Compare commits

..

7 Commits

Author SHA1 Message Date
David Mak e97ceb0da9 core: Fix restoration of loop target in try statement
old_loop_target is only assigned if ctx.loop_target is overwritten,
meaning that if ctx.loop_target is never overwritten, ctx.loop_target
will always be overwritten to None.

We fix this by only restoring from old_loop_target if we previously
assigned to old_loop_target.
2023-09-25 16:36:21 +08:00
David Mak c1a001ec88 standalone: Update demos
- Add `newline` parameter to all output_* functions
- Add `output_str` for printing a string
- Add demo_test.py to test interop
2023-09-25 11:54:33 +08:00
David Mak 37d2e78df5 standalone: Add ability to execute via lli 2023-09-25 11:53:58 +08:00
David Mak 607414c369 core: Fix missing changes for codegen tests
Apparently the changes were dropped after rebasing.
2023-09-25 11:53:58 +08:00
David Mak 8dd545b265 meta: Respect opt flags when performing whole-module optimization 2023-09-25 11:49:03 +08:00
David Mak c86c9988a9 standalone: Update demos
- Add `newline` parameter to all output_* functions
- Add `output_str` for printing a string
- Add demo_test.py to test interop
2023-09-25 11:49:01 +08:00
David Mak b8e9af2e2b core: Fix passing structure arguments to extern functions
All parameters with a structure type in extern functions are marked as
`byref` instead of `byval`, as most ABIs require the first several
arguments to be passed in registers before spilling into the stack.

`byval` breaks this contract by explicitly requiring all arguments to be
 passed in the stack, breaking interop with libraries written in other
 languages.
2023-09-25 11:48:59 +08:00
33 changed files with 287 additions and 378 deletions

View File

@ -450,7 +450,7 @@ fn rpc_codegen_callback_fn<'ctx, 'a>(
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let ret_ty = ctx.get_llvm_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot");
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr");

View File

@ -134,7 +134,9 @@ impl StaticValue for PythonValue {
PrimitiveValue::U32(val) => ctx.ctx.i32_type().const_int(*val as u64, false).into(),
PrimitiveValue::U64(val) => ctx.ctx.i64_type().const_int(*val as u64, false).into(),
PrimitiveValue::F64(val) => ctx.ctx.f64_type().const_float(*val).into(),
PrimitiveValue::Bool(val) => ctx.ctx.i8_type().const_int(*val as u64, false).into(),
PrimitiveValue::Bool(val) => {
ctx.ctx.bool_type().const_int(*val as u64, false).into()
}
});
}
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
@ -806,7 +808,7 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(val as u64, false).into()))
Ok(Some(ctx.ctx.bool_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
let val: f64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));

View File

@ -4,7 +4,6 @@ use crate::{
codegen::{
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
get_llvm_type,
get_llvm_abi_type,
irrt::*,
stmt::gen_raise,
CodeGenContext, CodeGenTask,
@ -59,8 +58,6 @@ pub fn get_subst_key(
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
/// Builds a sequence of `getelementptr` and `load` instructions which stores the value of a
/// struct field into an LLVM value.
pub fn build_gep_and_load(
&mut self,
ptr: PointerValue<'ctx>,
@ -106,7 +103,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
SymbolValue::U32(v) => self.ctx.i32_type().const_int(*v as u64, false).into(),
SymbolValue::U64(v) => self.ctx.i64_type().const_int(*v as u64, false).into(),
SymbolValue::Bool(v) => self.ctx.i8_type().const_int(*v as u64, true).into(),
SymbolValue::Bool(v) => self.ctx.bool_type().const_int(*v as u64, true).into(),
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
SymbolValue::Str(v) => {
let str_ptr =
@ -163,7 +160,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
}
/// See [get_llvm_type].
pub fn get_llvm_type(
&mut self,
generator: &mut dyn CodeGenerator,
@ -181,25 +177,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
)
}
/// See [get_llvm_abi_type].
pub fn get_llvm_abi_type(
&mut self,
generator: &mut dyn CodeGenerator,
ty: Type,
) -> BasicTypeEnum<'ctx> {
get_llvm_abi_type(
self.ctx,
&self.module,
generator,
&mut self.unifier,
self.top_level,
&mut self.type_cache,
&self.primitives,
ty,
)
}
/// Generates an LLVM variable for a [constant value][value] with a given [type][ty].
pub fn gen_const(
&mut self,
generator: &mut dyn CodeGenerator,
@ -209,7 +186,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.primitives.bool));
let ty = self.ctx.i8_type();
let ty = self.ctx.bool_type();
ty.const_int(if *v { 1 } else { 0 }, false).into()
}
Constant::Int(val) => {
@ -261,7 +238,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
}
/// Generates a binary operation `op` between two integral operands `lhs` and `rhs`.
pub fn gen_int_ops(
&mut self,
generator: &mut dyn CodeGenerator,
@ -306,7 +282,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
}
/// Generates a binary operation `op` between two floating-point operands `lhs` and `rhs`.
pub fn gen_float_ops(
&mut self,
op: &Operator,
@ -431,7 +406,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
}
/// Helper function for generating a LLVM variable storing a [String].
pub fn gen_string<S: Into<String>>(
&mut self,
generator: &mut dyn CodeGenerator,
@ -531,7 +505,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
}
/// See [CodeGenerator::gen_constructor].
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -563,7 +536,6 @@ pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
}
}
/// See [CodeGenerator::gen_func_instance].
pub fn gen_func_instance<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, ValueEnum<'ctx>)>,
@ -640,7 +612,6 @@ pub fn gen_func_instance<'ctx, 'a>(
}
}
/// See [CodeGenerator::gen_call].
pub fn gen_call<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -744,19 +715,18 @@ pub fn gen_call<'ctx, 'a, G: CodeGenerator>(
let ret_type = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
None
} else {
Some(ctx.get_llvm_abi_type(generator, fun.0.ret))
Some(ctx.get_llvm_type(generator, fun.0.ret))
};
let has_sret = ret_type.map_or(false, |ret_type| need_sret(ctx.ctx, ret_type));
let mut byrefs = Vec::new();
let mut params = args.iter().enumerate()
.map(|(i, arg)| match ctx.get_llvm_abi_type(generator, arg.ty) {
let mut params =
args.iter().enumerate().map(|(i, arg)| match ctx.get_llvm_type(generator, arg.ty) {
BasicTypeEnum::StructType(ty) if is_extern => {
byrefs.push((i, ty));
ty.ptr_type(AddressSpace::default()).into()
},
x => x
}.into())
.collect_vec();
}.into()).collect_vec();
if has_sret {
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
}
@ -788,30 +758,9 @@ pub fn gen_call<'ctx, 'a, G: CodeGenerator>(
}
fun_val
});
// Convert boolean parameter values into i1
let param_vals = (&fun_val.get_params()).iter().zip(param_vals)
.map(|(p, v)| {
if p.is_int_value() && v.is_int_value() {
let expected_ty = p.into_int_value().get_type();
let param_val = v.into_int_value();
if expected_ty.get_bit_width() == 1 && param_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, param_val)
} else {
param_val
}.into()
} else {
v
}
})
.collect_vec();
Ok(ctx.build_call_or_invoke(fun_val, &param_vals, "call"))
}
/// Generates three LLVM variables representing the start, stop, and step values of a [range] class
/// respectively.
pub fn destructure_range<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
range: PointerValue<'ctx>,
@ -880,7 +829,6 @@ pub fn allocate_list<'ctx, 'a, G: CodeGenerator>(
arr_str_ptr
}
/// Generates LLVM IR for a [list comprehension expression][expr].
pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -1015,14 +963,12 @@ pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator>(
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
generator.gen_assign(ctx, target, val.into())?;
}
for cond in ifs.iter() {
let result = generator
.gen_expr(ctx, cond)?
.unwrap()
.to_basic_value_enum(ctx, generator, cond.custom.unwrap())?
.into_int_value();
let result = generator.bool_to_i1(ctx, result);
let succ = ctx.ctx.append_basic_block(current, "then");
ctx.builder.build_conditional_branch(result, succ, test_bb);
@ -1050,13 +996,6 @@ pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator>(
}
}
/// Generates LLVM IR for a [binary operator expression][expr].
///
/// * `left` - The left-hand side of the binary operator.
/// * `op` - The operator applied on the operands.
/// * `right` - The right-hand side of the binary operator.
/// * `loc` - The location of the full expression.
/// * `is_aug_assign` - Whether the binary operator expression is also an assignment operator.
pub fn gen_binop_expr<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -1153,7 +1092,6 @@ pub fn gen_binop_expr<'ctx, 'a, G: CodeGenerator>(
}
}
/// See [CodeGenerator::gen_expr].
pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -1293,7 +1231,6 @@ pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
.unwrap()
.to_basic_value_enum(ctx, generator, values[0].custom.unwrap())?
.into_int_value();
let left = generator.bool_to_i1(ctx, left);
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = ctx.ctx.append_basic_block(current, "a");
let b_bb = ctx.ctx.append_basic_block(current, "b");
@ -1302,7 +1239,7 @@ pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
let (a, b) = match op {
Boolop::Or => {
ctx.builder.position_at_end(a_bb);
let a = ctx.ctx.i8_type().const_int(1, false);
let a = ctx.ctx.bool_type().const_int(1, false);
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(b_bb);
let b = generator
@ -1310,7 +1247,6 @@ pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
.unwrap()
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
.into_int_value();
let b = generator.bool_to_i8(ctx, b);
ctx.builder.build_unconditional_branch(cont_bb);
(a, b)
}
@ -1321,16 +1257,15 @@ pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
.unwrap()
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
.into_int_value();
let a = generator.bool_to_i8(ctx, a);
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(b_bb);
let b = ctx.ctx.i8_type().const_zero();
let b = ctx.ctx.bool_type().const_int(0, false);
ctx.builder.build_unconditional_branch(cont_bb);
(a, b)
}
};
ctx.builder.position_at_end(cont_bb);
let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "");
let phi = ctx.builder.build_phi(ctx.ctx.bool_type(), "phi");
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value().into()
}
@ -1464,7 +1399,6 @@ pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
.unwrap()
.to_basic_value_enum(ctx, generator, test.custom.unwrap())?
.into_int_value();
let test = generator.bool_to_i1(ctx, test);
let body_ty = body.custom.unwrap();
let is_none = ctx.unifier.get_representative(body_ty) == ctx.primitives.none;
let result = if !is_none {

View File

@ -1,5 +1,5 @@
use crate::{
codegen::{expr::*, stmt::*, bool_to_i1, bool_to_i8, CodeGenContext},
codegen::{expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
@ -7,7 +7,7 @@ use crate::{
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
values::{BasicValueEnum, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
@ -180,24 +180,6 @@ pub trait CodeGenerator {
{
gen_stmt(self, ctx, stmt)
}
/// See [bool_to_i1].
fn bool_to_i1<'ctx, 'a>(
&self,
ctx: &CodeGenContext<'ctx, 'a>,
bool_value: IntValue<'ctx>
) -> IntValue<'ctx> {
bool_to_i1(&ctx.builder, bool_value)
}
/// See [bool_to_i8].
fn bool_to_i8<'ctx, 'a>(
&self,
ctx: &CodeGenContext<'ctx, 'a>,
bool_value: IntValue<'ctx>
) -> IntValue<'ctx> {
bool_to_i8(&ctx.builder, &ctx.ctx, bool_value)
}
}
pub struct DefaultCodeGenerator {

View File

@ -9,7 +9,6 @@ use crate::{
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
AddressSpace,
IntPredicate,
OptimizationLevel,
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
@ -19,7 +18,7 @@ use inkwell::{
passes::PassBuilderOptions,
targets::{CodeModel, RelocMode, Target, TargetMachine, TargetTriple},
types::{AnyType, BasicType, BasicTypeEnum},
values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue},
values::{BasicValueEnum, FunctionValue, PhiValue, PointerValue},
debug_info::{
DebugInfoBuilder, DICompileUnit, DISubprogram, AsDIScope, DIFlagsConstants, DIScope
},
@ -354,10 +353,6 @@ pub struct CodeGenTask {
pub id: usize,
}
/// Retrieves the [LLVM type][BasicTypeEnum] corresponding to the [Type].
///
/// This function is used to obtain the in-memory representation of `ty`, e.g. a `bool` variable
/// would be represented by an `i8`.
fn get_llvm_type<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
@ -469,34 +464,6 @@ fn get_llvm_type<'ctx>(
})
}
/// Retrieves the [LLVM type][BasicTypeEnum] corresponding to the [Type].
///
/// This function is used mainly to obtain the ABI representation of `ty`, e.g. a `bool` is
/// would be represented by an `i1`.
///
/// The difference between the in-memory representation (as returned by [get_llvm_type]) and the
/// ABI representation is that the in-memory representation must be at least byte-sized and must
/// be byte-aligned for the variable to be addressable in memory, whereas there is no such
/// restriction for ABI representations.
fn get_llvm_abi_type<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &mut dyn CodeGenerator,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
primitives: &PrimitiveStore,
ty: Type,
) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency.
return if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into()
} else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, primitives, ty)
}
}
fn need_sret<'ctx>(ctx: &'ctx Context, ty: BasicTypeEnum<'ctx>) -> bool {
fn need_sret_impl<'ctx>(ctx: &'ctx Context, ty: BasicTypeEnum<'ctx>, maybe_large: bool) -> bool {
match ty {
@ -510,7 +477,6 @@ fn need_sret<'ctx>(ctx: &'ctx Context, ty: BasicTypeEnum<'ctx>) -> bool {
need_sret_impl(ctx, ty, true)
}
/// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenContext) -> Result<(), String>> (
context: &'ctx Context,
generator: &mut G,
@ -567,7 +533,7 @@ pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenConte
(primitives.uint32, context.i32_type().into()),
(primitives.uint64, context.i64_type().into()),
(primitives.float, context.f64_type().into()),
(primitives.bool, context.i8_type().into()),
(primitives.bool, context.bool_type().into()),
(primitives.str, {
let name = "str";
match module.get_struct_type(name) {
@ -625,14 +591,14 @@ pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenConte
let ret_type = if unifier.unioned(ret, primitives.none) {
None
} else {
Some(get_llvm_abi_type(context, &module, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, &primitives, ret))
Some(get_llvm_type(context, &module, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, &primitives, ret))
};
let has_sret = ret_type.map_or(false, |ty| need_sret(context, ty));
let mut params = args
.iter()
.map(|arg| {
get_llvm_abi_type(
get_llvm_type(
context,
&module,
generator,
@ -680,35 +646,19 @@ pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenConte
let offset = if has_sret { 1 } else { 0 };
for (n, arg) in args.iter().enumerate() {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(
context,
&module,
generator,
&mut unifier,
top_level_ctx.as_ref(),
&mut type_cache,
&primitives,
arg.ty,
);
let alloca = builder.build_alloca(
local_type,
&format!("{}.addr", &arg.name.to_string()),
get_llvm_type(
context,
&module,
generator,
&mut unifier,
top_level_ctx.as_ref(),
&mut type_cache,
&primitives,
arg.ty,
),
&arg.name.to_string(),
);
// Remap boolean parameters into i8
let param = if local_type.is_int_type() && param.is_int_value() {
let expected_ty = local_type.into_int_type();
let param_val = param.into_int_value();
if expected_ty.get_bit_width() == 8 && param_val.get_type().get_bit_width() == 1 {
bool_to_i8(&builder, &context, param_val)
} else {
param_val
}.into()
} else {
param
};
builder.build_store(alloca, param);
var_assignment.insert(arg.name, (alloca, None, 0));
}
@ -835,15 +785,6 @@ pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenConte
Ok((builder, module, fn_val))
}
/// Generates LLVM IR for a function.
///
/// * `context` - The [LLVM Context][Context] used in generating the function body.
/// * `generator` - The [CodeGenerator] for generating various program constructs.
/// * `registry` - The [WorkerRegistry] responsible for monitoring this function generation task.
/// * `builder` - The [Builder] used for generating LLVM IR.
/// * `module` - The [Module] of which the generated LLVM function will be inserted into.
/// * `task` - The [CodeGenTask] associated with this function generation task.
///
pub fn gen_func<'ctx, G: CodeGenerator>(
context: &'ctx Context,
generator: &mut G,
@ -860,40 +801,3 @@ pub fn gen_func<'ctx, G: CodeGenerator>(
Ok(())
})
}
/// Converts the value of a boolean-like value `bool_value` into an `i1`.
fn bool_to_i1<'ctx>(builder: &Builder<'ctx>, bool_value: IntValue<'ctx>) -> IntValue<'ctx> {
if bool_value.get_type().get_bit_width() != 1 {
builder.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
"tobool"
)
} else {
bool_value
}
}
/// Converts the value of a boolean-like value `bool_value` into an `i8`.
fn bool_to_i8<'ctx>(
builder: &Builder<'ctx>,
ctx: &'ctx Context,
bool_value: IntValue<'ctx>
) -> IntValue<'ctx> {
let value_bits = bool_value.get_type().get_bit_width();
match value_bits {
8 => bool_value,
1 => builder.build_int_z_extend(bool_value, ctx.i8_type(), "frombool"),
_ => bool_to_i8(
builder,
ctx,
builder.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
""
)
),
}
}

View File

@ -21,7 +21,6 @@ use nac3parser::ast::{
};
use std::convert::TryFrom;
/// See [CodeGenerator::gen_var_alloc].
pub fn gen_var<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
ty: BasicTypeEnum<'ctx>,
@ -36,7 +35,6 @@ pub fn gen_var<'ctx, 'a>(
Ok(ptr)
}
/// See [CodeGenerator::gen_store_target].
pub fn gen_store_target<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -146,7 +144,6 @@ pub fn gen_store_target<'ctx, 'a, G: CodeGenerator>(
})
}
/// See [CodeGenerator::gen_assign].
pub fn gen_assign<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -217,21 +214,13 @@ pub fn gen_assign<'ctx, 'a, G: CodeGenerator>(
Ok(())
}
/// Generates a sequence of IR which checks whether `value` does not exceed the upper bound of the
/// range as defined by `stop` and `step`.
/// Generates a sequence of IR which checks whether [value] does not exceed the upper bound of the
/// range as defined by [stop] and [step].
///
/// Note that the generated IR will **not** check whether value is part of the range or whether
/// value exceeds the lower bound of the range (as evident by the missing `start` argument).
///
/// The generated IR is equivalent to the following Rust code:
///
/// ```rust,ignore
/// let sign = step > 0;
/// let (lo, hi) = if sign { (value, stop) } else { (stop, value) };
/// let cmp = lo < hi;
/// ```
///
/// Returns an `i1` [IntValue] representing the result of whether the `value` is in the range.
/// Returns an [IntValue] representing the result of whether the [value] is in the range.
fn gen_in_range_check<'ctx, 'a>(
ctx: &CodeGenContext<'ctx, 'a>,
value: IntValue<'ctx>,
@ -245,7 +234,6 @@ fn gen_in_range_check<'ctx, 'a>(
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp")
}
/// See [CodeGenerator::gen_for].
pub fn gen_for<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -396,7 +384,6 @@ pub fn gen_for<'ctx, 'a, G: CodeGenerator>(
Ok(())
}
/// See [CodeGenerator::gen_while].
pub fn gen_while<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -424,7 +411,7 @@ pub fn gen_while<'ctx, 'a, G: CodeGenerator>(
test.custom.unwrap(),
)?;
if let BasicValueEnum::IntValue(test) = test {
ctx.builder.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb);
ctx.builder.build_conditional_branch(test, body_bb, orelse_bb);
} else {
unreachable!()
};
@ -460,7 +447,6 @@ pub fn gen_while<'ctx, 'a, G: CodeGenerator>(
Ok(())
}
/// See [CodeGenerator::gen_if].
pub fn gen_if<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -484,11 +470,13 @@ pub fn gen_if<'ctx, 'a, G: CodeGenerator>(
};
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let test = generator.gen_expr(ctx, test)?
.unwrap()
.to_basic_value_enum(ctx, generator, test.custom.unwrap())?;
let test = generator.gen_expr(ctx, test)?.unwrap().to_basic_value_enum(
ctx,
generator,
test.custom.unwrap(),
)?;
if let BasicValueEnum::IntValue(test) = test {
ctx.builder.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb);
ctx.builder.build_conditional_branch(test, body_bb, orelse_bb);
} else {
unreachable!()
};
@ -549,8 +537,6 @@ pub fn final_proxy<'ctx, 'a>(
final_paths.push(block);
}
/// Inserts the declaration of the builtin function with the specified `symbol` name, and returns
/// the function.
pub fn get_builtins<'ctx, 'a>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -648,10 +634,6 @@ pub fn exn_constructor<'ctx, 'a>(
Ok(Some(zelf.into()))
}
/// Generates IR for a `raise` statement.
///
/// * `exception` - The exception thrown by the `raise` statement.
/// * `loc` - The location where the exception is raised from.
pub fn gen_raise<'ctx, 'a>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -703,7 +685,6 @@ pub fn gen_raise<'ctx, 'a>(
ctx.builder.build_unreachable();
}
/// Generates IR for a `try` statement.
pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -1025,7 +1006,6 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
}
}
/// See [CodeGenerator::gen_with].
pub fn gen_with<'ctx, 'a, G: CodeGenerator>(
_: &mut G,
_: &mut CodeGenContext<'ctx, 'a>,
@ -1035,13 +1015,11 @@ pub fn gen_with<'ctx, 'a, G: CodeGenerator>(
Err(format!("With statement with custom types is not yet supported (at {})", stmt.location))
}
/// Generates IR for a `return` statement.
pub fn gen_return<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
value: &Option<Box<Expr<Option<Type>>>>,
) -> Result<(), String> {
let func = ctx.builder.get_insert_block().and_then(|bb| bb.get_parent()).unwrap();
let value = value
.as_ref()
.map(|v_expr| {
@ -1060,31 +1038,12 @@ pub fn gen_return<'ctx, 'a, G: CodeGenerator>(
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap());
ctx.builder.build_return(None);
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value.into());
ctx.builder.build_return(value);
}
Ok(())
}
/// See [CodeGenerator::gen_stmt].
pub fn gen_stmt<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -1176,7 +1135,6 @@ pub fn gen_stmt<'ctx, 'a, G: CodeGenerator>(
Ok(())
}
/// Generates IR for a block statement contains `stmts`.
pub fn gen_block<'ctx, 'a, 'b, G: CodeGenerator, I: Iterator<Item = &'b Stmt<Option<Type>>>>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,

View File

@ -24,6 +24,7 @@ use nac3parser::{
use parking_lot::RwLock;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
use inkwell::targets::{InitializationConfig, Target};
struct Resolver {
id_to_type: HashMap<StrRef, Type>,

View File

@ -59,7 +59,6 @@ impl Display for SymbolValue {
}
pub trait StaticValue {
/// Returns a unique identifier for this value.
fn get_unique_identifier(&self) -> u64;
fn get_const_obj<'ctx, 'a>(
@ -68,7 +67,6 @@ pub trait StaticValue {
generator: &mut dyn CodeGenerator,
) -> BasicValueEnum<'ctx>;
/// Converts this value to a LLVM [BasicValueEnum].
fn to_basic_value_enum<'ctx, 'a>(
&self,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -76,14 +74,12 @@ pub trait StaticValue {
expected_ty: Type,
) -> Result<BasicValueEnum<'ctx>, String>;
/// Returns a field within this value.
fn get_field<'ctx, 'a>(
&self,
name: StrRef,
ctx: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>>;
/// Returns a single element of this tuple.
fn get_tuple_element<'ctx>(&self, index: u32) -> Option<ValueEnum<'ctx>>;
}

View File

@ -1050,7 +1050,7 @@ pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let llvm_i8 = ctx.ctx.i8_type().as_basic_type_enum();
let llvm_i1 = ctx.ctx.bool_type().as_basic_type_enum();
let llvm_i32 = ctx.ctx.i32_type().as_basic_type_enum();
let llvm_i64 = ctx.ctx.i64_type().as_basic_type_enum();
let llvm_f64 = ctx.ctx.f64_type().as_basic_type_enum();
@ -1060,7 +1060,7 @@ pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
let mut is_type = |a: Type, b: Type| ctx.unifier.unioned(a, b);
let (fun_name, arg_ty) = if is_type(m_ty, n_ty) && is_type(n_ty, boolean) {
("llvm.umin.i8", llvm_i8)
("llvm.umin.i1", llvm_i1)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int32) {
("llvm.smin.i32", llvm_i32)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int64) {
@ -1112,7 +1112,7 @@ pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let llvm_i8 = ctx.ctx.i8_type().as_basic_type_enum();
let llvm_i1 = ctx.ctx.bool_type().as_basic_type_enum();
let llvm_i32 = ctx.ctx.i32_type().as_basic_type_enum();
let llvm_i64 = ctx.ctx.i64_type().as_basic_type_enum();
let llvm_f64 = ctx.ctx.f64_type().as_basic_type_enum();
@ -1122,7 +1122,7 @@ pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
let mut is_type = |a: Type, b: Type| ctx.unifier.unioned(a, b);
let (fun_name, arg_ty) = if is_type(m_ty, n_ty) && is_type(n_ty, boolean) {
("llvm.umax.i8", llvm_i8)
("llvm.umax.i1", llvm_i1)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int32) {
("llvm.smax.i32", llvm_i32)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int64) {

114
nac3standalone/demo/demo.c Normal file
View File

@ -0,0 +1,114 @@
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define min(a, b) \
({ \
__typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
_a < _b ? _a : _b; \
})
#if __SIZEOF_POINTER__ == 8
#define usize uint64_t
#elif __SIZEOF_POINTER__ == 4
#define usize uint32_t
#elif __SIZEOF_POINTER__ == 2
#define usize uint16_t
#endif
struct cslice {
const void *data;
usize len;
};
void output_int32(const int32_t x, bool newline) {
printf("%d", x);
if (newline) {
fputc('\n', stdout);
}
}
void output_int64(const int64_t x) {
printf("%ld", x);
if (newline) {
fputc('\n', stdout);
}
}
void output_uint32(const uint32_t x) {
printf("%d", x);
if (newline) {
fputc('\n', stdout);
}
}
void output_uint64(const uint64_t x) {
printf("%ld", x);
if (newline) {
fputc('\n', stdout);
}
}
void output_asciiart(const int32_t x) {
const char* chars = " .,-:;i+hHM$*#@ ";
if (x < 0) {
fputc('\n', stdout);
} else {
fputc(chars[x], stdout);
}
if (newline) {
fputc('\n', stdout);
}
}
void output_str(struct cslice *slice, bool newline) {
for (usize i = 0; i < slice->len; ++i) {
fputc(((const char *) slice->data)[i], stdout);
}
if (newline) {
fputc('\n', stdout);
}
}
void output_int32_list(struct cslice *slice) {
fputc('[', stdout);
for (usize i = 0; i < slice->len; ++i) {
if (i == slice->len - 1) {
printf("%d", ((const int32_t *) slice->data)[i]);
} else {
printf("%d, ", ((const int32_t *) slice->data)[i]);
}
}
puts("]");
}
uint32_t __nac3_personality(
__attribute__((unused)) uint32_t state,
__attribute__((unused)) uint32_t exception_object,
__attribute__((unused)) uint32_t context) {
assert(false && "__nac3_personality not implemented");
exit(101);
__builtin_unreachable();
}
uint32_t __nac3_raise(uint32_t state, uint32_t exception_object, uint32_t context) {
printf("__nac3_raise(state: %x, exception_object: %x, context: %x\n", state, exception_object, context);
exit(101);
__builtin_unreachable();
}
extern int32_t run();
int main() {
run();
}

View File

@ -23,30 +23,60 @@ mod cslice {
}
#[no_mangle]
pub extern "C" fn output_int32(x: i32) {
println!("{}", x);
pub extern "C" fn output_int32(x: i32, newline: bool) {
let str = format!("{x}");
if newline {
println!("{str}");
} else {
print!("{str}");
}
}
#[no_mangle]
pub extern "C" fn output_int64(x: i64) {
println!("{}", x);
pub extern "C" fn output_int64(x: i64, newline: bool) {
let str = format!("{x}");
if newline {
println!("{str}");
} else {
print!("{str}");
}
}
#[no_mangle]
pub extern "C" fn output_uint32(x: u32) {
println!("{}", x);
pub extern "C" fn output_uint32(x: u32, newline: bool) {
let str = format!("{x}");
if newline {
println!("{str}");
} else {
print!("{str}");
}
}
#[no_mangle]
pub extern "C" fn output_uint64(x: u64) {
println!("{}", x);
pub extern "C" fn output_uint64(x: u64, newline: bool) {
let str = format!("{x}");
if newline {
println!("{str}");
} else {
print!("{str}");
}
}
#[no_mangle]
pub extern "C" fn output_float64(x: f64) {
pub extern "C" fn output_float64(x: f64, newline: bool) {
// debug output to preserve the digits after the decimal points
// to match python `print` function
println!("{:?}", x);
let str = format!("{:?}", x);
if newline {
println!("{str}");
} else {
print!("{str}");
}
}
#[no_mangle]
@ -60,15 +90,18 @@ pub extern "C" fn output_asciiart(x: i32) {
}
#[no_mangle]
pub extern "C" fn output_str(x: &cslice::CSlice<u8>) {
pub extern "C" fn output_str(x: &cslice::CSlice<u8>, newline: bool) {
for e in x.as_ref().iter() {
print!("{}", char::from(*e));
}
println!();
if newline {
println!("");
}
}
#[no_mangle]
pub extern "C" fn output_int32_list(x: &cslice::CSlice<i32>) {
pub extern "C" fn output_int32_list(x: &cslice::CSlice<i32>, newline: bool) {
print!("[");
let mut it = x.as_ref().iter().peekable();
while let Some(e) = it.next() {
@ -78,7 +111,11 @@ pub extern "C" fn output_int32_list(x: &cslice::CSlice<i32>) {
print!("{}, ", e);
}
}
println!("]");
print!("]");
if newline {
println!("");
}
}
#[no_mangle]
@ -89,10 +126,10 @@ pub extern "C" fn __nac3_personality(_state: u32, _exception_object: u32, _conte
#[no_mangle]
pub extern "C" fn __nac3_raise(state: u32, exception_object: u32, context: u32) -> u32 {
writeln!(io::stderr(),
"__nac3_raise(state: {:#010x}, exception_object: {:#010x}, context: {:#010x})",
state,
exception_object,
context
"__nac3_raise(state: {:#010x}, _exception_object: {:#010x}, _context: {:#010x})",
state,
exception_object,
context
).unwrap();
exit(101);
}

View File

@ -48,6 +48,12 @@ def patch(module):
else:
sys.stdout.write(" .,-:;i+hHM$*#@ "[x])
def output(x, newline: bool=True):
if newline:
print(x)
else:
print(x, end="")
def extern(fun):
name = fun.__name__
if name == "output_asciiart":
@ -61,7 +67,7 @@ def patch(module):
"output_float64",
"output_str",
}:
return print
return output
else:
raise NotImplementedError

View File

@ -0,0 +1,21 @@
#!/usr/bin/env bash
set -e
if [ -z "$1" ]; then
echo "No argument supplied"
exit 1
fi
if [ -e ../../target/release/nac3standalone ]; then
nac3standalone=../../target/release/nac3standalone
else
# used by Nix builds
nac3standalone=../../target/x86_64-unknown-linux-gnu/release/nac3standalone
fi
rm -f *.o *.bc
$nac3standalone --emit-llvm "$@"
gcc -c -std=c11 -Wall -Wextra -pedantic-errors -Werror=pedantic -O3 -o demo.o demo.c
clang -S -Wall -Wextra -O3 -emit-llvm -o irrt.bc ../../nac3core/src/codegen/irrt/irrt.c
lli --extra-object demo.o --extra-module irrt.bc main.bc

View File

@ -1,30 +0,0 @@
# Different cases for using boolean variables in boolean contexts.
# Tests whether all boolean variables (expressed as i8s) are lowered into i1s before used in branching instruction (`br`)
def bfunc(b: bool) -> bool:
return not b
def run() -> int32:
b1 = True
b2 = False
if b1:
pass
if not b2:
pass
while b2:
pass
l = [i for i in range(10) if b2]
b_and = True and False
b_or = True or False
b_and = b1 and b2
b_or = b1 or b2
bfunc(b1)
return 0

View File

@ -1,9 +1,9 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
@extern
def output_int64(x: int64):
def output_int64(x: int64, newline: bool=True):
...

View File

@ -1,5 +1,5 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
def f1(a: int32 = 4):

View File

@ -1,21 +1,21 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
@extern
def output_int64(x: int64):
def output_int64(x: int64, newline: bool=True):
...
@extern
def output_uint32(x: uint32):
def output_uint32(x: uint32, newline: bool=True):
...
@extern
def output_uint64(x: uint64):
def output_uint64(x: uint64, newline: bool=True):
...
@extern
def output_int32_list(x: list[int32]):
def output_int32_list(x: list[int32], newline: bool=True):
...
@extern
@ -23,7 +23,7 @@ def output_asciiart(x: int32):
...
@extern
def output_str(x: str):
def output_str(x: str, newline: bool=True):
...
def test_output_int32():
@ -47,7 +47,8 @@ def test_output_int32_list():
output_int32_list([0, 1, 3, 5, 10])
def test_output_str_family():
output_str("hello world")
output_str("hello ", newline=False)
output_str("world")
def run() -> int32:
test_output_int32()

View File

@ -1,7 +1,7 @@
from __future__ import annotations
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
class A:

View File

@ -1,5 +1,5 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...

View File

@ -1,17 +0,0 @@
@extern
def output_int32(x: int32):
...
@extern
def output_int32_list(x: list[int32]):
...
def run() -> int32:
bl = [True, False]
bl1 = bl[:]
bl1[1:] = [True]
output_int32_list([int32(b) for b in bl1])
output_int32_list([int32(b) for b in bl1])
return 0

View File

@ -1,9 +1,9 @@
@extern
def output_int32_list(x: list[int32]):
def output_int32_list(x: list[int32], newline: bool=True):
...
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
class A:

View File

@ -1,7 +1,7 @@
# For Loop using an increasing range() expression as its iterable
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
def run() -> int32:

View File

@ -1,7 +1,7 @@
# For Loop using a decreasing range() expression as its iterable
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
def run() -> int32:

View File

@ -1,7 +1,7 @@
# For Loop using a list as its iterable
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
def run() -> int32:

View File

@ -1,7 +1,7 @@
# For Loop using an range() expression as its iterable, additionally reassigning the target on each iteration
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
def run() -> int32:

View File

@ -2,15 +2,15 @@
# Taken from https://book.pythontips.com/en/latest/for_-_else.html
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
@extern
def output_float64(x: float):
def output_float64(x: float, newline: bool=True):
...
@extern
def output_str(x: str):
def output_str(x: str, newline: bool=True):
...
def run() -> int32:
@ -18,16 +18,16 @@ def run() -> int32:
for x in range(2, n):
try:
if n % x == 0:
output_int32(n)
output_str(" equals ")
output_int32(x)
output_str(" * ")
output_int32(n, newline=False)
output_str(" equals ", newline=False)
output_int32(x, newline=False)
output_str(" * ", newline=False)
output_float64(n / x)
except: # Assume this is intended to catch x == 0
break
else:
# loop fell through without finding a factor
output_int32(n)
output_int32(n, newline=False)
output_str(" is a prime number")
return 0

View File

@ -1,17 +1,17 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
@extern
def output_uint32(x: uint32):
def output_uint32(x: uint32, newline: bool=True):
...
@extern
def output_int64(x: int64):
def output_int64(x: int64, newline: bool=True):
...
@extern
def output_uint64(x: uint64):
def output_uint64(x: uint64, newline: bool=True):
...
@extern
def output_float64(x: float):
def output_float64(x: float, newline: bool=True):
...

View File

@ -1,19 +1,19 @@
from __future__ import annotations
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
@extern
def output_uint32(x: uint32):
def output_uint32(x: uint32, newline: bool=True):
...
@extern
def output_int64(x: int64):
def output_int64(x: int64, newline: bool=True):
...
@extern
def output_uint64(x: uint64):
def output_uint64(x: uint64, newline: bool=True):
...
@extern
def output_float64(x: float):
def output_float64(x: float, newline: bool=True):
...
def run() -> int32:

View File

@ -1,5 +1,5 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
class A:

View File

@ -1,5 +1,5 @@
@extern
def output_float64(f: float):
def output_float64(f: float, newline: bool=True):
...

View File

@ -1,7 +1,7 @@
from __future__ import annotations
@extern
def output_int32(a: int32):
def output_int32(a: int32, newline: bool=True):
...
class A:

View File

@ -1,9 +1,9 @@
@extern
def output_int32_list(x: list[int32]):
def output_int32_list(x: list[int32], newline: bool=True):
...
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
class A:

View File

@ -1,5 +1,5 @@
@extern
def output_int32(x: int32):
def output_int32(x: int32, newline: bool=True):
...
class A: