Compare commits

...

21 Commits

Author SHA1 Message Date
059b130aff WIP 6 2024-07-14 17:05:45 +08:00
7742fbf9e0 core: split codegen irrt into modules 2024-07-14 16:10:04 +08:00
71e05c17b9 core: delete IrrtString 2024-07-14 16:05:11 +08:00
e4998ccec8 core: split codegen optics into modules 2024-07-14 16:03:43 +08:00
9a82b033b6 core: ndarray fill generic 2024-07-14 15:45:06 +08:00
3b87bd36f3 core: irrt ndarray setup 2024-07-14 14:17:51 +08:00
b4d5b2a41f core: optics rename view() to focus() 2024-07-14 13:55:26 +08:00
259958aded core: BoundedIxed Ixed & ArraySlice optics 2024-07-14 13:49:16 +08:00
867f6ccf8e core: irrt test remove unrecognized test 2024-07-14 02:51:01 +08:00
23ed5642fb core: -I irrt/ & #include absolute paths 2024-07-14 01:46:54 +08:00
2f7e75d7cf core: pass resolver error ids to irrt 2024-07-14 01:39:06 +08:00
8863cd64a9 core: irrt ErrorContext 2024-07-13 23:59:07 +08:00
9e78139373 core: lift SizeVariant to /util.rs 2024-07-13 23:48:16 +08:00
259481e8d0 core: optics.rs abstract inkwell 2024-07-13 23:48:15 +08:00
5faac4b9d4 core: build.rs to capture IR global constants 2024-07-13 23:37:26 +08:00
c4d54b198b core: add llvm.lifetime.{start.end} 2024-07-13 23:37:26 +08:00
9ad7a78dbe core: build.rs rewrite regex to capture = type 2024-07-13 23:37:26 +08:00
1721ebac66 core: introduce irrt_test 2024-07-13 23:37:24 +08:00
f033639415 core: split irrt.cpp into headers 2024-07-12 21:53:15 +08:00
3116f11814 core: comment build.rs & move irrt to its own dir 2024-07-12 21:52:55 +08:00
5047379ac0 core: irrt build with -W=return-type 2024-07-12 21:19:38 +08:00
37 changed files with 2299 additions and 66 deletions

View File

@ -13,6 +13,7 @@
''
mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
nac3artiq = pkgs.python3Packages.toPythonModule (
@ -23,6 +24,7 @@
cargoLock = {
lockFile = ./Cargo.lock;
};
cargoTestFlags = [ "--features" "test" ];
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
@ -161,7 +163,10 @@
clippy
pre-commit
rustfmt
rust-analyzer
];
# https://nixos.wiki/wiki/Rust#Shell.nix_example
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";

View File

@ -1,3 +1,6 @@
[features]
test = []
[package]
name = "nac3core"
version = "0.1.0"

View File

@ -3,20 +3,34 @@ use std::{
env,
fs::File,
io::Write,
path::Path,
path::{Path, PathBuf},
process::{Command, Stdio},
};
fn main() {
const FILE: &str = "src/codegen/irrt/irrt.cpp";
const CMD_IRRT_CLANG: &str = "clang-irrt";
const CMD_IRRT_CLANG_TEST: &str = "clang-irrt-test";
const CMD_IRRT_LLVM_AS: &str = "llvm-as-irrt";
fn get_out_dir() -> PathBuf {
PathBuf::from(env::var("OUT_DIR").unwrap())
}
fn get_irrt_dir() -> &'static Path {
Path::new("irrt")
}
/// Compile `irrt.cpp` for use in `src/codegen`
fn compile_irrt_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
let flags: &[&str] = &[
"--target=wasm32",
FILE,
"-x",
"c++",
"-fno-discard-value-names",
@ -31,15 +45,19 @@ fn main() {
"-S",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-I",
irrt_dir.to_str().unwrap(),
"-o",
"-",
irrt_cpp_path.to_str().unwrap(),
];
println!("cargo:rerun-if-changed={FILE}");
let out_dir = env::var("OUT_DIR").unwrap();
let out_path = Path::new(&out_dir);
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
let output = Command::new("clang-irrt")
// Compile IRRT and capture the LLVM IR output
let output = Command::new(CMD_IRRT_CLANG)
.args(flags)
.output()
.map(|o| {
@ -52,7 +70,17 @@ fn main() {
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
@ -63,20 +91,73 @@ fn main() {
.unwrap()
.replace_all(&filtered_output, "");
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
if env::var("DEBUG_DUMP_IRRT").is_ok() {
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
// Assemble the emitted and filtered IR to .bc
// That .bc will be integrated into nac3core's codegen
let mut llvm_as = Command::new(CMD_IRRT_LLVM_AS)
.stdin(Stdio::piped())
.arg("-o")
.arg(out_path.join("irrt.bc"))
.arg(out_dir.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success());
}
/// Compile `irrt_test.cpp` for testing
fn compile_irrt_test_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
let exe_path = out_dir.join("irrt_test.out"); // Output path of the compiled test executable
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
let flags: &[&str] = &[
irrt_test_cpp_path.to_str().unwrap(),
"-x",
"c++",
"-I",
irrt_dir.to_str().unwrap(),
"-g",
"-fno-discard-value-names",
"-O0",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-lm", // for `tgamma()`, `lgamma()`
"-I",
irrt_dir.to_str().unwrap(),
"-o",
exe_path.to_str().unwrap(),
];
Command::new(CMD_IRRT_CLANG_TEST)
.args(flags)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
}
fn main() {
compile_irrt_cpp();
// https://github.com/rust-lang/cargo/issues/2549
// `cargo test -F test` to also build `irrt_test.cpp
if cfg!(feature = "test") {
compile_irrt_test_cpp();
}
}

9
nac3core/irrt/irrt.cpp Normal file
View File

@ -0,0 +1,9 @@
#define IRRT_DEFINE_TYPEDEF_INTS
#include <irrt_everything.hpp>
/*
All IRRT implementations.
We don't have any pre-compiled objects, so we are writing all implementations in headers and
concatenate them with `#include` into one massive source file that contains all the IRRT stuff.
*/

View File

@ -1,9 +1,7 @@
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#pragma once
#include <irrt/utils.hpp>
#include <irrt/int_defs.hpp>
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
@ -11,16 +9,6 @@ using NDIndex = uint32_t;
using SliceIndex = int32_t;
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>

View File

@ -0,0 +1,85 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/utils.hpp>
namespace {
// nac3core's "str" struct type definition
template <typename SizeT>
struct Str {
const char* content;
SizeT length;
};
// A limited set of errors IRRT could use.
typedef uint32_t ErrorId;
struct ErrorIds {
ErrorId index_error;
ErrorId value_error;
ErrorId assertion_error;
ErrorId runtime_error;
};
struct ErrorContext {
// Context
ErrorIds* error_ids;
// Error thrown by IRRT
ErrorId error_id;
const char* message_template; // MUST BE `&'static`
uint64_t param1;
uint64_t param2;
uint64_t param3;
void initialize(ErrorIds* error_ids) {
this->error_ids = error_ids;
clear_error();
}
void clear_error() {
// Point the message_template to an empty str. Don't set it to nullptr as a sentinel
this->message_template = "";
}
void set_error(ErrorId error_id, const char* message, uint64_t param1 = 0, uint64_t param2 = 0, uint64_t param3 = 0) {
this->error_id = error_id;
this->message_template = message;
this->param1 = param1;
this->param2 = param2;
this->param3 = param3;
}
bool has_error() {
return !cstr_utils::is_empty(message_template);
}
template <typename SizeT>
void set_error_str(Str<SizeT> *dst_str) {
dst_str->content = message_template;
dst_str->length = (SizeT) cstr_utils::length(message_template);
}
};
}
extern "C" {
void __nac3_error_context_initialize(ErrorContext* errctx, ErrorIds* error_ids) {
errctx->initialize(error_ids);
}
uint8_t __nac3_error_context_has_no_error(ErrorContext* errctx) {
return !errctx->has_error();
}
void __nac3_error_context_get_error_str(ErrorContext* errctx, Str<int32_t> *dst_str) {
errctx->set_error_str<int32_t>(dst_str);
}
void __nac3_error_context_get_error_str64(ErrorContext* errctx, Str<int64_t> *dst_str) {
errctx->set_error_str<int64_t>(dst_str);
}
void __nac3_error_dummy_raise(ErrorContext* errctx) {
errctx->set_error(errctx->error_ids->runtime_error, "THROWN FROM __nac3_error_dummy_raise!!!!!!");
}
}

View File

@ -0,0 +1,12 @@
#pragma once
// This is made toggleable since `irrt_test.cpp` itself would include
// headers that define these typedefs
#ifdef IRRT_DEFINE_TYPEDEF_INTS
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
#endif

View File

@ -0,0 +1,155 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/ndarray_util.hpp>
namespace {
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
//
// NOTE: The order of fields is IMPORTANT. DON'T TOUCH IT
//
// Some resources you might find helpful:
// - The official numpy implementations:
// - https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
// - On strides (about reshaping, slicing, C-contagiousness, etc)
// - https://ajcr.net/stride-guide-part-1/.
// - https://ajcr.net/stride-guide-part-2/.
// - https://ajcr.net/stride-guide-part-3/.
template <typename SizeT>
struct NDArray {
// The underlying data this `ndarray` is pointing to.
//
// NOTE: Formally this should be of type `void *`, but clang
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
// so we will put `uint8_t *` here for clarity.
//
// This pointer should point to the first element of the ndarray directly
uint8_t *data;
// The number of bytes of a single element in `data`.
//
// The `SizeT` is treated as `unsigned`.
SizeT itemsize;
// The number of dimensions of this shape.
//
// The `SizeT` is treated as `unsigned`.
SizeT ndims;
// Array shape, with length equal to `ndims`.
//
// The `SizeT` is treated as `unsigned`.
//
// NOTE: `shape` can contain 0.
// (those appear when the user makes an out of bounds slice into an ndarray, e.g., `np.zeros((3, 3))[400:].shape == (0, 3)`)
SizeT *shape;
// Array strides (stride value is in number of bytes, NOT number of elements), with length equal to `ndims`.
//
// The `SizeT` is treated as `signed`.
//
// NOTE: `strides` can have negative numbers.
// (those appear when there is a slice with a negative step, e.g., `my_array[::-1]`)
SizeT *strides;
// Calculate the size/# of elements of an `ndarray`.
// This function corresponds to `np.size(<ndarray>)` or `ndarray.size`
SizeT size() {
return ndarray_util::calc_size_from_shape(ndims, shape);
}
// Calculate the number of bytes of its content of an `ndarray` *in its view*.
// This function corresponds to `ndarray.nbytes`
SizeT nbytes() {
return this->size() * itemsize;
}
// Set the strides of the ndarray with `ndarray_util::set_strides_by_shape`
void set_strides_by_shape() {
ndarray_util::set_strides_by_shape(itemsize, ndims, strides, shape);
}
uint8_t* get_pelement_by_indices(const SizeT *indices) {
uint8_t* element = data;
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
element += indices[dim_i] * strides[dim_i];
return element;
}
uint8_t* get_nth_pelement(SizeT nth) {
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
return get_pelement_by_indices(indices);
}
// Get the pointer to the nth element of the ndarray as if it were flattened.
uint8_t* checked_get_nth_pelement(ErrorContext* errctx, SizeT nth) {
SizeT arr_size = this->size();
if (!(0 <= nth && nth < arr_size)) {
errctx->set_error(
errctx->error_ids->index_error,
"index {0} is out of bounds, valid range is {1} <= index < {2}",
nth, 0, arr_size
);
return 0;
}
return get_nth_pelement(nth);
}
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, itemsize);
}
// Fill the ndarray with a value
void fill_generic(const uint8_t* pvalue) {
const SizeT size = this->size();
for (SizeT i = 0; i < size; i++) {
uint8_t* pelement = get_nth_pelement(i); // No need for checked_get_nth_pelement
set_pelement_value(pelement, pvalue);
}
}
};
}
extern "C" {
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return ndarray->size();
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return ndarray->size();
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return ndarray->nbytes();
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return ndarray->nbytes();
}
void __nac3_ndarray_util_assert_shape_no_negative(ErrorContext* errctx, int32_t ndims, int32_t* shape) {
ndarray_util::assert_shape_no_negative(errctx, ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(ErrorContext* errctx, int64_t ndims, int64_t* shape) {
ndarray_util::assert_shape_no_negative(errctx, ndims, shape);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
ndarray->set_strides_by_shape();
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
ndarray->set_strides_by_shape();
}
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
ndarray->fill_generic(pvalue);
}
void __nac3_ndarray_fill_generic64(NDArray<int64_t>* ndarray, uint8_t* pvalue) {
ndarray->fill_generic(pvalue);
}
}

View File

@ -0,0 +1,107 @@
#pragma once
#include <irrt/int_defs.hpp>
namespace {
namespace ndarray_util {
// Throw an error if there is an axis with negative dimension
template <typename SizeT>
void assert_shape_no_negative(ErrorContext* errctx, SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
errctx->set_error(
errctx->error_ids->value_error,
"negative dimensions are not allowed; axis {0} has dimension {1}",
axis, shape[axis]
);
return;
}
}
}
// Compute the size/# of elements of an ndarray given its shape
template <typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
return size;
}
// Compute the strides of an ndarray given an ndarray `shape`
// and assuming that the ndarray is *fully C-contagious*.
//
// You might want to read up on https://ajcr.net/stride-guide-part-1/.
template <typename SizeT>
void set_strides_by_shape(SizeT itemsize, SizeT ndims, SizeT* dst_strides, const SizeT* shape) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndims; i++) {
int axis = ndims - i - 1;
dst_strides[axis] = stride_product * itemsize;
stride_product *= shape[axis];
}
}
template <typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (int32_t i = 0; i < ndims; i++) {
int32_t axis = ndims - i - 1;
int32_t dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
template <typename SizeT>
bool can_broadcast_shape_to(
const SizeT target_ndims,
const SizeT *target_shape,
const SizeT src_ndims,
const SizeT *src_shape
) {
/*
// See https://numpy.org/doc/stable/user/basics.broadcasting.html
This function handles this example:
```
Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3
```
Other interesting examples to consider:
- `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true`
- `can_broadcast_shape_to([3], [3, 1]) == false`
- `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true`
In cases when the shapes contain zero(es):
- `can_broadcast_shape_to([0], [1]) == true`
- `can_broadcast_shape_to([0], [2]) == false`
- `can_broadcast_shape_to([0, 4, 0, 0], [1]) == true`
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true`
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true`
- `can_broadcast_shape_to([4, 3], [0, 3]) == false`
- `can_broadcast_shape_to([4, 3], [0, 0]) == false`
*/
// This is essentially doing the following in Python:
// `for target_dim, src_dim in itertools.zip_longest(target_shape[::-1], src_shape[::-1], fillvalue=1)`
for (SizeT i = 0; i < max(target_ndims, src_ndims); i++) {
SizeT target_axis = target_ndims - i - 1;
SizeT src_axis = src_ndims - i - 1;
bool target_dim_exists = target_axis >= 0;
bool src_dim_exists = src_axis >= 0;
SizeT target_dim = target_dim_exists ? target_shape[target_axis] : 1;
SizeT src_dim = src_dim_exists ? src_shape[src_axis] : 1;
bool ok = src_dim == 1 || target_dim == src_dim;
if (!ok) return false;
}
return true;
}
}
}

View File

@ -0,0 +1,60 @@
#pragma once
#include <irrt/int_defs.hpp>
namespace {
namespace string {
bool is_empty(const char* str) {
return str[0] == '\0';
}
int8_t compare(const char* a, const char* b) {
uint32_t i = 0;
while (true) {
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else { // a[i] == b[i]
if (a[i] == '\0') {
return 0;
} else {
continue;
}
}
}
}
int8_t equal(const char* a, const char* b) {
return compare(a, b) == 0;
}
uint32_t length(const char* str) {
uint32_t length = 0;
while (*str != '\0') {
length++;
str++;
}
return length;
}
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
for (uint32_t i = 0; i < dst_max_size; i++) {
bool is_last = i + 1 == dst_max_size;
if (is_last && src[i] != '\0') {
dst[i] = '\0';
return false;
}
if (src[i] == '\0') {
dst[i] = '\0';
return true;
}
dst[i] = src[i];
}
__builtin_unreachable();
}
}
}

View File

@ -0,0 +1,88 @@
#pragma once
#include <irrt/int_defs.hpp>
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
template <typename T>
bool arrays_match(int len, T* as, T* bs) {
for (int i = 0; i < len; i++) {
if (as[i] != bs[i]) return false;
}
return true;
}
template<typename T>
uint32_t int_log_floor(T value, T base) {
uint32_t result = 0;
while (value >= base) {
result++;
value /= base;
}
return result;
}
namespace cstr_utils {
bool is_empty(const char* str) {
return str[0] == '\0';
}
int8_t compare(const char* a, const char* b) {
uint32_t i = 0;
while (true) {
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else { // a[i] == b[i]
if (a[i] == '\0') {
return 0;
} else {
i++;
}
}
}
}
int8_t equal(const char* a, const char* b) {
return compare(a, b) == 0;
}
uint32_t length(const char* str) {
uint32_t length = 0;
while (*str != '\0') {
length++;
str++;
}
return length;
}
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
for (uint32_t i = 0; i < dst_max_size; i++) {
bool is_last = i + 1 == dst_max_size;
if (is_last && src[i] != '\0') {
dst[i] = '\0';
return false;
}
if (src[i] == '\0') {
dst[i] = '\0';
return true;
}
dst[i] = src[i];
}
__builtin_unreachable();
}
}
}

View File

@ -0,0 +1,7 @@
#pragma once
#include <irrt/core.hpp>
#include <irrt/error_context.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/utils.hpp>
#include <irrt/ndarray/ndarray.hpp>

View File

@ -0,0 +1,18 @@
// This file will be compiled like a real C++ program,
// and we do have the luxury to use the standard libraries.
// That is if the nix flakes do not have issues... especially on msys2...
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <irrt_everything.hpp>
#include <test/core.hpp>
#include <test/test_core.hpp>
#include <test/test_utils.hpp>
int main() {
run_test_core();
run_test_utils();
return 0;
}

View File

@ -0,0 +1,88 @@
#pragma once
// Include this header for every test_*.cpp
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <test/print.hpp>
// Some utils can be used here
#include "../irrt/utils.hpp"
void __begin_test(const char* function_name, const char* file, int line) {
printf("######### Running %s @ %s:%d\n", function_name, file, line);
}
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
void test_fail() {
printf("[!] Test failed. Exiting with status code 1.\n");
exit(1);
}
template <typename T>
void debug_print_array(int len, const T* as) {
printf("[");
for (int i = 0; i < len; i++) {
if (i != 0) printf(", ");
print_value(as[i]);
}
printf("]");
}
void print_assertion_passed(const char* file, int line) {
printf("[*] Assertion passed on %s:%d\n", file, line);
}
void print_assertion_failed(const char* file, int line) {
printf("[!] Assertion failed on %s:%d\n", file, line);
}
void __assert_true(const char* file, int line, bool cond) {
if (cond) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
test_fail();
}
}
#define assert_true(cond) __assert_true(__FILE__, __LINE__, cond)
template <typename T>
void __assert_arrays_match(const char* file, int line, int len, const T* expected, const T* got) {
if (arrays_match(len, expected, got)) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
debug_print_array(len, expected);
printf("\n");
printf(" Got = ");
debug_print_array(len, got);
printf("\n");
test_fail();
}
}
#define assert_arrays_match(len, expected, got) __assert_arrays_match(__FILE__, __LINE__, len, expected, got)
template <typename T>
void __assert_values_match(const char* file, int line, T expected, T got) {
if (expected == got) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
print_value(expected);
printf("\n");
printf(" Got = ");
print_value(got);
printf("\n");
test_fail();
}
}
#define assert_values_match(expected, got) __assert_values_match(__FILE__, __LINE__, expected, got)

View File

@ -0,0 +1,42 @@
#pragma once
#include <cstdlib>
#include <cstdio>
template <class T>
void print_value(T value);
template <>
void print_value(char value) {
printf("'%c' (ord=%d)", value, value);
}
template <>
void print_value(int8_t value) {
printf("%d", value);
}
template <>
void print_value(int32_t value) {
printf("%d", value);
}
template <>
void print_value(uint8_t value) {
printf("%u", value);
}
template <>
void print_value(uint32_t value) {
printf("%u", value);
}
template <>
void print_value(double value) {
printf("%f", value);
}
template <>
void print_value(char* value) {
printf("%s", value);
}

View File

@ -0,0 +1,15 @@
#pragma once
#include <test/core.hpp>
#include <irrt/core.hpp>
void test_int_exp() {
BEGIN_TEST();
assert_values_match(125, __nac3_int_exp_impl<int32_t>(5, 3));
assert_values_match(3125, __nac3_int_exp_impl<int32_t>(5, 5));
}
void run_test_core() {
test_int_exp();
}

View File

@ -0,0 +1,27 @@
#pragma once
#include <test/core.hpp>
#include <irrt/utils.hpp>
void test_int_log_10() {
BEGIN_TEST();
assert_values_match((uint32_t) 0, int_log_floor(0, 10));
assert_values_match((uint32_t) 0, int_log_floor(9, 10));
assert_values_match((uint32_t) 1, int_log_floor(10, 10));
assert_values_match((uint32_t) 1, int_log_floor(11, 10));
assert_values_match((uint32_t) 1, int_log_floor(99, 10));
assert_values_match((uint32_t) 2, int_log_floor(100, 10));
assert_values_match((uint32_t) 2, int_log_floor(101, 10));
}
void test_cstr_utils() {
BEGIN_TEST();
assert_values_match((uint32_t) 42, (uint32_t) cstr_utils::length("THROWN FROM __nac3_error_dummy_raise!!!!!!"));
}
void run_test_utils() {
test_int_log_10();
test_cstr_utils();
}

View File

@ -576,6 +576,21 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let error_id = self.resolver.get_string_id(name);
let error_id = self.ctx.i32_type().const_int(error_id as u64, false);
self.raise_exn_by_id(generator, error_id, msg, params, loc);
}
pub fn raise_exn_by_id<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
error_id: IntValue<'ctx>,
msg: BasicValueEnum<'ctx>,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
assert_eq!(error_id.get_type().get_bit_width(), 32);
let zelf = if let Some(exception_val) = self.exception_val {
exception_val
} else {
@ -588,8 +603,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
let zero = int32.const_zero();
unsafe {
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
let id = self.resolver.get_string_id(name);
self.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
self.builder.build_store(id_ptr, error_id).unwrap();
let ptr = self
.builder
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
@ -652,6 +666,32 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
self.raise_exn(generator, err_name, err_msg, params, loc);
self.builder.position_at_end(then_block);
}
pub fn make_assert_impl_by_id<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
cond: IntValue<'ctx>,
err_id: IntValue<'ctx>,
err_msg: BasicValueEnum<'ctx>,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let i1 = self.ctx.bool_type();
let i1_true = i1.const_all_ones();
// we assume that the condition is most probably true, so the normal path is the most
// probable path
// even if this assumption is violated, it does not matter as exception unwinding is
// slow anyway...
let cond = call_expect(self, cond, i1_true, Some("expect"));
let current_bb = self.builder.get_insert_block().unwrap();
let current_fun = current_bb.get_parent().unwrap();
let then_block = self.ctx.insert_basic_block_after(current_bb, "succ");
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
self.builder.build_conditional_branch(cond, then_block, exn_block).unwrap();
self.builder.position_at_end(exn_block);
self.raise_exn_by_id(generator, err_id, err_msg, params, loc);
self.builder.position_at_end(then_block);
}
}
/// See [`CodeGenerator::gen_constructor`].

View File

@ -0,0 +1,196 @@
use inkwell::types::IntType;
use inkwell::values::IntValue;
use crate::codegen::optics::*;
use crate::codegen::CodeGenContext;
use crate::codegen::CodeGenerator;
use super::util::get_sized_dependent_function_name;
use super::util::FunctionBuilder;
#[derive(Debug, Clone)]
pub struct StrLens<'ctx> {
pub size_type: IntType<'ctx>,
}
// TODO: nac3core has hardcoded a lot of "str"
pub struct StrFields<'ctx> {
pub content: GepGetter<AddressLens<IntLens<'ctx>>>,
pub length: GepGetter<IntLens<'ctx>>,
}
impl<'ctx> StructureOptic<'ctx> for StrLens<'ctx> {
type Fields = StrFields<'ctx>;
fn struct_name(&self) -> &'static str {
"str"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
StrFields {
content: builder.add_field("content", AddressLens(IntLens(builder.ctx.i8_type()))),
length: builder.add_field("length", IntLens(self.size_type)),
}
}
}
pub struct ErrorIdsFields<'ctx> {
pub index_error: GepGetter<IntLens<'ctx>>,
pub value_error: GepGetter<IntLens<'ctx>>,
pub assertion_error: GepGetter<IntLens<'ctx>>,
pub runtime_error: GepGetter<IntLens<'ctx>>,
}
#[derive(Debug, Clone)]
pub struct ErrorIdsLens;
impl<'ctx> StructureOptic<'ctx> for ErrorIdsLens {
type Fields = ErrorIdsFields<'ctx>;
fn struct_name(&self) -> &'static str {
"ErrorIds"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
let i32_lens = IntLens(builder.ctx.i32_type());
ErrorIdsFields {
index_error: builder.add_field("index_error", i32_lens),
value_error: builder.add_field("value_error", i32_lens),
assertion_error: builder.add_field("assertion_error", i32_lens),
runtime_error: builder.add_field("runtime_error", i32_lens),
}
}
}
pub struct ErrorContextFields<'ctx> {
pub error_ids: GepGetter<AddressLens<ErrorIdsLens>>,
pub error_id: GepGetter<IntLens<'ctx>>,
pub message_template: GepGetter<AddressLens<IntLens<'ctx>>>,
pub param1: GepGetter<IntLens<'ctx>>,
pub param2: GepGetter<IntLens<'ctx>>,
pub param3: GepGetter<IntLens<'ctx>>,
}
#[derive(Debug, Clone, Copy)]
pub struct ErrorContextLens;
impl<'ctx> StructureOptic<'ctx> for ErrorContextLens {
type Fields = ErrorContextFields<'ctx>;
fn struct_name(&self) -> &'static str {
"ErrorContext"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
ErrorContextFields {
error_ids: builder.add_field("error_ids", AddressLens(ErrorIdsLens)),
error_id: builder.add_field("error_id", IntLens(builder.ctx.i32_type())),
message_template: builder
.add_field("message_template", AddressLens(IntLens(builder.ctx.i8_type()))),
param1: builder.add_field("param1", IntLens(builder.ctx.i64_type())),
param2: builder.add_field("param2", IntLens(builder.ctx.i64_type())),
param3: builder.add_field("param3", IntLens(builder.ctx.i64_type())),
}
}
}
fn build_error_ids<'ctx>(ctx: &CodeGenContext<'ctx, '_>) -> Address<'ctx, ErrorIdsLens> {
// ErrorIdsLens.get_fields(ctx.ctx).assertion_error.
let error_ids = ErrorIdsLens.alloca(ctx, "error_ids");
let llvm_i32 = ctx.ctx.i32_type();
let get_string_id =
|string_id| llvm_i32.const_int(ctx.resolver.get_string_id(string_id) as u64, false);
error_ids.focus(ctx, |fields| &fields.index_error).store(ctx, &get_string_id("0:IndexError"));
error_ids.focus(ctx, |fields| &fields.value_error).store(ctx, &get_string_id("0:ValueError"));
error_ids
.focus(ctx, |fields| &fields.assertion_error)
.store(ctx, &get_string_id("0:AssertionError"));
error_ids
.focus(ctx, |fields| &fields.runtime_error)
.store(ctx, &get_string_id("0:RuntimeError"));
error_ids
}
pub fn call_nac3_error_context_initialize<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
errctx: &Address<'ctx, ErrorContextLens>,
error_ids: &Address<'ctx, ErrorIdsLens>,
) {
FunctionBuilder::begin(ctx, "__nac3_error_context_initialize")
.arg("errctx", &AddressLens(ErrorContextLens), errctx)
.arg("error_ids", &AddressLens(ErrorIdsLens), error_ids)
.returning_void();
}
pub fn call_nac3_error_context_has_no_error<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
errctx: &Address<'ctx, ErrorContextLens>,
) -> IntValue<'ctx> {
FunctionBuilder::begin(ctx, "__nac3_error_context_has_no_error")
.arg("errctx", &AddressLens(ErrorContextLens), errctx)
.returning("has_error", &IntLens(ctx.ctx.bool_type()))
}
pub fn call_nac3_error_context_get_error_str<'ctx>(
size_type: IntType<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
errctx: &Address<'ctx, ErrorContextLens>,
dst_str: &Address<'ctx, StrLens<'ctx>>,
) -> IntValue<'ctx> {
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(size_type, "__nac3_error_context_get_error_str"),
)
.arg("errctx", &AddressLens(ErrorContextLens), errctx)
.arg("dst_str", &AddressLens(StrLens { size_type }), dst_str)
.returning("has_error", &IntLens(ctx.ctx.bool_type()))
}
pub fn prepare_error_context<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
) -> Address<'ctx, ErrorContextLens> {
let error_ids = build_error_ids(ctx);
let errctx_ptr = ErrorContextLens.alloca(ctx, "errctx");
call_nac3_error_context_initialize(ctx, &errctx_ptr, &error_ids);
errctx_ptr
}
pub fn check_error_context<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
errctx_ptr: &Address<'ctx, ErrorContextLens>,
) {
let size_type = generator.get_size_type(ctx.ctx);
let has_error = call_nac3_error_context_has_no_error(ctx, errctx_ptr);
let error_str_ptr = StrLens { size_type }.alloca(ctx, "error_str");
call_nac3_error_context_get_error_str(size_type, ctx, errctx_ptr, &error_str_ptr);
let error_id = errctx_ptr.focus(ctx, |fields| &fields.error_id).load(ctx, "error_id");
let error_str = error_str_ptr.load(ctx, "error_str");
let param1 = errctx_ptr.focus(ctx, |fields| &fields.param1).load(ctx, "param1");
let param2 = errctx_ptr.focus(ctx, |fields| &fields.param2).load(ctx, "param2");
let param3 = errctx_ptr.focus(ctx, |fields| &fields.param3).load(ctx, "param3");
ctx.make_assert_impl_by_id(
generator,
has_error,
error_id,
error_str.get_llvm_value(),
[Some(param1), Some(param2), Some(param3)],
ctx.current_loc,
);
}
pub fn call_nac3_dummy_raise<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext,
) {
let errctx = prepare_error_context(ctx);
FunctionBuilder::begin(ctx, "__nac3_error_dummy_raise")
.arg("errctx", &AddressLens(ErrorContextLens), &errctx)
.returning_void();
check_error_context(generator, ctx, &errctx);
}

View File

@ -21,6 +21,11 @@ use inkwell::{
use itertools::Either;
use nac3parser::ast::Expr;
pub mod error_context;
pub mod numpy;
pub mod test;
pub mod util;
#[must_use]
pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range(

View File

@ -0,0 +1,415 @@
use std::marker::PhantomData;
use inkwell::{
types::{BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use crate::codegen::optics::*;
use crate::{
codegen::{
classes::{ListValue, UntypedArrayLikeAccessor},
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
use super::{
error_context::{check_error_context, prepare_error_context, ErrorContextLens},
util::{get_sized_dependent_function_name, FunctionBuilder},
};
pub struct NpArrayFields<'ctx> {
pub data: GepGetter<AddressLens<IntLens<'ctx>>>,
pub itemsize: GepGetter<IntLens<'ctx>>,
pub ndims: GepGetter<IntLens<'ctx>>,
pub shape: GepGetter<AddressLens<IntLens<'ctx>>>,
pub strides: GepGetter<AddressLens<IntLens<'ctx>>>,
}
#[derive(Debug, Clone, Copy)]
pub struct NpArrayLens<'ctx> {
pub size_type: IntType<'ctx>,
}
impl<'ctx> StructureOptic<'ctx> for NpArrayLens<'ctx> {
type Fields = NpArrayFields<'ctx>;
fn struct_name(&self) -> &'static str {
"NDArray"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
NpArrayFields {
data: builder.add_field("data", AddressLens(IntLens(builder.ctx.i8_type()))),
itemsize: builder.add_field("itemsize", IntLens(builder.ctx.i8_type())),
ndims: builder.add_field("ndims", IntLens(builder.ctx.i8_type())),
shape: builder.add_field("shape", AddressLens(IntLens(self.size_type))),
strides: builder.add_field("strides", AddressLens(IntLens(self.size_type))),
}
}
}
// Other convenient utilities for NpArray
impl<'ctx> Address<'ctx, NpArrayLens<'ctx>> {
pub fn shape_array(&self, ctx: &CodeGenContext<'ctx, '_>) -> ArraySlice<'ctx, IntLens<'ctx>> {
let ndims = self.focus(ctx, |fields| &fields.ndims).load(ctx, "ndims");
let shape_base_ptr = self.focus(ctx, |fields| &fields.shape).load(ctx, "shape");
ArraySlice { num_elements: ndims, base: shape_base_ptr }
}
pub fn strides_array(&self, ctx: &CodeGenContext<'ctx, '_>) -> ArraySlice<'ctx, IntLens<'ctx>> {
let ndims = self.focus(ctx, |fields| &fields.ndims).load(ctx, "ndims");
let strides_base_ptr = self.focus(ctx, |fields| &fields.strides).load(ctx, "strides");
ArraySlice { num_elements: ndims, base: strides_base_ptr }
}
}
type ProducerWriteToArray<'ctx, G, ElementOptic> = Box<
dyn Fn(
&mut G,
&mut CodeGenContext<'ctx, '_>,
&ArraySlice<'ctx, ElementOptic>,
) -> Result<(), String>
+ 'ctx,
>;
struct Producer<'ctx, G: CodeGenerator + ?Sized, ElementOptic> {
pub count: IntValue<'ctx>,
pub write_to_array: ProducerWriteToArray<'ctx, G, ElementOptic>,
}
/// TODO: UPDATE DOCUMENTATION
/// LLVM-typed implementation for generating a [`Producer`] that sets a list of ints.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
///
/// ### Notes on `shape`
///
/// Just like numpy, the `shape` argument can be:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
/// learn how `shape` gets from being a Python user expression to here.
pub fn parse_input_shape_arg<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
) -> Producer<'ctx, G, IntLens<'ctx>>
where
G: CodeGenerator + ?Sized,
{
let size_type = generator.get_size_type(ctx.ctx);
match &*ctx.unifier.get_ty(shape_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
// A list has to be a PointerValue
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), size_type, None);
// Create `Producer`
let ndims = shape_list.load_size(ctx, Some("count"));
Producer {
count: ndims,
write_to_array: Box::new(move |ctx, generator, dst_array| {
// Basically iterate through the list and write to `dst_slice` accordingly
let init_val = size_type.const_zero();
let max_val = (ndims, false);
let incr_val = size_type.const_int(1, false);
gen_for_callback_incrementing(
ctx,
generator,
init_val,
max_val,
|generator, ctx, _hooks, axis| {
// Get the dimension at `axis`
let dim =
shape_list.data().get(ctx, generator, &axis, None).into_int_value();
// Cast `dim` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
.unwrap();
// Write
dst_array.ix(ctx, axis, "dim").store(ctx, &dim);
Ok(())
},
incr_val,
)
}),
}
}
TypeEnum::TTuple { ty: tuple_types } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
let ndims = tuple_types.len();
// A tuple has to be a StructValue
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
let shape_tuple = shape.into_struct_value();
Producer {
count: size_type.const_int(ndims as u64, false),
write_to_array: Box::new(move |_generator, ctx, dst_array| {
for axis in 0..ndims {
// Get the dimension at `axis`
let dim = ctx
.builder
.build_extract_value(
shape_tuple,
axis as u32,
format!("dim{axis}").as_str(),
)
.unwrap()
.into_int_value();
// Cast `dim` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
.unwrap();
// Write
dst_array
.ix(ctx, size_type.const_int(axis as u64, false), "dim")
.store(ctx, &dim);
}
Ok(())
}),
}
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
// The value has to be an integer
let shape_int = shape.into_int_value();
Producer {
count: size_type.const_int(1, false),
write_to_array: Box::new(move |_generator, ctx, dst_array| {
// Cast `shape_int` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(shape_int, size_type, "dim_casted")
.unwrap();
// Write
dst_array
.ix(ctx, size_type.const_zero() /* Only index 0 is set */, "dim")
.store(ctx, &dim);
Ok(())
}),
}
}
_ => panic!("parse_input_shape_arg encountered unknown type"),
}
}
pub fn alloca_ndarray<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_type: BasicTypeEnum<'ctx>,
ndims: IntValue<'ctx>,
name: &str,
) -> Result<Address<'ctx, NpArrayLens<'ctx>>, String>
where
G: CodeGenerator + ?Sized,
{
let size_type = generator.get_size_type(ctx.ctx);
// Allocate ndarray
let ndarray_ptr = NpArrayLens { size_type }.alloca(ctx, name);
// Set ndims
ndarray_ptr.focus(ctx, |fields| &fields.ndims).store(ctx, &ndims);
// Set itemsize
let itemsize = elem_type.size_of().unwrap();
let itemsize =
ctx.builder.build_int_s_extend_or_bit_cast(itemsize, size_type, "itemsize").unwrap();
ndarray_ptr.focus(ctx, |fields| &fields.itemsize).store(ctx, &itemsize);
// Allocate and set shape
let shape_ptr = ctx.builder.build_array_alloca(size_type, ndims, "shape").unwrap();
ndarray_ptr
.focus(ctx, |fields| &fields.shape)
.store(ctx, &Address { addressee_optic: IntLens(size_type), address: shape_ptr });
// Allocate and set strides
let strides_ptr = ctx.builder.build_array_alloca(size_type, ndims, "strides").unwrap();
ndarray_ptr
.focus(ctx, |fields| &fields.strides)
.store(ctx, &Address { addressee_optic: IntLens(size_type), address: strides_ptr });
Ok(ndarray_ptr)
}
pub enum NDArrayInitMode<'ctx, G: CodeGenerator + ?Sized> {
NDim { ndim: IntValue<'ctx> },
Shape { shape: Producer<'ctx, G, IntLens<'ctx>> },
ShapeAndAllocaData { shape: Producer<'ctx, G, IntLens<'ctx>> },
}
/// TODO: DOCUMENT ME
pub fn alloca_ndarray_and_init<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_type: BasicTypeEnum<'ctx>,
init_mode: NDArrayInitMode<'ctx, G>,
name: &str,
) -> Result<Address<'ctx, NpArrayLens<'ctx>>, String>
where
G: CodeGenerator + ?Sized,
{
// It is implemented verbosely in order to make the initialization modes super clear in their intent.
match init_mode {
NDArrayInitMode::NDim { ndim } => {
let ndarray = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
Ok(ndarray)
}
NDArrayInitMode::Shape { shape } => {
let ndims = shape.count;
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
// Fill `ndarray.shape`
(shape.write_to_array)(generator, ctx, &ndarray_ptr.shape_array(ctx))?;
// Check if `shape` has bad inputs
call_nac3_ndarray_util_assert_shape_no_negative(
generator,
ctx,
ndims,
&ndarray_ptr.focus(ctx, |fields| &fields.shape).load(ctx, "shape"),
);
// NOTE: DO NOT DO `set_strides_by_shape` HERE.
// Simply this is because we specified that `SetShape` wouldn't do `set_strides_by_shape`
Ok(ndarray_ptr)
}
NDArrayInitMode::ShapeAndAllocaData { shape } => {
let ndims = shape.count;
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
// Fill `ndarray.shape`
(shape.write_to_array)(generator, ctx, &ndarray_ptr.shape_array(ctx))?;
// Check if `shape` has bad inputs
call_nac3_ndarray_util_assert_shape_no_negative(
generator,
ctx,
ndims,
&ndarray_ptr.focus(ctx, |fields| &fields.shape).load(ctx, "shape"),
);
// Now we populate `ndarray.data` by alloca-ing.
// But first, we need to know the size of the ndarray to know how many elements to alloca,
// since calculating nbytes of an ndarray requires `ndarray.shape` to be set.
let ndarray_nbytes = call_nac3_ndarray_nbytes(generator, ctx, &ndarray_ptr);
// Alloca `data` and assign it to `ndarray.data`
let data_ptr =
ctx.builder.build_array_alloca(ctx.ctx.i8_type(), ndarray_nbytes, "data").unwrap();
ndarray_ptr.focus(ctx, |fields| &fields.data).store(
ctx,
&Address { addressee_optic: IntLens::int8(ctx.ctx), address: data_ptr },
);
// Finally, do `set_strides_by_shape`
// Check out https://ajcr.net/stride-guide-part-1/ to see what numpy "strides" are.
call_nac3_ndarray_set_strides_by_shape(generator, ctx, &ndarray_ptr);
Ok(ndarray_ptr)
}
}
}
fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
shape_ptr: &Address<'ctx, IntLens<'ctx>>,
) {
let size_type = generator.get_size_type(ctx.ctx);
let errctx = prepare_error_context(ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(
size_type,
"__nac3_ndarray_util_assert_shape_no_negative",
),
)
.arg("errctx", &AddressLens(ErrorContextLens), &errctx)
.arg("ndims", &IntLens(size_type), &ndims)
.arg("shape", &AddressLens(IntLens(size_type)), shape_ptr)
.returning_void();
check_error_context(generator, ctx, &errctx);
}
fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: &Address<'ctx, NpArrayLens<'ctx>>,
) {
let size_type = generator.get_size_type(ctx.ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(
size_type,
"__nac3_ndarray_util_assert_shape_no_negative",
),
)
.arg("ndarray", &AddressLens(NpArrayLens { size_type }), ndarray_ptr)
.returning_void();
}
fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: &Address<'ctx, NpArrayLens<'ctx>>,
) -> IntValue<'ctx> {
let size_type = generator.get_size_type(ctx.ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(
size_type,
"__nac3_ndarray_util_assert_shape_no_negative",
),
)
.arg("ndarray", &AddressLens(NpArrayLens { size_type }), ndarray_ptr)
.returning("nbytes", &IntLens(size_type))
}
pub fn call_nac3_ndarray_fill_generic<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: &Address<'ctx, NpArrayLens<'ctx>>,
fill_value_ptr: PointerValue<'ctx>,
) {
let size_type = generator.get_size_type(ctx.ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(size_type, "__nac3_ndarray_fill_generic"),
)
.arg("ndarray", &AddressLens(NpArrayLens { size_type }), ndarray_ptr)
.arg("pvalue", &OpaqueAddressLens, fill_value_ptr)
.returning_void();
}

View File

@ -0,0 +1,25 @@
#[cfg(test)]
mod tests {
use std::{path::Path, process::Command};
#[test]
fn run_irrt_test() {
assert!(
cfg!(feature = "test"),
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
);
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
if !output.status.success() {
eprintln!("irrt_test failed with status {}:", output.status);
eprintln!("====== stdout ======");
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
eprintln!("====== stderr ======");
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
eprintln!("====================");
panic!("irrt_test failed");
}
}
}

View File

@ -0,0 +1,77 @@
use inkwell::{
types::{BasicMetadataTypeEnum, BasicType, IntType},
values::{AnyValue, BasicMetadataValueEnum},
};
use crate::codegen::optics::*;
use crate::{codegen::CodeGenContext, util::SizeVariant};
fn get_size_variant(ty: IntType) -> SizeVariant {
match ty.get_bit_width() {
32 => SizeVariant::Bits32,
64 => SizeVariant::Bits64,
_ => unreachable!("Unsupported int type bit width {}", ty.get_bit_width()),
}
}
#[must_use]
pub fn get_sized_dependent_function_name(ty: IntType, fn_name: &str) -> String {
let mut fn_name = fn_name.to_owned();
match get_size_variant(ty) {
SizeVariant::Bits32 => {
// Do nothing, `fn_name` already has the correct name
}
SizeVariant::Bits64 => {
// Append "64", this is the naming convention
fn_name.push_str("64");
}
}
fn_name
}
// TODO: Variadic argument?
pub struct FunctionBuilder<'ctx, 'a> {
ctx: &'a CodeGenContext<'ctx, 'a>,
fn_name: &'a str,
arguments: Vec<(BasicMetadataTypeEnum<'ctx>, BasicMetadataValueEnum<'ctx>)>,
}
impl<'ctx, 'a> FunctionBuilder<'ctx, 'a> {
pub fn begin(ctx: &'a CodeGenContext<'ctx, 'a>, fn_name: &'a str) -> Self {
FunctionBuilder { ctx, fn_name, arguments: Vec::new() }
}
// The name is for self-documentation
#[must_use]
pub fn arg<S: MemoryOptic<'ctx>>(mut self, _name: &'static str, optic: &S, arg: &S::MemoryValue) -> Self {
self.arguments
.push((optic.get_llvm_type(self.ctx.ctx).into(), arg.get_llvm_value().into()));
self
}
pub fn returning<S: Prism<'ctx>>(self, name: &'static str, return_prism: &S) -> S::MemoryValue {
let (param_tys, param_vals): (Vec<_>, Vec<_>) = self.arguments.into_iter().unzip();
let function = self.ctx.module.get_function(self.fn_name).unwrap_or_else(|| {
let return_type = return_prism.get_llvm_type(self.ctx.ctx);
let fn_type = return_type.fn_type(&param_tys, false);
self.ctx.module.add_function(self.fn_name, fn_type, None)
});
let ret = self.ctx.builder.build_call(function, &param_vals, name).unwrap();
return_prism.review(ret.as_any_value_enum())
}
// TODO: Code duplication, but otherwise returning<S: Optic<'ctx>> cannot resolve S if return_optic = None
pub fn returning_void(self) {
let (param_tys, param_vals): (Vec<_>, Vec<_>) = self.arguments.into_iter().unzip();
let function = self.ctx.module.get_function(self.fn_name).unwrap_or_else(|| {
let return_type = self.ctx.ctx.void_type();
let fn_type = return_type.fn_type(&param_tys, false);
self.ctx.module.add_function(self.fn_name, fn_type, None)
});
self.ctx.builder.build_call(function, &param_vals, "").unwrap();
}
}

View File

@ -35,6 +35,54 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
unreachable!()
}
/// Invokes the [`llvm.lifetime.start`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-start-intrinsic)
/// intrinsic.
pub fn call_lifetime_start<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
ptr: PointerValue<'ctx>,
) {
const FN_NAME: &str = "llvm.lifetime.start";
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i64 = ctx.ctx.i64_type();
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
.map(CallSiteValue::try_as_basic_value)
.unwrap();
}
/// Invokes the [`llvm.lifetime.end`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-end-intrinsic)
/// intrinsic.
pub fn call_lifetime_end<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
ptr: PointerValue<'ctx>,
) {
const FN_NAME: &str = "llvm.lifetime.end";
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i64 = ctx.ctx.i64_type();
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
.map(CallSiteValue::try_as_basic_value)
.unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(

View File

@ -23,8 +23,10 @@ use inkwell::{
values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use irrt::error_context::StrLens;
use itertools::Itertools;
use nac3parser::ast::{Location, Stmt, StrRef};
use optics::MemoryOptic as _;
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
@ -42,6 +44,8 @@ mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod numpy;
pub mod numpy_new;
pub mod optics;
pub mod stmt;
#[cfg(test)]
@ -646,6 +650,8 @@ pub fn gen_func_impl<
..primitives
};
let llvm_str_ty =
StrLens { size_type: generator.get_size_type(context) }.get_llvm_type(context);
let mut type_cache: HashMap<_, _> = [
(primitives.int32, context.i32_type().into()),
(primitives.int64, context.i64_type().into()),
@ -653,21 +659,7 @@ pub fn gen_func_impl<
(primitives.uint64, context.i64_type().into()),
(primitives.float, context.f64_type().into()),
(primitives.bool, context.i8_type().into()),
(primitives.str, {
let name = "str";
match module.get_struct_type(name) {
None => {
let str_type = context.opaque_struct_type("str");
let fields = [
context.i8_type().ptr_type(AddressSpace::default()).into(),
generator.get_size_type(context).into(),
];
str_type.set_body(&fields, false);
str_type.into()
}
Some(t) => t.as_basic_type_enum(),
}
}),
(primitives.str, llvm_str_ty),
(primitives.range, RangeType::new(context).as_base_type().into()),
(primitives.exception, {
let name = "Exception";
@ -677,7 +669,7 @@ pub fn gen_func_impl<
let exception = context.opaque_struct_type("Exception");
let int32 = context.i32_type().into();
let int64 = context.i64_type().into();
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
let str_ty = llvm_str_ty;
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()

View File

@ -0,0 +1,91 @@
use inkwell::values::{BasicValueEnum, PointerValue};
use nac3parser::ast::StrRef;
use crate::{
codegen::optics::build_opaque_alloca, symbol_resolver::ValueEnum, toplevel::DefinitionId, typecheck::typedef::{FunSignature, Type}
};
use super::{
irrt::{
self,
numpy::{alloca_ndarray_and_init, parse_input_shape_arg, NDArrayInitMode, NpArrayLens},
},
optics::Address,
CodeGenContext, CodeGenerator,
};
/// LLVM-typed implementation for generating the implementation for constructing an empty `NDArray`.
fn call_ndarray_empty_impl<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
name: &str,
) -> Result<Address<'ctx, NpArrayLens<'ctx>>, String>
where
G: CodeGenerator + ?Sized,
{
let elem_type = ctx.get_llvm_type(generator, elem_ty);
let shape = parse_input_shape_arg(generator, ctx, shape, shape_ty);
let ndarray_ptr = alloca_ndarray_and_init(
generator,
ctx,
elem_type,
NDArrayInitMode::ShapeAndAllocaData { shape },
name,
)?;
Ok(ndarray_ptr)
}
fn call_ndarray_fill_impl<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
fill_value: BasicValueEnum<'ctx>,
name: &str,
) -> Result<Address<'ctx, NpArrayLens<'ctx>>, String>
where
G: CodeGenerator + ?Sized,
{
let ndarray_ptr = call_ndarray_empty_impl(generator, ctx, elem_ty, shape, shape_ty, name)?;
// NOTE: fill_value's type is not checked!!
let fill_value_ptr = build_opaque_alloca(ctx, fill_value.get_type(), name);
fill_value_ptr.store(ctx, );
// let fill_value_ptr = ctx.builder.build_alloca(, "fill_value_ptr").unwrap();
// ctx.builder.build_store(fill_value_ptr, fill_value);
// let ok = irrt::numpy::call_nac3_ndarray_fill_generic(generator, ctx, ndarray_ptr, Address { fill_value_ptr } );
todo!()
Ok(ndarray_ptr)
}
/// Generates LLVM IR for `np.empty`.
pub fn gen_ndarray_empty<'ctx, G>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
let ndarray_ptr = call_ndarray_empty_impl(
generator,
context,
context.primitives.float,
shape,
shape_ty,
"empty_ndarray",
)?;
Ok(ndarray_ptr.address)
}

View File

@ -0,0 +1,130 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::{AnyValue, BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use super::core::{MemoryGetter, MemoryOptic, MemorySetter, OpticValue, Prism};
#[derive(Debug, Clone)]
pub struct Address<'ctx, AddresseeOptic> {
pub addressee_optic: AddresseeOptic,
pub address: PointerValue<'ctx>,
}
impl<'ctx, AddresseeOptic> Address<'ctx, AddresseeOptic> {
pub fn cast_to<S: MemoryOptic<'ctx>>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
new_optic: S,
) -> Address<'ctx, S> {
let to_ptr_type = new_optic.get_llvm_type(ctx.ctx).ptr_type(AddressSpace::default());
let casted_address =
ctx.builder.build_pointer_cast(self.address, to_ptr_type, "ptr_casted").unwrap();
Address { addressee_optic: new_optic, address: casted_address }
}
pub fn cast_to_opaque(&self) -> OpaqueAddress<'ctx> {
OpaqueAddress(self.address)
}
}
impl<'ctx, AddresseeOptic> OpticValue<'ctx> for Address<'ctx, AddresseeOptic> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.address.as_basic_value_enum()
}
}
#[derive(Debug, Clone)]
pub struct AddressLens<AddresseeOptic>(pub AddresseeOptic);
impl<'ctx, AddresseeOptic: MemoryOptic<'ctx>> MemoryOptic<'ctx> for AddressLens<AddresseeOptic> {
type MemoryValue = Address<'ctx, AddresseeOptic>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.get_llvm_type(ctx).ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}
impl<'ctx, AddresseeOptic: MemoryOptic<'ctx>> Prism<'ctx> for AddressLens<AddresseeOptic> {
fn review<V: AnyValue<'ctx>>(&self, value: V) -> Self::MemoryValue {
Address {
addressee_optic: self.0.clone(),
address: value.as_any_value_enum().into_pointer_value(),
}
}
}
impl<'ctx, AddressesOptic: MemoryOptic<'ctx>> MemoryGetter<'ctx> for AddressLens<AddressesOptic> {
fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
name: &str,
) -> Self::MemoryValue {
self.review(ctx.builder.build_load(pointer, name).unwrap())
}
}
impl<'ctx, AddressesOptic: MemoryOptic<'ctx>> MemorySetter<'ctx> for AddressLens<AddressesOptic> {
fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
value: &Self::MemoryValue,
) {
ctx.builder.build_store(pointer, value.address).unwrap();
}
}
// To make [`Address`] convenient to use
impl<'ctx, AddresseeOptic: MemoryGetter<'ctx>> Address<'ctx, AddresseeOptic> {
pub fn load(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> AddresseeOptic::MemoryValue {
self.addressee_optic.get(ctx, self.address, name)
}
}
// To make [`Address`] convenient to use
impl<'ctx, AddresseeOptic: MemorySetter<'ctx>> Address<'ctx, AddresseeOptic> {
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: &AddresseeOptic::MemoryValue) {
self.addressee_optic.set(ctx, self.address, value);
}
}
#[derive(Debug, Clone, Copy)]
pub struct OpaqueAddress<'ctx>(pub PointerValue<'ctx>);
impl<'ctx> OpaqueAddress<'ctx> {
pub fn cast_to<AddresseeOptic: MemoryOptic<'ctx>>(
&self,
ctx: &'ctx CodeGenContext,
addressee_optic: AddresseeOptic,
name: &str,
) -> Address<'ctx, AddresseeOptic> {
let ptr = ctx.builder.build_pointer_cast(
self.0,
addressee_optic.get_llvm_type(ctx.ctx).ptr_type(AddressSpace::default()),
name,
);
Address { addressee_optic, address: ptr }
}
}
#[derive(Debug, Clone, Copy)]
pub struct OpaqueAddressLens;
impl<'ctx> MemoryOptic<'ctx> for OpaqueAddressLens {
type MemoryValue = BasicValueEnum<'ctx>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
ctx.i8_type().ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}
impl<'ctx> OpaqueAddress<'ctx> {
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: BasicValueEnum<'ctx>) {
}
}

View File

@ -0,0 +1,51 @@
use inkwell::{
context::Context,
types::BasicTypeEnum,
values::{AnyValue, BasicValue, BasicValueEnum, PointerValue},
};
use crate::codegen::CodeGenContext;
use super::address::Address;
// TODO: Write a taxonomy
pub trait OpticValue<'ctx> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx>;
}
impl<'ctx, T: BasicValue<'ctx>> OpticValue<'ctx> for T {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.as_basic_value_enum()
}
}
// TODO: The interface is unintuitive
pub trait MemoryOptic<'ctx>: Clone {
type MemoryValue: OpticValue<'ctx>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>;
fn alloca(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Address<'ctx, Self> {
let ptr = ctx.builder.build_alloca(self.get_llvm_type(ctx.ctx), name).unwrap();
Address { addressee_optic: self.clone(), address: ptr }
}
}
pub trait Prism<'ctx>: MemoryOptic<'ctx> {
// TODO: Return error if `review` fails
fn review<V: AnyValue<'ctx>>(&self, value: V) -> Self::MemoryValue;
}
pub trait MemoryGetter<'ctx>: MemoryOptic<'ctx> {
fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
name: &str,
) -> Self::MemoryValue;
}
pub trait MemorySetter<'ctx>: MemoryOptic<'ctx> {
fn set(&self, ctx: &CodeGenContext<'ctx, '_>, pointer: PointerValue<'ctx>, value: &Self::MemoryValue);
}

View File

@ -0,0 +1,53 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::PointerValue,
AddressSpace,
};
use crate::codegen::CodeGenContext;
use super::{
address::Address,
core::{MemoryGetter, MemoryOptic},
};
// ((Memory, Pointer) -> ElementOptic::Value*)
#[derive(Debug, Clone)]
pub struct GepGetter<ElementOptic> {
/// The LLVM GEP index
pub gep_index: u64,
/// Element (or field in the context of `struct`s) name. Used for cosmetics.
pub name: &'static str,
/// The lens to view the actual value after applying this [`FieldLens<T>`]
pub element_optic: ElementOptic,
}
impl<'ctx, ElementOptic: MemoryOptic<'ctx>> MemoryOptic<'ctx> for GepGetter<ElementOptic> {
type MemoryValue = Address<'ctx, ElementOptic>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.element_optic.get_llvm_type(ctx).ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}
impl<'ctx, ElementOptic: MemoryOptic<'ctx>> MemoryGetter<'ctx> for GepGetter<ElementOptic> {
fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
name: &str,
) -> Self::MemoryValue {
let llvm_i32 = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to *just* use i32 for GEP like that
let element_ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
pointer,
&[llvm_i32.const_zero(), llvm_i32.const_int(self.gep_index, false)],
name,
)
.unwrap()
};
Address { address: element_ptr, addressee_optic: self.element_optic.clone() }
}
}

View File

@ -0,0 +1,66 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, IntType},
values::{AnyValue, BasicValue, IntValue, PointerValue},
};
use crate::codegen::CodeGenContext;
use super::core::{MemoryGetter, MemorySetter, MemoryOptic, Prism};
// NOTE: I wanted to make Int8Lens, Int16Lens, Int32Lens, with all
// having the trait IsIntLens, and implement `impl <S: IsIntLens> Optic<S> for T`,
// but that clashes with StructureOptic!!
#[derive(Debug, Clone, Copy)]
pub struct IntLens<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntLens<'ctx> {
#[must_use]
pub fn int8(ctx: &'ctx Context) -> IntLens<'ctx> {
IntLens(ctx.i8_type())
}
#[must_use]
pub fn int32(ctx: &'ctx Context) -> IntLens<'ctx> {
IntLens(ctx.i32_type())
}
#[must_use]
pub fn int64(ctx: &'ctx Context) -> IntLens<'ctx> {
IntLens(ctx.i64_type())
}
}
impl<'ctx> MemoryOptic<'ctx> for IntLens<'ctx> {
type MemoryValue = IntValue<'ctx>;
fn get_llvm_type(&self, _ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.as_basic_type_enum()
}
}
impl<'ctx> Prism<'ctx> for IntLens<'ctx> {
fn review<V: AnyValue<'ctx>>(&self, value: V) -> Self::MemoryValue {
let int = value.as_any_value_enum().into_int_value();
debug_assert_eq!(int.get_type().get_bit_width(), self.0.get_bit_width());
int
}
}
impl<'ctx> MemoryGetter<'ctx> for IntLens<'ctx> {
fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
name: &str,
) -> Self::MemoryValue {
self.review(ctx.builder.build_load(pointer, name).unwrap())
}
}
impl<'ctx> MemorySetter<'ctx> for IntLens<'ctx> {
fn set(&self, ctx: &CodeGenContext<'ctx, '_>, pointer: PointerValue<'ctx>, int: &Self::MemoryValue) {
debug_assert_eq!(int.get_type().get_bit_width(), self.0.get_bit_width());
ctx.builder.build_store(pointer, int.as_basic_value_enum()).unwrap();
}
}

View File

@ -0,0 +1,65 @@
use inkwell::values::IntValue;
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::address::Address;
// Name inspired by https://hackage.haskell.org/package/lens-5.3.2/docs/Control-Lens-At.html#t:Ixed
pub trait Ixed<'ctx, ElementOptic> {
// TODO: Interface/Method to expose the IntType of index?
// or even make index itself parameterized? (probably no)
fn ix(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
name: &str,
) -> Address<'ctx, ElementOptic>;
}
// TODO: Can do interface seggregation
pub trait BoundedIxed<'ctx, ElementOptic>: Ixed<'ctx, ElementOptic> {
fn num_elements(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx>;
// Check if 0 <= index < self.num_elements()
fn ix_bounds_checked<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
name: &str,
) -> Address<'ctx, ElementOptic> {
let num_elements = self.num_elements(ctx);
let int_type = num_elements.get_type(); // NOTE: Weird get_type(), see comment under `trait Ixed`
assert_eq!(int_type.get_bit_width(), index.get_type().get_bit_width()); // Might as well check bit width to catch bugs
// TODO: SGE or UGE? or make it defined by the implementee?
// Check `0 <= index`
let lower_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLE,
int_type.const_zero(),
index,
"lower_bounded",
)
.unwrap();
// Check `index < num_elements`
let upper_bounded = ctx
.builder
.build_int_compare(inkwell::IntPredicate::SLT, index, num_elements, "upper_bounded")
.unwrap();
// Compute `0 <= index && index < num_elements`
let bounded = ctx.builder.build_and(lower_bounded, upper_bounded, "bounded").unwrap();
// Assert `bounded`
ctx.make_assert(generator, bounded, "0:IndexError", "nac3core LLVM codegen attempting to access out of bounds array index {0}. Must satisfy 0 <= index < {2}", [Some(index), Some(num_elements), None], ctx.current_loc);
// ...and finally do indexing
self.ix(ctx, index, name)
}
}

View File

@ -0,0 +1,15 @@
pub mod address;
pub mod core;
pub mod gep;
pub mod int;
pub mod ixed;
pub mod slice;
pub mod structure;
pub use address::*;
pub use core::*;
pub use gep::*;
pub use int::*;
pub use ixed::*;
pub use slice::*;
pub use structure::*;

View File

@ -0,0 +1,36 @@
use super::{
core::MemoryOptic,
ixed::{BoundedIxed, Ixed},
};
use inkwell::values::IntValue;
use crate::codegen::CodeGenContext;
use super::address::Address;
pub struct ArraySlice<'ctx, ElementOptic> {
pub num_elements: IntValue<'ctx>,
pub base: Address<'ctx, ElementOptic>,
}
impl<'ctx, ElementOptic: MemoryOptic<'ctx>> Ixed<'ctx, ElementOptic> for ArraySlice<'ctx, ElementOptic> {
fn ix(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
name: &str,
) -> Address<'ctx, ElementOptic> {
let element_addr =
unsafe { ctx.builder.build_in_bounds_gep(self.base.address, &[index], name).unwrap() };
Address { address: element_addr, addressee_optic: self.base.addressee_optic.clone() }
}
}
impl<'ctx, ElementOptic: MemoryOptic<'ctx>> BoundedIxed<'ctx, ElementOptic>
for ArraySlice<'ctx, ElementOptic>
{
fn num_elements(&self, _ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.num_elements
}
}

View File

@ -0,0 +1,139 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::{BasicValue, BasicValueEnum, PointerValue, StructValue},
};
use itertools::Itertools;
use crate::codegen::CodeGenContext;
use super::{
address::Address,
core::{MemoryGetter, MemorySetter, MemoryOptic, OpticValue},
gep::GepGetter,
};
pub trait StructureOptic<'ctx>: Clone {
// Fields of optics
type Fields;
// TODO: Make it an associated function instead?
fn struct_name(&self) -> &'static str;
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields;
fn get_fields(&self, ctx: &'ctx Context) -> Self::Fields {
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder)
}
}
pub struct OpticalStructValue<'ctx, StructOptic> {
optic: StructOptic,
llvm: StructValue<'ctx>,
}
impl<'ctx, StructOptic> OpticValue<'ctx> for OpticalStructValue<'ctx, StructOptic> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.llvm.as_basic_value_enum()
}
}
// TODO: check StructType
impl<'ctx, T: StructureOptic<'ctx>> MemoryOptic<'ctx> for T {
type MemoryValue = OpticalStructValue<'ctx, Self>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder); // Self::Fields is discarded
let field_types =
builder.fields.iter().map(|field_info| field_info.llvm_type).collect_vec();
ctx.struct_type(&field_types, false).as_basic_type_enum()
}
}
impl<'ctx, T: StructureOptic<'ctx>> MemoryGetter<'ctx> for T {
fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
name: &str,
) -> Self::MemoryValue {
OpticalStructValue {
optic: self.clone(),
llvm: ctx.builder.build_load(pointer, name).unwrap().into_struct_value(),
}
}
}
impl<'ctx, T: StructureOptic<'ctx>> MemorySetter<'ctx> for T {
fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pointer: PointerValue<'ctx>,
value: &Self::MemoryValue,
) {
ctx.builder.build_store(pointer, value.llvm).unwrap();
}
}
impl<'ctx, AddresseeOptic: StructureOptic<'ctx>> Address<'ctx, AddresseeOptic> {
pub fn focus<GetFieldGepFn, FieldElementOptic: MemoryOptic<'ctx>>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field_gep_fn: GetFieldGepFn,
) -> Address<'ctx, FieldElementOptic>
where
GetFieldGepFn: FnOnce(&AddresseeOptic::Fields) -> &GepGetter<FieldElementOptic>,
{
let fields = self.addressee_optic.get_fields(ctx.ctx);
let field = get_field_gep_fn(&fields);
field.get(ctx, self.address, field.name)
}
}
// Only used by [`FieldBuilder`]
#[derive(Debug)]
struct FieldInfo<'ctx> {
gep_index: u64,
name: &'ctx str,
llvm_type: BasicTypeEnum<'ctx>,
}
#[derive(Debug)]
pub struct FieldBuilder<'ctx> {
pub ctx: &'ctx Context,
gep_index_counter: u64,
struct_name: &'ctx str,
fields: Vec<FieldInfo<'ctx>>,
}
impl<'ctx> FieldBuilder<'ctx> {
#[must_use]
pub fn new(ctx: &'ctx Context, struct_name: &'ctx str) -> Self {
FieldBuilder { ctx, gep_index_counter: 0, struct_name, fields: Vec::new() }
}
fn next_gep_index(&mut self) -> u64 {
let index = self.gep_index_counter;
self.gep_index_counter += 1;
index
}
pub fn add_field<ElementOptic: MemoryOptic<'ctx>>(
&mut self,
name: &'static str,
element_optic: ElementOptic,
) -> GepGetter<ElementOptic> {
let gep_index = self.next_gep_index();
self.fields.push(FieldInfo {
gep_index,
name,
llvm_type: element_optic.get_llvm_type(self.ctx),
});
GepGetter { gep_index, name, element_optic }
}
}

View File

@ -23,3 +23,4 @@ pub mod codegen;
pub mod symbol_resolver;
pub mod toplevel;
pub mod typecheck;
pub(crate) mod util;

View File

@ -1,5 +1,6 @@
use std::iter::once;
use crate::util::SizeVariant;
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
use indexmap::IndexMap;
use inkwell::{
@ -278,19 +279,10 @@ pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> Built
.collect()
}
/// A helper enum used by [`BuiltinBuilder`]
#[derive(Clone, Copy)]
enum SizeVariant {
Bits32,
Bits64,
}
impl SizeVariant {
fn of_int(self, primitives: &PrimitiveStore) -> Type {
match self {
SizeVariant::Bits32 => primitives.int32,
SizeVariant::Bits64 => primitives.int64,
}
fn get_size_variant_of_int(size_variant: SizeVariant, primitives: &PrimitiveStore) -> Type {
match size_variant {
SizeVariant::Bits32 => primitives.int32,
SizeVariant::Bits64 => primitives.int64,
}
}
@ -1061,7 +1053,7 @@ impl<'a> BuiltinBuilder<'a> {
);
// The size variant of the function determines the size of the returned int.
let int_sized = size_variant.of_int(self.primitives);
let int_sized = get_size_variant_of_int(size_variant, self.primitives);
let ndarray_int_sized =
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
@ -1086,7 +1078,7 @@ impl<'a> BuiltinBuilder<'a> {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
let ret_elem_ty = get_size_variant_of_int(size_variant, &ctx.primitives);
Ok(Some(builtin_fns::call_round(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
}),
)
@ -1127,7 +1119,7 @@ impl<'a> BuiltinBuilder<'a> {
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
// The size variant of the function determines the type of int returned
let int_sized = size_variant.of_int(self.primitives);
let int_sized = get_size_variant_of_int(size_variant, self.primitives);
let ndarray_int_sized =
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
@ -1150,7 +1142,7 @@ impl<'a> BuiltinBuilder<'a> {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
let ret_elem_ty = get_size_variant_of_int(size_variant, &ctx.primitives);
let func = match kind {
Kind::Ceil => builtin_fns::call_ceil,
Kind::Floor => builtin_fns::call_floor,

6
nac3core/src/util.rs Normal file
View File

@ -0,0 +1,6 @@
/// A helper enum used by [`BuiltinBuilder`]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum SizeVariant {
Bits32,
Bits64,
}