
||||||
|
|
||||||
|
// NOTE: `result` will always be a newly allocated ndarray.
|
||||||
|
// Current implementation cannot do in-place matrix muliplication.
|
||||||
|
let mut result = NDArrayObject::matmul_helper(generator, ctx, new_a, new_b);
|
||||||
|
|
||||||
|
let i32_model = IntModel(Int32); // TODO: Upgrade to SizeT
|
||||||
|
let zero = i32_model.const_0(generator, ctx.ctx);
|
||||||
|
|
||||||
|
if a.ndims == 1 {
|
||||||
|
// Remove the prepended 1
|
||||||
|
result = result.index(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[RustNDIndex::SingleElement(zero), RustNDIndex::Ellipsis],
|
||||||
|
"result_no_prepend_1",
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
if b.ndims == 1 {
|
||||||
|
// Remove the appended 1
|
||||||
|
result = result.index(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[RustNDIndex::Ellipsis, RustNDIndex::SingleElement(zero)],
|
||||||
|
"result_no_append_1",
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
match out {
|
||||||
|
NDArrayOut::NewNDArray { dtype } => {
|
||||||
|
// We don't support auto-casting right now, nor anything other than float64.
|
||||||
|
// Force the output dtype to be float64.
|
||||||
|
assert!(ctx.unifier.unioned(ctx.primitives.float, dtype));
|
||||||
|
result
|
||||||
|
}
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
||||||
|
// TODO: It is possible to check the shapes before computing the matmul to save resources.
|
||||||
|
let result_shape = result.instance.get(generator, ctx, |f| f.shape, "result_shape");
|
||||||
|
out_ndarray.check_can_be_written_by_out(generator, ctx, result.ndims, result_shape);
|
||||||
|
|
||||||
|
// TODO: We can just set `out_ndarray.data` to `result.data`. Should we?
|
||||||
|
out_ndarray.copy_data_from(generator, ctx, result);
|
||||||
|
out_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,131 @@
|
||||||
|
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, object::AnyObject, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
impl<'ctx> AnyObject<'ctx> {
|
||||||
|
/// Promote this scalar to an unsized ndarray (like doing `np.asarray`).
|
||||||
|
///
|
||||||
|
/// The scalar value is allocated onto the stack, and the ndarray's `data` will point to that
|
||||||
|
/// allocated value.
|
||||||
|
pub fn as_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
let pbyte_model = PtrModel(IntModel(Byte));
|
||||||
|
|
||||||
|
// We have to put the value on the stack to get a data pointer.
|
||||||
|
let data = ctx.builder.build_alloca(self.value.get_type(), "as_ndarray_scalar").unwrap();
|
||||||
|
ctx.builder.build_store(data, self.value).unwrap();
|
||||||
|
let data = pbyte_model.pointer_cast(generator, ctx, data, "data");
|
||||||
|
|
||||||
|
let ndarray = NDArrayObject::alloca(generator, ctx, self.ty, 0, "scalar_ndarray");
|
||||||
|
ndarray.instance.set(ctx, |f| f.data, data);
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A convenience enum for implementing scalar/ndarray agnostic utilities.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum ScalarOrNDArray<'ctx> {
|
||||||
|
Scalar(AnyObject<'ctx>),
|
||||||
|
NDArray(NDArrayObject<'ctx>),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||||
|
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => scalar.value,
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn into_scalar(&self) -> AnyObject<'ctx> {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::NDArray(_ndarray) => panic!("Got NDArray"),
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => *scalar,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn into_ndarray(&self) -> NDArrayObject<'ctx> {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||||
|
ScalarOrNDArray::Scalar(_scalar) => panic!("Got Scalar"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
|
||||||
|
/// - If this is an ndarray, the ndarray is returned.
|
||||||
|
/// - If this is a scalar, an unsized ndarray view is created on it.
|
||||||
|
pub fn as_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> NDArrayObject<'ctx> {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => scalar.as_ndarray(generator, ctx),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn dtype(&self) -> Type {
|
||||||
|
match self {
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
|
||||||
|
type Error = ();
|
||||||
|
|
||||||
|
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||||
|
match value {
|
||||||
|
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
|
||||||
|
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
|
||||||
|
type Error = ();
|
||||||
|
|
||||||
|
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||||
|
match value {
|
||||||
|
ScalarOrNDArray::Scalar(_scalar) => Err(()),
|
||||||
|
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Split an [`AnyObject`] into a [`ScalarOrNDArray`] depending on its [`Type`].
|
||||||
|
pub fn split_scalar_or_ndarray<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> ScalarOrNDArray<'ctx> {
|
||||||
|
// TODO: Automatically convert a list into an ndarray?
|
||||||
|
|
||||||
|
match &*ctx.unifier.get_ty(object.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||||
|
ScalarOrNDArray::NDArray(ndarray)
|
||||||
|
}
|
||||||
|
_ => {
|
||||||
|
let scalar = AnyObject { ty: object.ty, value: object.value };
|
||||||
|
ScalarOrNDArray::Scalar(scalar)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,111 @@
|
||||||
|
use util::gen_for_model_auto;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{
|
||||||
|
model::*,
|
||||||
|
object::{list::ListObject, tuple::TupleObject, AnyObject},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
typecheck::typedef::TypeEnum,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
|
||||||
|
///
|
||||||
|
/// * `sequence` - The `sequence` parameter.
|
||||||
|
/// * `sequence_ty` - The typechecker type of `sequence`
|
||||||
|
///
|
||||||
|
/// The `sequence` argument type may only be one of the following:
|
||||||
|
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||||
|
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||||
|
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||||
|
///
|
||||||
|
/// All `int32` values will be sign-extended to `SizeT`.
|
||||||
|
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
input_sequence: AnyObject<'ctx>,
|
||||||
|
) -> (Int<'ctx, SizeT>, Ptr<'ctx, IntModel<SizeT>>) {
|
||||||
|
let sizet_model = IntModel(SizeT);
|
||||||
|
|
||||||
|
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||||
|
let one = sizet_model.const_1(generator, ctx.ctx);
|
||||||
|
|
||||||
|
// The result `list` to return.
|
||||||
|
match &*ctx.unifier.get_ty(input_sequence.ty) {
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||||
|
|
||||||
|
// Check `input_sequence`
|
||||||
|
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
|
||||||
|
|
||||||
|
let len = input_sequence.instance.gep(ctx, |f| f.len).load(generator, ctx, "len");
|
||||||
|
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
|
||||||
|
|
||||||
|
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
|
||||||
|
gen_for_model_auto(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
|
||||||
|
// Load the i-th int32 in the input sequence
|
||||||
|
let int = input_sequence
|
||||||
|
.instance
|
||||||
|
.get(generator, ctx, |f| f.items, "")
|
||||||
|
.offset(generator, ctx, i.value, "")
|
||||||
|
.load(generator, ctx, "")
|
||||||
|
.value
|
||||||
|
.into_int_value();
|
||||||
|
|
||||||
|
// Cast to SizeT
|
||||||
|
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, int, "int");
|
||||||
|
|
||||||
|
// Store
|
||||||
|
result.offset(generator, ctx, i.value, "int").store(ctx, int);
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
(len, result)
|
||||||
|
}
|
||||||
|
TypeEnum::TTuple { .. } => {
|
||||||
|
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||||
|
|
||||||
|
let input_sequence = TupleObject::from_object(ctx, input_sequence);
|
||||||
|
|
||||||
|
let len_int = input_sequence.len_static();
|
||||||
|
let len = sizet_model.constant(generator, ctx.ctx, len_int as u64);
|
||||||
|
|
||||||
|
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
|
||||||
|
|
||||||
|
for i in 0..len_int {
|
||||||
|
// Get the i-th element off of the tuple and load it into `result`.
|
||||||
|
let int = input_sequence.get(ctx, i, "dim").value.into_int_value();
|
||||||
|
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, int, "int");
|
||||||
|
|
||||||
|
let offset = sizet_model.constant(generator, ctx.ctx, i as u64);
|
||||||
|
result.offset(generator, ctx, offset.value, "int").store(ctx, int);
|
||||||
|
}
|
||||||
|
|
||||||
|
(len, result)
|
||||||
|
}
|
||||||
|
TypeEnum::TObj { obj_id, .. }
|
||||||
|
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||||
|
{
|
||||||
|
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||||
|
let input_int = input_sequence.value.into_int_value();
|
||||||
|
|
||||||
|
let len = sizet_model.const_1(generator, ctx.ctx);
|
||||||
|
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
|
||||||
|
|
||||||
|
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, input_int, "int");
|
||||||
|
|
||||||
|
// Storing into result[0]
|
||||||
|
result.store(ctx, int);
|
||||||
|
|
||||||
|
(len, result)
|
||||||
|
}
|
||||||
|
_ => panic!(
|
||||||
|
"encountered unknown sequence type: {}",
|
||||||
|
ctx.unifier.stringify(input_sequence.ty)
|
||||||
|
),
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,41 @@
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::calculate_len_for_slice_range, model::*, structure::RangeModel, CodeGenContext,
|
||||||
|
CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::AnyObject;
|
||||||
|
|
||||||
|
/// A `range` in NAC3
|
||||||
|
pub struct RangeObject<'ctx> {
|
||||||
|
pub instance: Ptr<'ctx, RangeModel>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> RangeObject<'ctx> {
|
||||||
|
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
object: AnyObject<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
assert!(ctx.unifier.unioned(ctx.primitives.range, object.ty)); // Sanity check on type.
|
||||||
|
|
||||||
|
let model = PtrModel(RangeModel::default());
|
||||||
|
let instance = model.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||||
|
RangeObject { instance }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this range.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, Int32> {
|
||||||
|
let start = self.instance.gep_start(generator, ctx, "").load(generator, ctx, "start");
|
||||||
|
let stop = self.instance.gep_stop(generator, ctx, "").load(generator, ctx, "stop");
|
||||||
|
let step = self.instance.gep_step(generator, ctx, "").load(generator, ctx, "step");
|
||||||
|
|
||||||
|
// TODO: Refactor this
|
||||||
|
let len =
|
||||||
|
calculate_len_for_slice_range(generator, ctx, start.value, stop.value, step.value);
|
||||||
|
IntModel(Int32).check_value(generator, ctx.ctx, len).unwrap()
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,113 @@
|
||||||
|
use core::panic;
|
||||||
|
|
||||||
|
use inkwell::values::StructValue;
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||||
|
typecheck::typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::AnyObject;
|
||||||
|
|
||||||
|
/// A NAC3 tuple object.
|
||||||
|
///
|
||||||
|
/// NOTE: This struct has no copy trait.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct TupleObject<'ctx> {
|
||||||
|
/// The type of the tuple.
|
||||||
|
pub tys: Vec<Type>,
|
||||||
|
/// The underlying LLVM value of this tuple.
|
||||||
|
pub value: StructValue<'ctx>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TupleObject<'ctx> {
|
||||||
|
// NOTE: There is no Model abstraction for Tuples with arbitrary lengths.
|
||||||
|
// Everything has to be done raw with Inkwell.
|
||||||
|
|
||||||
|
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
|
||||||
|
// TODO: Keep `is_vararg_ctx` from TTuple?
|
||||||
|
|
||||||
|
// Sanity check on object type.
|
||||||
|
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
|
||||||
|
panic!(
|
||||||
|
"Expected type to be a TypeEnum::TTuple, got {}",
|
||||||
|
ctx.unifier.stringify(object.ty)
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
let value = object.value.into_struct_value();
|
||||||
|
let value_num_fields = value.get_type().count_fields() as usize;
|
||||||
|
assert!(
|
||||||
|
value_num_fields == tys.len(),
|
||||||
|
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
|
||||||
|
tys.len(),
|
||||||
|
value_num_fields
|
||||||
|
);
|
||||||
|
|
||||||
|
TupleObject { tys: tys.clone(), value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
|
||||||
|
pub fn create<I, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
objects: I,
|
||||||
|
name: &str,
|
||||||
|
) -> Self
|
||||||
|
where
|
||||||
|
I: IntoIterator<Item = AnyObject<'ctx>>,
|
||||||
|
{
|
||||||
|
let (values, tys): (Vec<_>, Vec<_>) =
|
||||||
|
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
|
||||||
|
|
||||||
|
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||||
|
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
|
||||||
|
|
||||||
|
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
|
||||||
|
for (i, val) in values.into_iter().enumerate() {
|
||||||
|
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
|
||||||
|
ctx.builder.build_store(pval, val).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
let value = ctx.builder.build_load(pllvm_tuple, name).unwrap().into_struct_value();
|
||||||
|
TupleObject { tys, value }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this tuple statically.
|
||||||
|
///
|
||||||
|
/// We statically know the lengths of tuples in NAC3 when compiling.
|
||||||
|
#[must_use]
|
||||||
|
pub fn len_static(&self) -> usize {
|
||||||
|
self.tys.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this tuple.
|
||||||
|
#[must_use]
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
) -> Int<'ctx, SizeT> {
|
||||||
|
IntModel(SizeT).constant(generator, ctx.ctx, self.len_static() as u64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if this tuple is an empty/unit tuple.
|
||||||
|
#[must_use]
|
||||||
|
pub fn is_empty(&self) -> bool {
|
||||||
|
self.len_static() == 0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `i`-th (0-based) object in this tuple.
|
||||||
|
pub fn get(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize, name: &str) -> AnyObject<'ctx> {
|
||||||
|
assert!(
|
||||||
|
i < self.len_static(),
|
||||||
|
"Tuple object with length {} have index {i}",
|
||||||
|
self.len_static()
|
||||||
|
);
|
||||||
|
|
||||||
|
let value = ctx.builder.build_extract_value(self.value, i as u32, name).unwrap();
|
||||||
|
let ty = self.tys[i];
|
||||||
|
AnyObject { ty, value }
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,8 +1,14 @@
|
||||||
|
use super::model::*;
|
||||||
|
use super::object::ndarray::indexing::util::gen_ndarray_subscript_ndindexes;
|
||||||
|
use super::object::ndarray::scalar::split_scalar_or_ndarray;
|
||||||
|
use super::object::ndarray::NDArrayObject;
|
||||||
|
use super::object::AnyObject;
|
||||||
use super::{
|
use super::{
|
||||||
super::symbol_resolver::ValueEnum,
|
super::symbol_resolver::ValueEnum,
|
||||||
expr::destructure_range,
|
expr::destructure_range,
|
||||||
irrt::{handle_slice_indices, list_slice_assignment},
|
irrt::{handle_slice_indices, list_slice_assignment},
|
||||||
CodeGenContext, CodeGenerator,
|
structure::{CSlice, Exception},
|
||||||
|
CodeGenContext, CodeGenerator, Int32, IntModel, Ptr, StructModel,
|
||||||
};
|
};
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
|
@ -401,7 +407,45 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
{
|
{
|
||||||
// Handle NDArray item assignment
|
// Handle NDArray item assignment
|
||||||
todo!("ndarray subscript assignment is not yet implemented");
|
// Process target
|
||||||
|
let target = generator
|
||||||
|
.gen_expr(ctx, target)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||||
|
let target = AnyObject { value: target, ty: target_ty };
|
||||||
|
|
||||||
|
// Process key
|
||||||
|
let key = gen_ndarray_subscript_ndindexes(generator, ctx, key)?;
|
||||||
|
|
||||||
|
// Process value
|
||||||
|
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||||
|
let value = AnyObject { value, ty: value_ty };
|
||||||
|
|
||||||
|
/*
|
||||||
|
Reference code:
|
||||||
|
```python
|
||||||
|
target = target[key]
|
||||||
|
value = np.asarray(value)
|
||||||
|
|
||||||
|
shape = np.broadcast_shape((target, value))
|
||||||
|
|
||||||
|
target = np.broadcast_to(target, shape)
|
||||||
|
value = np.broadcast_to(value, shape)
|
||||||
|
|
||||||
|
...and finally copy 1-1 from value to target.
|
||||||
|
```
|
||||||
|
*/
|
||||||
|
let target = NDArrayObject::from_object(generator, ctx, target);
|
||||||
|
let target = target.index(generator, ctx, &key, "assign_target_ndarray");
|
||||||
|
|
||||||
|
let value = split_scalar_or_ndarray(generator, ctx, value).as_ndarray(generator, ctx);
|
||||||
|
|
||||||
|
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
|
||||||
|
|
||||||
|
let target = broadcast_result.ndarrays[0];
|
||||||
|
let value = broadcast_result.ndarrays[1];
|
||||||
|
|
||||||
|
target.copy_data_from(generator, ctx, value);
|
||||||
}
|
}
|
||||||
_ => {
|
_ => {
|
||||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||||
|
@ -638,8 +682,12 @@ where
|
||||||
I: Clone,
|
I: Clone,
|
||||||
InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>,
|
InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>,
|
||||||
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>,
|
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>,
|
||||||
BodyFn:
|
BodyFn: FnOnce(
|
||||||
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks, I) -> Result<(), String>,
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BreakContinueHooks<'ctx>,
|
||||||
|
I,
|
||||||
|
) -> Result<(), String>,
|
||||||
UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
|
UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
|
||||||
{
|
{
|
||||||
let label = label.unwrap_or("for");
|
let label = label.unwrap_or("for");
|
||||||
|
@ -719,7 +767,7 @@ where
|
||||||
BodyFn: FnOnce(
|
BodyFn: FnOnce(
|
||||||
&mut G,
|
&mut G,
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
BreakContinueHooks,
|
BreakContinueHooks<'ctx>,
|
||||||
IntValue<'ctx>,
|
IntValue<'ctx>,
|
||||||
) -> Result<(), String>,
|
) -> Result<(), String>,
|
||||||
{
|
{
|
||||||
|
@ -1259,47 +1307,36 @@ pub fn exn_constructor<'ctx>(
|
||||||
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
|
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
exception: Option<&BasicValueEnum<'ctx>>,
|
exception: Option<Ptr<'ctx, StructModel<Exception>>>,
|
||||||
loc: Location,
|
loc: Location,
|
||||||
) {
|
) {
|
||||||
if let Some(exception) = exception {
|
if let Some(pexn) = exception {
|
||||||
unsafe {
|
let i32_model = IntModel(Int32);
|
||||||
let int32 = ctx.ctx.i32_type();
|
let cslice_model = StructModel(CSlice);
|
||||||
let zero = int32.const_zero();
|
|
||||||
let exception = exception.into_pointer_value();
|
|
||||||
let file_ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(1, false)], "file_ptr")
|
|
||||||
.unwrap();
|
|
||||||
let filename = ctx.gen_string(generator, loc.file.0);
|
|
||||||
ctx.builder.build_store(file_ptr, filename).unwrap();
|
|
||||||
let row_ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(2, false)], "row_ptr")
|
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(row_ptr, int32.const_int(loc.row as u64, false)).unwrap();
|
|
||||||
let col_ptr = ctx
|
|
||||||
.builder
|
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(3, false)], "col_ptr")
|
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(col_ptr, int32.const_int(loc.column as u64, false)).unwrap();
|
|
||||||
|
|
||||||
let current_fun = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
// Get and store filename
|
||||||
let fun_name = ctx.gen_string(generator, current_fun.get_name().to_str().unwrap());
|
let filename = loc.file.0;
|
||||||
let name_ptr = ctx
|
let filename = ctx.gen_string(generator, &String::from(filename)).value;
|
||||||
.builder
|
let filename = cslice_model.check_value(generator, ctx.ctx, filename).unwrap();
|
||||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(4, false)], "name_ptr")
|
pexn.set(ctx, |f| f.filename, filename);
|
||||||
.unwrap();
|
|
||||||
ctx.builder.build_store(name_ptr, fun_name).unwrap();
|
let row = i32_model.constant(generator, ctx.ctx, loc.row as u64);
|
||||||
}
|
pexn.set(ctx, |f| f.line, row);
|
||||||
|
|
||||||
|
let column = i32_model.constant(generator, ctx.ctx, loc.column as u64);
|
||||||
|
pexn.set(ctx, |f| f.column, column);
|
||||||
|
|
||||||
|
let current_fn = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||||
|
let fn_name = ctx.gen_string(generator, current_fn.get_name().to_str().unwrap());
|
||||||
|
pexn.set(ctx, |f| f.function, fn_name);
|
||||||
|
|
||||||
let raise = get_builtins(generator, ctx, "__nac3_raise");
|
let raise = get_builtins(generator, ctx, "__nac3_raise");
|
||||||
let exception = *exception;
|
ctx.build_call_or_invoke(raise, &[pexn.value.into()], "raise");
|
||||||
ctx.build_call_or_invoke(raise, &[exception], "raise");
|
|
||||||
} else {
|
} else {
|
||||||
let resume = get_builtins(generator, ctx, "__nac3_resume");
|
let resume = get_builtins(generator, ctx, "__nac3_resume");
|
||||||
ctx.build_call_or_invoke(resume, &[], "resume");
|
ctx.build_call_or_invoke(resume, &[], "resume");
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx.builder.build_unreachable().unwrap();
|
ctx.builder.build_unreachable().unwrap();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1761,30 +1798,41 @@ pub fn gen_stmt<G: CodeGenerator>(
|
||||||
} else {
|
} else {
|
||||||
return Ok(());
|
return Ok(());
|
||||||
};
|
};
|
||||||
gen_raise(generator, ctx, Some(&exc), stmt.location);
|
|
||||||
|
let pexn_model = PtrModel(StructModel(Exception));
|
||||||
|
let exn = pexn_model.check_value(generator, ctx.ctx, exc).unwrap();
|
||||||
|
|
||||||
|
gen_raise(generator, ctx, Some(exn), stmt.location);
|
||||||
} else {
|
} else {
|
||||||
gen_raise(generator, ctx, None, stmt.location);
|
gen_raise(generator, ctx, None, stmt.location);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
StmtKind::Assert { test, msg, .. } => {
|
StmtKind::Assert { test, msg, .. } => {
|
||||||
let test = if let Some(v) = generator.gen_expr(ctx, test)? {
|
let byte_model = IntModel(Byte);
|
||||||
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?
|
let cslice_model = StructModel(CSlice);
|
||||||
} else {
|
|
||||||
|
let Some(test) = generator.gen_expr(ctx, test)? else {
|
||||||
return Ok(());
|
return Ok(());
|
||||||
};
|
};
|
||||||
|
let test = test.to_basic_value_enum(ctx, generator, ctx.primitives.bool)?;
|
||||||
|
let test = byte_model.check_value(generator, ctx.ctx, test).unwrap(); // Python `bool` is represented as `i8` in nac3core
|
||||||
|
|
||||||
|
// Check `msg`
|
||||||
let err_msg = match msg {
|
let err_msg = match msg {
|
||||||
Some(msg) => {
|
Some(msg) => {
|
||||||
if let Some(v) = generator.gen_expr(ctx, msg)? {
|
let Some(msg) = generator.gen_expr(ctx, msg)? else {
|
||||||
v.to_basic_value_enum(ctx, generator, msg.custom.unwrap())?
|
|
||||||
} else {
|
|
||||||
return Ok(());
|
return Ok(());
|
||||||
}
|
|
||||||
}
|
|
||||||
None => ctx.gen_string(generator, "").into(),
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
let msg = msg.to_basic_value_enum(ctx, generator, ctx.primitives.str)?;
|
||||||
|
cslice_model.check_value(generator, ctx.ctx, msg).unwrap()
|
||||||
|
}
|
||||||
|
None => ctx.gen_string(generator, ""),
|
||||||
|
};
|
||||||
|
|
||||||
ctx.make_assert_impl(
|
ctx.make_assert_impl(
|
||||||
generator,
|
generator,
|
||||||
generator.bool_to_i1(ctx, test.into_int_value()),
|
test.value,
|
||||||
"0:AssertionError",
|
"0:AssertionError",
|
||||||
err_msg,
|
err_msg,
|
||||||
[None, None, None],
|
[None, None, None],
|
||||||
|
|
|
@ -0,0 +1,256 @@
|
||||||
|
use inkwell::context::Context;
|
||||||
|
|
||||||
|
use crate::codegen::model::*;
|
||||||
|
|
||||||
|
use super::{CodeGenContext, CodeGenerator};
|
||||||
|
|
||||||
|
/// Fields of [`CSlice`]
|
||||||
|
pub struct CSliceFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
/// Pointer to data.
|
||||||
|
pub base: F::Out<PtrModel<IntModel<Byte>>>,
|
||||||
|
/// Number of bytes of data.
|
||||||
|
pub len: F::Out<IntModel<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// See <https://crates.io/crates/cslice>.
|
||||||
|
///
|
||||||
|
/// Additionally, see <https://github.com/m-labs/artiq/blob/b0d2705c385f64b6e6711c1726cd9178f40b598e/artiq/firmware/libeh/eh_artiq.rs>)
|
||||||
|
/// for ARTIQ-specific notes.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct CSlice;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for CSlice {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = CSliceFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields { base: traversal.add_auto("base"), len: traversal.add_auto("len") }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StructModel<CSlice> {
|
||||||
|
/// Create a [`CSlice`].
|
||||||
|
///
|
||||||
|
/// `base` and `len` must be LLVM global constants.
|
||||||
|
pub fn create_const<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
base: Ptr<'ctx, IntModel<Byte>>,
|
||||||
|
len: Int<'ctx, SizeT>,
|
||||||
|
) -> Struct<'ctx, CSlice> {
|
||||||
|
let value = self
|
||||||
|
.0
|
||||||
|
.get_struct_type(generator, ctx)
|
||||||
|
.const_named_struct(&[base.value.into(), len.value.into()]);
|
||||||
|
self.believe_value(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// The LLVM int type of an Exception ID.
|
||||||
|
pub type ExceptionId = Int32;
|
||||||
|
|
||||||
|
/// Fields of [`Exception<'ctx>`]
|
||||||
|
///
|
||||||
|
/// The definition came from `pub struct Exception<'a>` in
|
||||||
|
/// <https://github.com/m-labs/artiq/blob/master/artiq/firmware/libeh/eh_artiq.rs>.
|
||||||
|
pub struct ExceptionFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
/// nac3core's ID of the exception
|
||||||
|
pub id: F::Out<IntModel<ExceptionId>>,
|
||||||
|
/// The name of the file this `Exception` was raised in.
|
||||||
|
pub filename: F::Out<StructModel<CSlice>>,
|
||||||
|
/// The line number in the file this `Exception` was raised in.
|
||||||
|
pub line: F::Out<IntModel<Int32>>,
|
||||||
|
/// The column number in the file this `Exception` was raised in.
|
||||||
|
pub column: F::Out<IntModel<Int32>>,
|
||||||
|
/// The name of the Python function this `Exception` was raised in.
|
||||||
|
pub function: F::Out<StructModel<CSlice>>,
|
||||||
|
/// The message of this Exception.
|
||||||
|
///
|
||||||
|
/// The message can optionally contain integer parameters `{0}`, `{1}`, and `{2}` in its string,
|
||||||
|
/// where they will be substituted by `params[0]`, `params[1]`, and `params[2]` respectively (as `int64_t`s).
|
||||||
|
/// Here is an example:
|
||||||
|
///
|
||||||
|
/// ```ignore
|
||||||
|
/// "Index {0} is out of bounds! List only has {1} element(s)."
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// In this case, `params[0]` and `params[1]` must be specified, and `params[2]` is ***unused***.
|
||||||
|
/// Having only 3 parameters is a constraint in ARTIQ.
|
||||||
|
pub msg: F::Out<StructModel<CSlice>>,
|
||||||
|
pub params: [F::Out<IntModel<Int64>>; 3],
|
||||||
|
}
|
||||||
|
|
||||||
|
/// nac3core & ARTIQ's Exception
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct Exception;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for Exception {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ExceptionFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
id: traversal.add_auto("id"),
|
||||||
|
filename: traversal.add_auto("filename"),
|
||||||
|
line: traversal.add_auto("line"),
|
||||||
|
column: traversal.add_auto("column"),
|
||||||
|
function: traversal.add_auto("function"),
|
||||||
|
msg: traversal.add_auto("msg"),
|
||||||
|
params: [
|
||||||
|
traversal.add_auto("params[0]"),
|
||||||
|
traversal.add_auto("params[1]"),
|
||||||
|
traversal.add_auto("params[2]"),
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fields of [`List`]
|
||||||
|
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||||
|
/// Array pointer to content
|
||||||
|
pub items: F::Out<PtrModel<Item>>,
|
||||||
|
/// Number of items in the array
|
||||||
|
pub len: F::Out<IntModel<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A list in NAC3.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct List<Item> {
|
||||||
|
/// Model of the list items
|
||||||
|
pub item: Item,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
items: traversal.add("data", PtrModel(self.item)),
|
||||||
|
len: traversal.add_auto("len"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fields of [`NDArray`]
|
||||||
|
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub data: F::Out<PtrModel<IntModel<Byte>>>,
|
||||||
|
pub itemsize: F::Out<IntModel<SizeT>>,
|
||||||
|
pub ndims: F::Out<IntModel<SizeT>>,
|
||||||
|
pub shape: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
pub strides: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A strided ndarray in NAC3.
|
||||||
|
///
|
||||||
|
/// See IRRT implementation for details about its fields.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct NDArray;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for NDArray {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
data: traversal.add_auto("data"),
|
||||||
|
itemsize: traversal.add_auto("itemsize"),
|
||||||
|
ndims: traversal.add_auto("ndims"),
|
||||||
|
shape: traversal.add_auto("shape"),
|
||||||
|
strides: traversal.add_auto("strides"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fields of [`SimpleNDArray`]
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct SimpleNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||||
|
pub ndims: F::Out<IntModel<SizeT>>,
|
||||||
|
pub shape: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
pub data: F::Out<PtrModel<Item>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An ndarray without strides and non-opaque `data` field in NAC3.
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub struct SimpleNDArray<M> {
|
||||||
|
/// [`Model`] of the items.
|
||||||
|
pub item: M,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for SimpleNDArray<Item> {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = SimpleNDArrayFields<'ctx, F, Item>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
ndims: traversal.add_auto("ndims"),
|
||||||
|
shape: traversal.add_auto("shape"),
|
||||||
|
data: traversal.add("data", PtrModel(self.item)),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fields of [`NDIter`]
|
||||||
|
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub ndims: F::Out<IntModel<SizeT>>,
|
||||||
|
pub shape: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
pub strides: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
|
||||||
|
pub indices: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||||
|
pub nth: F::Out<IntModel<SizeT>>,
|
||||||
|
pub element: F::Out<PtrModel<IntModel<Byte>>>,
|
||||||
|
|
||||||
|
pub size: F::Out<IntModel<SizeT>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT helper structure used when iterating through an ndarray.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct NDIter;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for NDIter {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields {
|
||||||
|
ndims: traversal.add_auto("ndims"),
|
||||||
|
shape: traversal.add_auto("shape"),
|
||||||
|
strides: traversal.add_auto("strides"),
|
||||||
|
|
||||||
|
indices: traversal.add_auto("indices"),
|
||||||
|
nth: traversal.add_auto("nth"),
|
||||||
|
element: traversal.add_auto("element"),
|
||||||
|
|
||||||
|
size: traversal.add_auto("size"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A NAC3 `range`. It is an array of 3 int32s.
|
||||||
|
// TODO: Use `pub type RangeModel<N> = NArrayModel<3, IntModel<N>>` in the future when
|
||||||
|
// `range` type is type dependent.
|
||||||
|
pub type RangeModel = NArrayModel<3, IntModel<Int32>>;
|
||||||
|
|
||||||
|
impl<'ctx> Ptr<'ctx, RangeModel> {
|
||||||
|
pub fn gep_start<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, IntModel<Int32>> {
|
||||||
|
self.at_const(generator, ctx, 0, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn gep_stop<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, IntModel<Int32>> {
|
||||||
|
self.at_const(generator, ctx, 1, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn gep_step<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: &str,
|
||||||
|
) -> Ptr<'ctx, IntModel<Int32>> {
|
||||||
|
self.at_const(generator, ctx, 2, name)
|
||||||
|
}
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -51,6 +51,17 @@ pub enum PrimDef {
|
||||||
FunNpArray,
|
FunNpArray,
|
||||||
FunNpEye,
|
FunNpEye,
|
||||||
FunNpIdentity,
|
FunNpIdentity,
|
||||||
|
FunNpArange,
|
||||||
|
|
||||||
|
// NumPy view functions
|
||||||
|
FunNpBroadcastTo,
|
||||||
|
FunNpReshape,
|
||||||
|
FunNpTranspose,
|
||||||
|
|
||||||
|
// NumPy NDArray property getters
|
||||||
|
FunNpSize,
|
||||||
|
FunNpShape,
|
||||||
|
FunNpStrides,
|
||||||
|
|
||||||
// Miscellaneous NumPy & SciPy functions
|
// Miscellaneous NumPy & SciPy functions
|
||||||
FunNpRound,
|
FunNpRound,
|
||||||
|
@ -99,8 +110,6 @@ pub enum PrimDef {
|
||||||
FunNpLdExp,
|
FunNpLdExp,
|
||||||
FunNpHypot,
|
FunNpHypot,
|
||||||
FunNpNextAfter,
|
FunNpNextAfter,
|
||||||
FunNpTranspose,
|
|
||||||
FunNpReshape,
|
|
||||||
|
|
||||||
// Linalg functions
|
// Linalg functions
|
||||||
FunNpDot,
|
FunNpDot,
|
||||||
|
@ -237,6 +246,17 @@ impl PrimDef {
|
||||||
PrimDef::FunNpArray => fun("np_array", None),
|
PrimDef::FunNpArray => fun("np_array", None),
|
||||||
PrimDef::FunNpEye => fun("np_eye", None),
|
PrimDef::FunNpEye => fun("np_eye", None),
|
||||||
PrimDef::FunNpIdentity => fun("np_identity", None),
|
PrimDef::FunNpIdentity => fun("np_identity", None),
|
||||||
|
PrimDef::FunNpArange => fun("np_arange", None),
|
||||||
|
|
||||||
|
// NumPy view functions
|
||||||
|
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
|
||||||
|
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||||
|
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||||
|
|
||||||
|
// NumPy NDArray property getters
|
||||||
|
PrimDef::FunNpSize => fun("np_size", None),
|
||||||
|
PrimDef::FunNpShape => fun("np_shape", None),
|
||||||
|
PrimDef::FunNpStrides => fun("np_strides", None),
|
||||||
|
|
||||||
// Miscellaneous NumPy & SciPy functions
|
// Miscellaneous NumPy & SciPy functions
|
||||||
PrimDef::FunNpRound => fun("np_round", None),
|
PrimDef::FunNpRound => fun("np_round", None),
|
||||||
|
@ -285,8 +305,6 @@ impl PrimDef {
|
||||||
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
||||||
PrimDef::FunNpHypot => fun("np_hypot", None),
|
PrimDef::FunNpHypot => fun("np_hypot", None),
|
||||||
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
||||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
|
||||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
|
||||||
|
|
||||||
// Linalg functions
|
// Linalg functions
|
||||||
PrimDef::FunNpDot => fun("np_dot", None),
|
PrimDef::FunNpDot => fun("np_dot", None),
|
||||||
|
@ -1000,3 +1018,23 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
|
||||||
_ => 0,
|
_ => 0,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
|
||||||
|
/// The `ndims` must only contain 1 value.
|
||||||
|
#[must_use]
|
||||||
|
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
|
||||||
|
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
|
||||||
|
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
|
||||||
|
panic!("ndims_ty should be a TLiteral");
|
||||||
|
};
|
||||||
|
|
||||||
|
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
|
||||||
|
|
||||||
|
let ndims = values[0].clone();
|
||||||
|
u64::try_from(ndims).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
|
||||||
|
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
|
||||||
|
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
|
||||||
|
}
|
||||||
|
|
|
@ -31,6 +31,7 @@ pub mod builtins;
|
||||||
pub mod composer;
|
pub mod composer;
|
||||||
pub mod helper;
|
pub mod helper;
|
||||||
pub mod numpy;
|
pub mod numpy;
|
||||||
|
pub mod option;
|
||||||
pub mod type_annotation;
|
pub mod type_annotation;
|
||||||
use composer::*;
|
use composer::*;
|
||||||
use type_annotation::*;
|
use type_annotation::*;
|
||||||
|
|
|
@ -0,0 +1,46 @@
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
toplevel::helper::PrimDef,
|
||||||
|
typecheck::{
|
||||||
|
type_inferencer::PrimitiveStore,
|
||||||
|
typedef::{Type, TypeEnum, Unifier, VarMap},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: This entire module is duplicated code (numpy.rs also has these kinds of things)
|
||||||
|
|
||||||
|
/// Creates a `option` [`Type`] with the given type arguments.
|
||||||
|
///
|
||||||
|
/// * `dtype` - The element type of the `option`, or [`None`] if the type variable is not
|
||||||
|
/// specialized.
|
||||||
|
/// * `ndims` - The number of dimensions of the `option`, or [`None`] if the type variable is not
|
||||||
|
/// specialized.
|
||||||
|
pub fn make_option_ty(
|
||||||
|
unifier: &mut Unifier,
|
||||||
|
primitives: &PrimitiveStore,
|
||||||
|
dtype: Option<Type>,
|
||||||
|
) -> Type {
|
||||||
|
subst_option_tvars(unifier, primitives.option, dtype)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Substitutes type variables in `option`.
|
||||||
|
///
|
||||||
|
/// * `dtype` - The element type of the `option`, or [`None`] if the type variable is not
|
||||||
|
/// specialized.
|
||||||
|
pub fn subst_option_tvars(unifier: &mut Unifier, option: Type, dtype: Option<Type>) -> Type {
|
||||||
|
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(option) else {
|
||||||
|
panic!("Expected `option` to be TObj, but got {}", unifier.stringify(option))
|
||||||
|
};
|
||||||
|
debug_assert_eq!(*obj_id, PrimDef::Option.id());
|
||||||
|
|
||||||
|
let tvar_ids = params.iter().map(|(obj_id, _)| *obj_id).collect_vec();
|
||||||
|
debug_assert_eq!(tvar_ids.len(), 1);
|
||||||
|
|
||||||
|
let mut tvar_subst = VarMap::new();
|
||||||
|
if let Some(dtype) = dtype {
|
||||||
|
tvar_subst.insert(tvar_ids[0], dtype);
|
||||||
|
}
|
||||||
|
|
||||||
|
unifier.subst(option, &tvar_subst).unwrap_or(option)
|
||||||
|
}
|
|
@ -80,7 +80,7 @@ impl<'a> Inferencer<'a> {
|
||||||
return Err(HashSet::from([format!(
|
return Err(HashSet::from([format!(
|
||||||
"expected concrete type at {} but got {}",
|
"expected concrete type at {} but got {}",
|
||||||
expr.location,
|
expr.location,
|
||||||
self.unifier.get_ty(*ty).get_type_name()
|
self.unifier.stringify(*ty)
|
||||||
)]));
|
)]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
use crate::symbol_resolver::SymbolValue;
|
use crate::symbol_resolver::SymbolValue;
|
||||||
use crate::toplevel::helper::PrimDef;
|
use crate::toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims, PrimDef};
|
||||||
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
||||||
use crate::typecheck::{
|
use crate::typecheck::{
|
||||||
type_inferencer::*,
|
type_inferencer::*,
|
||||||
|
@ -520,36 +520,41 @@ pub fn typeof_binop(
|
||||||
}
|
}
|
||||||
|
|
||||||
Operator::MatMult => {
|
Operator::MatMult => {
|
||||||
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
let lhs_dtype = arraylike_flatten_element_type(unifier, lhs);
|
||||||
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
|
let rhs_dtype = arraylike_flatten_element_type(unifier, rhs);
|
||||||
TypeEnum::TLiteral { values, .. } => {
|
|
||||||
assert_eq!(values.len(), 1);
|
let lhs_ndims = arraylike_get_ndims(unifier, lhs);
|
||||||
u64::try_from(values[0].clone()).unwrap()
|
let rhs_ndims = arraylike_get_ndims(unifier, rhs);
|
||||||
|
|
||||||
|
if !(unifier.unioned(lhs_dtype, primitives.float)
|
||||||
|
&& unifier.unioned(rhs_dtype, primitives.float))
|
||||||
|
{
|
||||||
|
return Err(format!(
|
||||||
|
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
|
||||||
|
unifier.stringify(lhs),
|
||||||
|
unifier.stringify(rhs)
|
||||||
|
));
|
||||||
}
|
}
|
||||||
_ => unreachable!(),
|
|
||||||
};
|
let result_ndims = match (lhs_ndims, rhs_ndims) {
|
||||||
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
(0, _) | (_, 0) => {
|
||||||
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
|
return Err(
|
||||||
TypeEnum::TLiteral { values, .. } => {
|
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
|
||||||
assert_eq!(values.len(), 1);
|
)
|
||||||
u64::try_from(values[0].clone()).unwrap()
|
|
||||||
}
|
}
|
||||||
_ => unreachable!(),
|
(1, 1) => 0,
|
||||||
|
(1, _) => rhs_ndims - 1,
|
||||||
|
(_, 1) => lhs_ndims - 1,
|
||||||
|
(m, n) => max(m, n),
|
||||||
};
|
};
|
||||||
|
|
||||||
match (lhs_ndims, rhs_ndims) {
|
if result_ndims == 0 {
|
||||||
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
|
// If the result is unsized, NumPy returns a scalar.
|
||||||
(lhs, rhs) if lhs == 0 || rhs == 0 => {
|
primitives.float
|
||||||
return Err(format!(
|
} else {
|
||||||
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
|
let result_ndims_ty =
|
||||||
u8::from(rhs == 0)
|
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
|
||||||
))
|
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
|
||||||
}
|
|
||||||
(lhs, rhs) => {
|
|
||||||
return Err(format!(
|
|
||||||
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -748,7 +753,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
||||||
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
||||||
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
|
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], Some(ndarray_t));
|
||||||
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
||||||
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
||||||
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
use std::cmp::max;
|
use std::cmp::max;
|
||||||
use std::collections::{HashMap, HashSet};
|
use std::collections::{HashMap, HashSet};
|
||||||
use std::convert::{From, TryInto};
|
use std::convert::{From, TryInto};
|
||||||
use std::iter::once;
|
use std::iter::{self, once};
|
||||||
use std::{cell::RefCell, sync::Arc};
|
use std::{cell::RefCell, sync::Arc};
|
||||||
|
|
||||||
use super::{
|
use super::{
|
||||||
|
@ -12,6 +12,7 @@ use super::{
|
||||||
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
|
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
use crate::toplevel::option::make_option_ty;
|
||||||
use crate::{
|
use crate::{
|
||||||
symbol_resolver::{SymbolResolver, SymbolValue},
|
symbol_resolver::{SymbolResolver, SymbolValue},
|
||||||
toplevel::{
|
toplevel::{
|
||||||
|
@ -22,6 +23,7 @@ use crate::{
|
||||||
typecheck::typedef::Mapping,
|
typecheck::typedef::Mapping,
|
||||||
};
|
};
|
||||||
use itertools::{izip, Itertools};
|
use itertools::{izip, Itertools};
|
||||||
|
use nac3parser::ast::Constant;
|
||||||
use nac3parser::ast::{
|
use nac3parser::ast::{
|
||||||
self,
|
self,
|
||||||
fold::{self, Fold},
|
fold::{self, Fold},
|
||||||
|
@ -1325,7 +1327,7 @@ impl<'a> Inferencer<'a> {
|
||||||
arg_ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
arg_ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
}) {
|
}) {
|
||||||
// typeof_ndarray_broadcast requires both dtypes to be the same, but ldexp accepts
|
// typeof_ndarray_broadcast requires both dtypes to be the same, but ldexp accepts
|
||||||
// (float, int32), so convert it to align with the dtype of the first arg
|
// (float, int32), so convert it to align with t#he dtype of the first arg
|
||||||
let arg1_ty = if id == &"np_ldexp".into() {
|
let arg1_ty = if id == &"np_ldexp".into() {
|
||||||
if arg1_ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
if arg1_ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
||||||
let (_, ndims) = unpack_ndarray_var_tys(self.unifier, arg1_ty);
|
let (_, ndims) = unpack_ndarray_var_tys(self.unifier, arg1_ty);
|
||||||
|
@ -1501,7 +1503,7 @@ impl<'a> Inferencer<'a> {
|
||||||
},
|
},
|
||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
// 2-argument ndarray n-dimensional factory functions
|
|
||||||
if id == &"np_reshape".into() && args.len() == 2 {
|
if id == &"np_reshape".into() && args.len() == 2 {
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
let arg0 = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
|
@ -1546,6 +1548,50 @@ impl<'a> Inferencer<'a> {
|
||||||
},
|
},
|
||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
|
||||||
|
// Output tuple size depends on input ndarray's ndims.
|
||||||
|
|
||||||
|
let ndarray = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
|
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
|
||||||
|
|
||||||
|
// Create a tuple of size `ndims` full of int32
|
||||||
|
// TODO: Make it usize
|
||||||
|
|
||||||
|
let ret_ty = TypeEnum::TTuple {
|
||||||
|
ty: iter::repeat(self.primitives.int32).take(ndims as usize).collect_vec(),
|
||||||
|
is_vararg_ctx: false,
|
||||||
|
};
|
||||||
|
let ret_ty = self.unifier.add_ty(ret_ty);
|
||||||
|
|
||||||
|
let func_ty = TypeEnum::TFunc(FunSignature {
|
||||||
|
args: vec![FuncArg {
|
||||||
|
name: "a".into(),
|
||||||
|
default_value: None,
|
||||||
|
ty: ndarray.custom.unwrap(),
|
||||||
|
is_vararg: false,
|
||||||
|
}],
|
||||||
|
ret: ret_ty,
|
||||||
|
vars: VarMap::new(),
|
||||||
|
});
|
||||||
|
let func_ty = self.unifier.add_ty(func_ty);
|
||||||
|
|
||||||
|
return Ok(Some(Located {
|
||||||
|
location,
|
||||||
|
custom: Some(ret_ty),
|
||||||
|
node: ExprKind::Call {
|
||||||
|
func: Box::new(Located {
|
||||||
|
custom: Some(func_ty),
|
||||||
|
location: func.location,
|
||||||
|
node: ExprKind::Name { id: *id, ctx: *ctx },
|
||||||
|
}),
|
||||||
|
args: vec![ndarray],
|
||||||
|
keywords: vec![],
|
||||||
|
},
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
// 2-argument ndarray n-dimensional creation functions
|
// 2-argument ndarray n-dimensional creation functions
|
||||||
if id == &"np_full".into() && args.len() == 2 {
|
if id == &"np_full".into() && args.len() == 2 {
|
||||||
let ExprKind::List { elts, .. } = &args[0].node else {
|
let ExprKind::List { elts, .. } = &args[0].node else {
|
||||||
|
@ -2264,14 +2310,39 @@ impl<'a> Inferencer<'a> {
|
||||||
// We will also take the opportunity to deduce `dims_to_subtract` as well
|
// We will also take the opportunity to deduce `dims_to_subtract` as well
|
||||||
let mut dims_to_subtract: i128 = 0;
|
let mut dims_to_subtract: i128 = 0;
|
||||||
for index in indices {
|
for index in indices {
|
||||||
if let ExprKind::Slice { lower, upper, step } = &index.node {
|
match &index.node {
|
||||||
|
ExprKind::Slice { lower, upper, step } => {
|
||||||
|
// Handle slices
|
||||||
for v in [lower.as_ref(), upper.as_ref(), step.as_ref()].iter().flatten() {
|
for v in [lower.as_ref(), upper.as_ref(), step.as_ref()].iter().flatten() {
|
||||||
self.constrain(v.custom.unwrap(), self.primitives.int32, &v.location)?;
|
self.constrain(v.custom.unwrap(), self.primitives.int32, &v.location)?;
|
||||||
}
|
}
|
||||||
} else {
|
}
|
||||||
|
ExprKind::Constant { value: Constant::Ellipsis, .. } => {
|
||||||
|
// Handle `...`.
|
||||||
|
|
||||||
|
// See https://git.m-labs.hk/M-Labs/nac3/issues/486
|
||||||
|
// Force `...` to have `()` (completely bogus) to make it concrete.
|
||||||
|
let empty_tuple = TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false };
|
||||||
|
let empty_tuple = self.unifier.add_ty(empty_tuple);
|
||||||
|
self.unify(index.custom.unwrap(), empty_tuple, &index.location)?;
|
||||||
|
}
|
||||||
|
ExprKind::Name { id, .. } if id == &"none".into() => {
|
||||||
|
// Handle `np.newaxis` / `None`.
|
||||||
|
dims_to_subtract -= 1;
|
||||||
|
|
||||||
|
// "none" itself has type `Option[T]`, and since we have a stray `T` (non-concrete type).
|
||||||
|
// We will force the type to be `Option[()]` to make it concrete. (TODO: is there a void type?)
|
||||||
|
let empty_tuple = TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false };
|
||||||
|
let empty_tuple = self.unifier.add_ty(empty_tuple);
|
||||||
|
let expected_type =
|
||||||
|
make_option_ty(self.unifier, self.primitives, Some(empty_tuple));
|
||||||
|
self.unify(index.custom.unwrap(), expected_type, &index.location)?;
|
||||||
|
}
|
||||||
|
_ => {
|
||||||
// Treat anything else as an integer index, and force unify their type to int32.
|
// Treat anything else as an integer index, and force unify their type to int32.
|
||||||
self.unify(index.custom.unwrap(), self.primitives.int32, &index.location)?;
|
|
||||||
dims_to_subtract += 1;
|
dims_to_subtract += 1;
|
||||||
|
self.unify(index.custom.unwrap(), self.primitives.int32, &index.location)?;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -342,6 +342,14 @@ impl Unifier {
|
||||||
self.unification_table.unioned(a, b)
|
self.unification_table.unioned(a, b)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Determine if a type unions with a type in `tys`.
|
||||||
|
pub fn unioned_any<I>(&mut self, a: Type, tys: I) -> bool
|
||||||
|
where
|
||||||
|
I: IntoIterator<Item = Type>,
|
||||||
|
{
|
||||||
|
tys.into_iter().any(|ty| self.unioned(a, ty))
|
||||||
|
}
|
||||||
|
|
||||||
pub fn from_shared_unifier(unifier: &SharedUnifier) -> Unifier {
|
pub fn from_shared_unifier(unifier: &SharedUnifier) -> Unifier {
|
||||||
let lock = unifier.lock().unwrap();
|
let lock = unifier.lock().unwrap();
|
||||||
Unifier {
|
Unifier {
|
||||||
|
|
|
@ -218,8 +218,16 @@ def patch(module):
|
||||||
module.np_ldexp = np.ldexp
|
module.np_ldexp = np.ldexp
|
||||||
module.np_hypot = np.hypot
|
module.np_hypot = np.hypot
|
||||||
module.np_nextafter = np.nextafter
|
module.np_nextafter = np.nextafter
|
||||||
module.np_transpose = np.transpose
|
|
||||||
|
# NumPy view functions
|
||||||
|
module.np_broadcast_to = np.broadcast_to
|
||||||
module.np_reshape = np.reshape
|
module.np_reshape = np.reshape
|
||||||
|
module.np_transpose = np.transpose
|
||||||
|
|
||||||
|
# NumPy NDArray property getter functions
|
||||||
|
module.np_size = np.size
|
||||||
|
module.np_shape = np.shape
|
||||||
|
module.np_strides = lambda ndarray: ndarray.strides
|
||||||
|
|
||||||
# SciPy Math functions
|
# SciPy Math functions
|
||||||
module.sp_spec_erf = special.erf
|
module.sp_spec_erf = special.erf
|
||||||
|
|
|
@ -14,6 +14,7 @@ use inkwell::{
|
||||||
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
|
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
|
||||||
OptimizationLevel,
|
OptimizationLevel,
|
||||||
};
|
};
|
||||||
|
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||||
use nac3core::{
|
use nac3core::{
|
||||||
codegen::{
|
codegen::{
|
||||||
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
|
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
|
||||||
|
@ -314,6 +315,16 @@ fn main() {
|
||||||
let resolver =
|
let resolver =
|
||||||
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
|
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||||
|
|
||||||
|
let context = inkwell::context::Context::create();
|
||||||
|
|
||||||
|
// Process IRRT
|
||||||
|
let irrt = load_irrt(&context);
|
||||||
|
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||||
|
if emit_llvm {
|
||||||
|
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Process the Python script
|
||||||
let parser_result = parser::parse_program(&program, file_name.into()).unwrap();
|
let parser_result = parser::parse_program(&program, file_name.into()).unwrap();
|
||||||
|
|
||||||
for stmt in parser_result {
|
for stmt in parser_result {
|
||||||
|
@ -418,8 +429,8 @@ fn main() {
|
||||||
registry.add_task(task);
|
registry.add_task(task);
|
||||||
registry.wait_tasks_complete(handles);
|
registry.wait_tasks_complete(handles);
|
||||||
|
|
||||||
|
// Link all modules together into `main`
|
||||||
let buffers = membuffers.lock();
|
let buffers = membuffers.lock();
|
||||||
let context = inkwell::context::Context::create();
|
|
||||||
let main = context
|
let main = context
|
||||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
@ -439,12 +450,9 @@ fn main() {
|
||||||
main.link_in_module(other).unwrap();
|
main.link_in_module(other).unwrap();
|
||||||
}
|
}
|
||||||
|
|
||||||
let irrt = load_irrt(&context);
|
|
||||||
if emit_llvm {
|
|
||||||
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
|
|
||||||
}
|
|
||||||
main.link_in_module(irrt).unwrap();
|
main.link_in_module(irrt).unwrap();
|
||||||
|
|
||||||
|
// Private all functions except "run"
|
||||||
let mut function_iter = main.get_first_function();
|
let mut function_iter = main.get_first_function();
|
||||||
while let Some(func) = function_iter {
|
while let Some(func) = function_iter {
|
||||||
if func.count_basic_blocks() > 0 && func.get_name().to_str().unwrap() != "run" {
|
if func.count_basic_blocks() > 0 && func.get_name().to_str().unwrap() != "run" {
|
||||||
|
@ -453,6 +461,7 @@ fn main() {
|
||||||
function_iter = func.get_next_function();
|
function_iter = func.get_next_function();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Optimize `main`
|
||||||
let target_machine = llvm_options
|
let target_machine = llvm_options
|
||||||
.target
|
.target
|
||||||
.create_target_machine(llvm_options.opt_level)
|
.create_target_machine(llvm_options.opt_level)
|
||||||
|
@ -466,6 +475,7 @@ fn main() {
|
||||||
panic!("Failed to run optimization for module `main`: {}", err.to_string());
|
panic!("Failed to run optimization for module `main`: {}", err.to_string());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Write output
|
||||||
target_machine
|
target_machine
|
||||||
.write_to_file(&main, FileType::Object, Path::new("module.o"))
|
.write_to_file(&main, FileType::Object, Path::new("module.o"))
|
||||||
.expect("couldn't write module to file");
|
.expect("couldn't write module to file");
|
||||||
|
|
Loading…
Reference in New Issue