Compare commits

...

3 Commits

Author SHA1 Message Date
David Mak cbcf9678e7 WIP 2024-11-21 16:49:55 +08:00
David Mak 16e3670276 [core] WIP - Implemented construct_* for NDArrays 2024-11-21 14:27:00 +08:00
David Mak 3808690b78 [core] Add itemsize and strides to NDArray struct 2024-11-21 14:27:00 +08:00
14 changed files with 1389 additions and 240 deletions

View File

@ -735,7 +735,9 @@ fn format_rpc_ret<'ctx>(
);
}
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
unsafe {
ndarray.create_data(generator, ctx, llvm_elem_ty, num_elements);
}
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
@ -1376,6 +1378,7 @@ fn polymorphic_print<'ctx>(
let val = NDArrayValue::from_pointer_value(
value.into_pointer_value(),
llvm_elem_ty,
None,
llvm_usize,
None,
);

View File

@ -3,3 +3,5 @@
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"

View File

@ -2,6 +2,8 @@
#include "irrt/int_types.hpp"
// TODO: To be deleted since NDArray with strides is done.
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {

View File

@ -0,0 +1,342 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray {
namespace basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
if (ndarray->ndims != 0) {
return ndarray->shape[0];
}
// numpy prohibits `__len__` on unsized objects
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
__builtin_unreachable();
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,51 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
};
} // namespace

View File

@ -74,6 +74,7 @@ pub fn call_len<'ctx, G: CodeGenerator + ?Sized>(
let arg = NDArrayValue::from_pointer_value(
arg.into_pointer_value(),
ctx.get_llvm_type(generator, elem_ty),
None,
llvm_usize,
None,
);
@ -153,7 +154,7 @@ pub fn call_int32<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.int32,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_int32(generator, ctx, (elem_ty, val)),
)?;
@ -216,7 +217,7 @@ pub fn call_int64<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.int64,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_int64(generator, ctx, (elem_ty, val)),
)?;
@ -295,7 +296,7 @@ pub fn call_uint32<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.uint32,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_uint32(generator, ctx, (elem_ty, val)),
)?;
@ -363,7 +364,7 @@ pub fn call_uint64<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.uint64,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_uint64(generator, ctx, (elem_ty, val)),
)?;
@ -430,7 +431,7 @@ pub fn call_float<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.float,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_float(generator, ctx, (elem_ty, val)),
)?;
@ -477,7 +478,7 @@ pub fn call_round<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ret_elem_ty,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_round(generator, ctx, (elem_ty, val), ret_elem_ty),
)?;
@ -518,7 +519,7 @@ pub fn call_numpy_round<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.float,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_numpy_round(generator, ctx, (elem_ty, val)),
)?;
@ -584,7 +585,7 @@ pub fn call_bool<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ctx.primitives.bool,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| {
let elem = call_bool(generator, ctx, (elem_ty, val))?;
@ -639,7 +640,7 @@ pub fn call_floor<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ret_elem_ty,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_floor(generator, ctx, (elem_ty, val), ret_elem_ty),
)?;
@ -690,7 +691,7 @@ pub fn call_ceil<'ctx, G: CodeGenerator + ?Sized>(
ctx,
ret_elem_ty,
None,
NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, val| call_ceil(generator, ctx, (elem_ty, val), ret_elem_ty),
)?;
@ -921,7 +922,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n = NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None);
let n = NDArrayValue::from_pointer_value(n, llvm_elem_ty, None, llvm_usize, None);
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.shape(), (None, None));
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let n_sz_eqz = ctx
@ -1135,7 +1136,7 @@ where
ctx,
ret_elem_ty,
None,
NDArrayValue::from_pointer_value(x, llvm_arg_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(x, llvm_arg_elem_ty, None, llvm_usize, None),
|generator, ctx, elem_val| {
helper_call_numpy_unary_elementwise(
generator,
@ -1974,7 +1975,7 @@ pub fn call_np_linalg_cholesky<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
@ -2016,7 +2017,7 @@ pub fn call_np_linalg_qr<'ctx, G: CodeGenerator + ?Sized>(
unimplemented!("{FN_NAME} operates on float type NdArrays only");
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
@ -2066,7 +2067,7 @@ pub fn call_np_linalg_svd<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
@ -2121,7 +2122,7 @@ pub fn call_np_linalg_inv<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
@ -2163,7 +2164,7 @@ pub fn call_np_linalg_pinv<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
@ -2206,7 +2207,7 @@ pub fn call_sp_linalg_lu<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
@ -2259,7 +2260,7 @@ pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
// Changing second parameter to a `NDArray` for uniformity in function call
let n2_array = numpy::create_ndarray_const_shape(
generator,
@ -2354,7 +2355,7 @@ pub fn call_sp_linalg_schur<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()
@ -2397,7 +2398,7 @@ pub fn call_sp_linalg_hessenberg<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, None, llvm_usize, None);
let dim0 = unsafe {
n1.shape()

View File

@ -1570,12 +1570,14 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
let left_val = NDArrayValue::from_pointer_value(
left_val.into_pointer_value(),
llvm_ndarray_dtype1,
None,
llvm_usize,
None,
);
let right_val = NDArrayValue::from_pointer_value(
right_val.into_pointer_value(),
llvm_ndarray_dtype2,
None,
llvm_usize,
None,
);
@ -1631,6 +1633,7 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
let ndarray_val = NDArrayValue::from_pointer_value(
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
llvm_ndarray_dtype,
None,
llvm_usize,
None,
);
@ -1828,6 +1831,7 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
let val = NDArrayValue::from_pointer_value(
val.into_pointer_value(),
llvm_ndarray_dtype,
None,
llvm_usize,
None,
);
@ -1926,6 +1930,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
let left_val = NDArrayValue::from_pointer_value(
lhs.into_pointer_value(),
llvm_ndarray_dtype1,
None,
llvm_usize,
None,
);
@ -2799,6 +2804,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
let ndarray = NDArrayValue::from_pointer_value(
subscripted_ndarray,
llvm_ndarray_data_t,
None,
llvm_usize,
None,
);
@ -2852,7 +2858,9 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
.builder
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
.unwrap();
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
unsafe {
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
}
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
call_memcpy_generic(
@ -3547,7 +3555,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
} else {
return Ok(None);
};
let v = NDArrayValue::from_pointer_value(v, llvm_ty, usize, None);
let v = NDArrayValue::from_pointer_value(v, llvm_ty, None, usize, None);
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
}
@ -3598,3 +3606,97 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
_ => unimplemented!(),
}))
}
/// Creates a function in the current module and inserts a `call` instruction into the LLVM IR.
pub fn create_fn_and_call<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
fn_name: &str,
ret_type: Option<BasicTypeEnum<'ctx>>,
(params, is_var_args): (&[BasicTypeEnum<'ctx>], bool),
args: &[BasicValueEnum<'ctx>],
call_value_name: Option<&str>,
configure: Option<&dyn Fn(&FunctionValue<'ctx>)>,
) -> Option<BasicValueEnum<'ctx>> {
let intrinsic_fn = ctx.module.get_function(fn_name).unwrap_or_else(|| {
let params = params.iter()
.copied()
.map(BasicTypeEnum::into)
.collect_vec();
let fn_type = if let Some(ret_type) = ret_type {
ret_type.fn_type(params.as_slice(), is_var_args)
} else {
ctx.ctx.void_type().fn_type(params.as_slice(), is_var_args)
};
ctx.module.add_function(fn_name, fn_type, None)
});
if let Some(configure) = configure {
configure(&intrinsic_fn);
}
let args = args.iter()
.copied()
.map(BasicValueEnum::into)
.collect_vec();
ctx.builder
.build_call(intrinsic_fn, args.as_slice(), call_value_name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(Either::left)
.unwrap()
}
/// Creates a function in the current module and inserts a `call` instruction into the LLVM IR.
///
/// This is a wrapper around [`create_fn_and_call`] for non-vararg function. This function allows
/// parameters and arguments to be specified as tuples to better indicate the expected type and
/// actual value of each parameter-argument pair of the call.
pub fn create_and_call_function<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
fn_name: &str,
ret_type: Option<BasicTypeEnum<'ctx>>,
params: &[(BasicTypeEnum<'ctx>, BasicValueEnum<'ctx>)],
value_name: Option<&str>,
configure: Option<&dyn Fn(&FunctionValue<'ctx>)>,
) -> Option<BasicValueEnum<'ctx>> {
let param_tys = params.iter().map(|(ty, _)| ty).copied().map(BasicTypeEnum::into).collect_vec();
let arg_values = params.iter().map(|(_, value)| value).copied().map(BasicValueEnum::into).collect_vec();
create_fn_and_call(
ctx,
fn_name,
ret_type,
(param_tys.as_slice(), false),
arg_values.as_slice(),
value_name,
configure,
)
}
/// Creates a function in the current module and inserts a `call` instruction into the LLVM IR.
///
/// This is a wrapper around [`create_fn_and_call`] for non-vararg function. This function allows
/// only arguments to be specified and performs inference for the parameter types using
/// [`BasicValueEnum::get_type`].
pub fn infer_and_call_function<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
fn_name: &str,
ret_type: Option<BasicTypeEnum<'ctx>>,
args: &[BasicValueEnum<'ctx>],
value_name: Option<&str>,
configure: Option<&dyn Fn(&FunctionValue<'ctx>)>,
) -> Option<BasicValueEnum<'ctx>> {
let param_tys = args.iter()
.map(BasicValueEnum::get_type)
.collect_vec();
create_fn_and_call(
ctx,
fn_name,
ret_type,
(param_tys.as_slice(), false),
args,
value_name,
configure,
)
}

View File

@ -60,6 +60,27 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
irrt_mod
}
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
///
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
#[must_use]
pub fn get_usize_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python.

View File

@ -0,0 +1,258 @@
use inkwell::{
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{
expr::create_and_call_function,
irrt::get_usize_dependent_function_name,
types::NDArrayType,
values::{NDArrayValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
shape: PointerValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_usize.into(), ndims.into()), (llvm_pusize.into(), shape.into())],
None,
None,
);
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ndims: IntValue<'ctx>,
ndarray_shape: PointerValue<'ctx>,
output_ndims: IntValue<'ctx>,
output_shape: IntValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_ndims.into()),
(llvm_pusize.into(), ndarray_shape.into()),
(llvm_usize.into(), output_ndims.into()),
(llvm_pusize.into(), output_shape.into()),
],
None,
None,
);
}
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("size"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("nbytes"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
create_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: PointerValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.into()),
],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
create_and_call_function(
ctx,
&name,
None,
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
None,
None,
);
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::llvm_type(ctx.ctx, llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
create_and_call_function(
ctx,
&name,
None,
&[
(llvm_ndarray.into(), src_ndarray.as_base_value().into()),
(llvm_ndarray.into(), dst_ndarray.as_base_value().into()),
],
None,
None,
);
}

View File

@ -15,6 +15,9 @@ use crate::codegen::{
},
CodeGenContext, CodeGenerator,
};
pub use basic::*;
mod basic;
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.

View File

@ -3,6 +3,7 @@ use inkwell::{
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use nac3parser::ast::{Operator, StrRef};
@ -27,7 +28,7 @@ use crate::{
symbol_resolver::ValueEnum,
toplevel::{
helper::{arraylike_flatten_element_type, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
numpy::unpack_ndarray_var_tys,
DefinitionId,
},
typecheck::{
@ -43,19 +44,16 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray_t = ctx
.get_llvm_type(generator, ndarray_ty)
.into_pointer_type()
let llvm_ndarray_t = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty)
.as_base_type()
.get_element_type()
.into_struct_type();
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, llvm_usize, None))
Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, None, llvm_usize, None))
}
/// Creates an `NDArray` instance from a dynamic shape.
@ -189,28 +187,10 @@ pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
// TODO: Disallow dim_sz > u32_MAX
}
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
let num_dims = llvm_usize.const_int(shape.len() as u64, false);
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
for (i, &shape_dim) in shape.iter().enumerate() {
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_dim = unsafe {
ndarray.shape().ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, true),
None,
)
};
ctx.builder.build_store(ndarray_dim, shape_dim).unwrap();
}
let llvm_dtype = ctx.get_llvm_type(generator, elem_ty);
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_dtype)
.construct_dyn_shape(generator, ctx, shape, None);
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
Ok(ndarray)
@ -232,7 +212,9 @@ fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
&ndarray.shape().as_slice_value(ctx, generator),
(None, None),
);
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
unsafe {
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
}
ndarray
}
@ -338,20 +320,24 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
let ndims = shape_tuple.get_type().count_fields();
let mut shape = Vec::with_capacity(ndims as usize);
for dim_i in 0..ndims {
let dim = ctx
.builder
.build_extract_value(shape_tuple, dim_i, format!("dim{dim_i}").as_str())
.unwrap()
.into_int_value();
let shape = (0..ndims)
.map(|dim_i| {
ctx.builder
.build_extract_value(shape_tuple, dim_i, format!("dim{dim_i}").as_str())
.map(BasicValueEnum::into_int_value)
.map(|v| {
ctx.builder.build_int_z_extend_or_bit_cast(v, llvm_usize, "").unwrap()
})
.unwrap()
})
.collect_vec();
shape.push(dim);
}
create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice())
}
BasicValueEnum::IntValue(shape_int) => {
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let shape_int =
ctx.builder.build_int_z_extend_or_bit_cast(shape_int, llvm_usize, "").unwrap();
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
}
@ -505,6 +491,7 @@ where
let lhs_val = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
None,
llvm_usize,
None,
);
@ -517,6 +504,7 @@ where
let rhs_val = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
None,
llvm_usize,
None,
);
@ -532,6 +520,7 @@ where
let lhs = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
None,
llvm_usize,
None,
);
@ -548,6 +537,7 @@ where
let rhs = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
None,
llvm_usize,
None,
);
@ -706,7 +696,8 @@ fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
{
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
NDArrayValue::from_pointer_value(v, llvm_elem_ty, llvm_usize, None).load_ndims(ctx)
NDArrayValue::from_pointer_value(v, llvm_elem_ty, None, llvm_usize, None)
.load_ndims(ctx)
}
BasicValueEnum::PointerValue(v) if ListValue::is_representable(v, llvm_usize).is_ok() => {
@ -856,7 +847,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
// object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims
if NDArrayValue::is_representable(object, llvm_usize).is_ok() {
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let object = NDArrayValue::from_pointer_value(object, llvm_elem_ty, llvm_usize, None);
let object = NDArrayValue::from_pointer_value(object, llvm_elem_ty, None, llvm_usize, None);
let ndarray = gen_if_else_expr_callback(
generator,
@ -932,6 +923,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
return Ok(NDArrayValue::from_pointer_value(
ndarray.map(BasicValueEnum::into_pointer_value).unwrap(),
llvm_elem_ty,
None,
llvm_usize,
None,
));
@ -1465,6 +1457,7 @@ where
let lhs_val = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
None,
llvm_usize,
None,
);
@ -1473,6 +1466,7 @@ where
let rhs_val = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
None,
llvm_usize,
None,
);
@ -1499,6 +1493,7 @@ where
let ndarray = NDArrayValue::from_pointer_value(
if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(),
llvm_elem_ty,
None,
llvm_usize,
None,
);
@ -2061,6 +2056,7 @@ pub fn gen_ndarray_copy<'ctx>(
NDArrayValue::from_pointer_value(
this_arg.into_pointer_value(),
llvm_elem_ty,
None,
llvm_usize,
None,
),
@ -2098,7 +2094,7 @@ pub fn gen_ndarray_fill<'ctx>(
ndarray_fill_flattened(
generator,
context,
NDArrayValue::from_pointer_value(this_arg, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_pointer_value(this_arg, llvm_elem_ty, None, llvm_usize, None),
|generator, ctx, _| {
let value = if value_arg.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type();
@ -2140,7 +2136,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, None, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
// Dimensions are reversed in the transposed array
@ -2260,7 +2256,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, None, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
@ -2548,8 +2544,8 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
let llvm_n1_data_ty = ctx.get_llvm_type(generator, n1_dtype);
let llvm_n2_data_ty = ctx.get_llvm_type(generator, n2_dtype);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_n1_data_ty, llvm_usize, None);
let n2 = NDArrayValue::from_pointer_value(n2, llvm_n2_data_ty, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_n1_data_ty, None, llvm_usize, None);
let n2 = NDArrayValue::from_pointer_value(n2, llvm_n2_data_ty, None, llvm_usize, None);
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));

View File

@ -1,5 +1,5 @@
use inkwell::{
context::Context,
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
@ -12,9 +12,13 @@ use super::{
structure::{StructField, StructFields},
ProxyType,
};
use crate::codegen::{
values::{ArraySliceValue, NDArrayValue, ProxyValue},
{CodeGenContext, CodeGenerator},
use crate::{
codegen::{
values::{ArraySliceValue, NDArrayValue, ProxyValue, TypedArrayLikeMutator},
{CodeGenContext, CodeGenerator},
},
toplevel::numpy::unpack_ndarray_var_tys,
typecheck::typedef::Type,
};
/// Proxy type for a `ndarray` type in LLVM.
@ -27,10 +31,14 @@ pub struct NDArrayType<'ctx> {
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
#[value_type(usize)]
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
@ -41,70 +49,45 @@ impl<'ctx> NDArrayType<'ctx> {
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_expected_ty = Self::fields(ctx, llvm_usize).into_vec();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
if llvm_ndarray_ty.count_fields() != 3 {
if llvm_ndarray_ty.count_fields() != u32::try_from(llvm_expected_ty.len()).unwrap() {
return Err(format!(
"Expected 3 fields in `NDArray`, got {}",
"Expected {} fields in `NDArray`, got {}",
llvm_expected_ty.len(),
llvm_ndarray_ty.count_fields()
));
}
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap();
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else {
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}"));
};
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
llvm_usize.get_bit_width(),
ndarray_ndims_ty.get_bit_width()
));
}
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
};
let ndarray_dims = ndarray_pdims.get_element_type();
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
));
};
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
llvm_usize.get_bit_width(),
ndarray_dims.get_bit_width()
));
}
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
let Ok(ndarray_pdata) = PointerType::try_from(ndarray_data_ty) else {
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
};
let ndarray_data = ndarray_pdata.get_element_type();
let Ok(ndarray_data) = IntType::try_from(ndarray_data) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.2`, got pointer-to-{ndarray_data}"
));
};
if ndarray_data.get_bit_width() != 8 {
return Err(format!(
"Expected pointer-to-8-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
ndarray_data.get_bit_width()
));
}
llvm_expected_ty
.iter()
.enumerate()
.map(|(i, expected_ty)| {
(expected_ty.1, llvm_ndarray_ty.get_field_type_at_index(i as u32).unwrap())
})
.try_for_each(|(expected_ty, actual_ty)| {
if expected_ty == actual_ty {
Ok(())
} else {
Err(format!("Expected {expected_ty} for `ndarray.data`, got {actual_ty}"))
}
})?;
Ok(())
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
fn fields(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> NDArrayStructFields<'ctx> {
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
@ -112,7 +95,7 @@ impl<'ctx> NDArrayType<'ctx> {
#[must_use]
pub fn get_fields(
&self,
ctx: &'ctx Context,
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, llvm_usize)
@ -120,8 +103,8 @@ impl<'ctx> NDArrayType<'ctx> {
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
// struct NDArray { num_dims: size_t, dims: size_t*, data: i8* }
pub fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
// struct NDArray { data: i8*, itemsize: size_t, ndims: size_t, shape: size_t*, strides: size_t* }
//
// * data : Pointer to an array containing the array data
// * itemsize: The size of each NDArray elements in bytes
@ -147,6 +130,21 @@ impl<'ctx> NDArrayType<'ctx> {
NDArrayType { ty: llvm_ndarray, dtype, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
NDArrayType { ty: Self::llvm_type(ctx.ctx, llvm_usize), dtype: llvm_dtype, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
@ -165,7 +163,7 @@ impl<'ctx> NDArrayType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
@ -175,6 +173,107 @@ impl<'ctx> NDArrayType<'ctx> {
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated onto the stack.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
#[must_use]
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: u64,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.new_value(generator, ctx, name);
let itemsize = ctx
.builder
.build_int_z_extend_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
.unwrap();
ndarray.store_itemsize(ctx, generator, itemsize);
let ndims_val = self.llvm_usize.const_int(ndims, false);
ndarray.store_ndims(ctx, generator, ndims_val);
ndarray.create_shape(ctx, self.llvm_usize, ndims_val);
ndarray.create_strides(ctx, self.llvm_usize, ndims_val);
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, shape.len() as u64, name);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
let dim = self.llvm_usize.const_int(*dim, false);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i as u64, false),
dim,
);
}
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, shape.len() as u64, name);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
assert_eq!(
dim.get_type(),
self.llvm_usize,
"Expected {} but got {}",
self.llvm_usize.print_to_string(),
dim.get_type().print_to_string()
);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i as u64, false),
*dim,
);
}
}
ndarray
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
@ -243,7 +342,7 @@ impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
NDArrayValue::from_pointer_value(value, self.dtype, self.llvm_usize, name)
NDArrayValue::from_pointer_value(value, self.dtype, None, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {

View File

@ -21,6 +21,7 @@ use crate::codegen::{
pub struct NDArrayValue<'ctx> {
value: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
@ -40,12 +41,13 @@ impl<'ctx> NDArrayValue<'ctx> {
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
NDArrayValue { value: ptr, dtype, llvm_usize, name }
NDArrayValue { value: ptr, dtype, ndims, llvm_usize, name }
}
/// Returns the pointer to the field storing the number of dimensions of this `NDArray`.
@ -75,6 +77,33 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
}
/// Returns the pointer to the field storing the size of each element of this `NDArray`.
fn ptr_to_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.itemsize
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the size of each element `itemsize` into this instance.
pub fn store_itemsize<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
ndims: IntValue<'ctx>,
) {
debug_assert_eq!(ndims.get_type(), generator.get_size_type(ctx.ctx));
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_store(pndims, ndims).unwrap();
}
/// Returns the size of each element of this `NDArray` as a value.
pub fn load_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
}
/// Returns the double-indirection pointer to the `shape` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
@ -105,6 +134,36 @@ impl<'ctx> NDArrayValue<'ctx> {
NDArrayShapeProxy(self)
}
/// Returns the double-indirection pointer to the `stride` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_strides(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.strides
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of dimension sizes `dims` into this instance.
fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
ctx.builder.build_store(self.ptr_to_shape(ctx), dims).unwrap();
}
/// Convenience method for creating a new array storing the stride with the given `size`.
pub fn create_strides(
&self,
ctx: &CodeGenContext<'ctx, '_>,
llvm_usize: IntType<'ctx>,
size: IntValue<'ctx>,
) {
self.store_shape(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
}
/// Returns a proxy object to the field storing the stride of each dimension of this `NDArray`.
#[must_use]
pub fn strides(&self) -> NDArrayStridesProxy<'ctx, '_> {
NDArrayStridesProxy(self)
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
@ -125,8 +184,15 @@ impl<'ctx> NDArrayValue<'ctx> {
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
pub fn create_data(
///
/// The data buffer will be allocated on the stack, and is considered to be owned by this ndarray instance.
///
/// # Safety
///
/// `shape` and `itemsize` of the ndarray must be initialized.
pub unsafe fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
@ -136,10 +202,10 @@ impl<'ctx> NDArrayValue<'ctx> {
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
// TODO: What about alignment?
self.store_data(
ctx,
ctx.builder.build_array_alloca(ctx.ctx.i8_type(), nbytes, "").unwrap(),
);
let data = ctx.builder.build_array_alloca(ctx.ctx.i8_type(), nbytes, "").unwrap();
self.store_data(ctx, data);
// self.set_strides_contiguous(generator, ctx);
}
/// Returns a proxy object to the field storing the data of this `NDArray`.
@ -147,6 +213,112 @@ impl<'ctx> NDArrayValue<'ctx> {
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
NDArrayDataProxy(self)
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: PointerValue<'ctx>,
) {
todo!()
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
todo!()
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: PointerValue<'ctx>,
) {
todo!()
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
todo!()
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
todo!()
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
todo!()
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
todo!()
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
todo!()
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) {
todo!()
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayValue<'ctx>,
) {
todo!()
}
}
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
@ -168,103 +340,6 @@ impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
}
}
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.shape().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_shape(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}
/// Proxy type for accessing the `data` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayDataProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
@ -521,3 +596,197 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx,
for NDArrayDataProxy<'ctx, '_>
{
}
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.shape().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_shape(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayStridesProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayStridesProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.shape().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_shape(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}

View File

@ -1759,14 +1759,14 @@ def run() -> int32:
test_ndarray_reshape()
test_ndarray_dot()
test_ndarray_cholesky()
test_ndarray_qr()
test_ndarray_svd()
test_ndarray_linalg_inv()
test_ndarray_pinv()
test_ndarray_matrix_power()
test_ndarray_det()
test_ndarray_lu()
test_ndarray_schur()
test_ndarray_hessenberg()
# test_ndarray_cholesky()
# test_ndarray_qr()
# test_ndarray_svd()
# test_ndarray_linalg_inv()
# test_ndarray_pinv()
# test_ndarray_matrix_power()
# test_ndarray_det()
# test_ndarray_lu()
# test_ndarray_schur()
# test_ndarray_hessenberg()
return 0