[core] codegen/ndarray: Reimplement np_array()
Based on 8f0084ac
: core/ndstrides: implement np_array()
It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.
However, currently only `np_array(<input>, copy=False)` and `np_array
(<input>, copy=True)` are supported. In NumPy, copy could be false,
true, or None. Right now, NAC3's `np_array(<input>, copy=False)` behaves
like NumPy's `np.array(<input>, copy=None)`.
This commit is contained in:
parent
26f1428739
commit
fadadd7505
@ -9,3 +9,4 @@
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/ndarray/iter.hpp"
|
||||
#include "irrt/ndarray/indexing.hpp"
|
||||
#include "irrt/ndarray/array.hpp"
|
@ -2,6 +2,21 @@
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/math_util.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief A list in NAC3.
|
||||
*
|
||||
* The `items` field is opaque. You must rely on external contexts to
|
||||
* know how to interpret it.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct List {
|
||||
uint8_t* items;
|
||||
SizeT len;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
// Handle list assignment and dropping part of the list when
|
||||
|
132
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
132
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
@ -0,0 +1,132 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/list.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::array {
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
|
||||
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
|
||||
* [3.0]])`)
|
||||
*
|
||||
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
|
||||
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
|
||||
* of implementation details.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
if (shape[axis] == -1) {
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
} else {
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len) {
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims) {
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `set_and_validate_list_shape_helper`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
|
||||
*
|
||||
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
|
||||
*
|
||||
* # Notes on `ndarray`
|
||||
* The caller is responsible for allocating space for `ndarray`.
|
||||
* Here is what this function expects from `ndarray` when called:
|
||||
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
|
||||
* - `ndarray->itemsize` has to be initialized.
|
||||
* - `ndarray->ndims` has to be initialized.
|
||||
* - `ndarray->shape` has to be initialized.
|
||||
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
|
||||
* When this function call ends:
|
||||
* - `ndarray->data` is written with contents from `<list>`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray)) {
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims) {
|
||||
// `list` has type `list[scalar]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `write_list_to_array_helper`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace ndarray::array
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
80
nac3core/src/codegen/irrt/ndarray/array.rs
Normal file
80
nac3core/src/codegen/irrt/ndarray/array.rs
Normal file
@ -0,0 +1,80 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::IntValue};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
|
||||
///
|
||||
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
|
||||
/// there is any issue with the resultant `shape`.
|
||||
///
|
||||
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
|
||||
/// initialized to all `-1`s.
|
||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
list: ListValue<'ctx>,
|
||||
ndims: IntValue<'ctx>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
|
||||
assert_eq!(ndims.get_type(), llvm_usize);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_set_and_validate_list_shape",
|
||||
);
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
|
||||
///
|
||||
/// Copies the contents stored in `list` into `ndarray`.
|
||||
///
|
||||
/// The `ndarray` must fulfill the following preconditions:
|
||||
///
|
||||
/// - `ndarray.itemsize`: Must be initialized.
|
||||
/// - `ndarray.ndims`: Must be initialized.
|
||||
/// - `ndarray.shape`: Must be initialized.
|
||||
/// - `ndarray.data`: Must be allocated and contiguous.
|
||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
list: ListValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
|
||||
|
||||
let name = get_usize_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_write_list_to_array",
|
||||
);
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[list.as_base_value().into(), ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -16,10 +16,12 @@ use crate::codegen::{
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
pub use array::*;
|
||||
pub use basic::*;
|
||||
pub use indexing::*;
|
||||
pub use iter::*;
|
||||
|
||||
mod array;
|
||||
mod basic;
|
||||
mod indexing;
|
||||
mod iter;
|
||||
|
@ -1,7 +1,7 @@
|
||||
use inkwell::{
|
||||
types::{BasicType, BasicTypeEnum, PointerType},
|
||||
types::BasicType,
|
||||
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
IntPredicate, OptimizationLevel,
|
||||
};
|
||||
|
||||
use nac3parser::ast::{Operator, StrRef};
|
||||
@ -18,13 +18,10 @@ use super::{
|
||||
llvm_intrinsics::{self, call_memcpy_generic},
|
||||
macros::codegen_unreachable,
|
||||
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
|
||||
types::{
|
||||
ndarray::{
|
||||
types::ndarray::{
|
||||
factory::{ndarray_one_value, ndarray_zero_value},
|
||||
NDArrayType,
|
||||
},
|
||||
ListType, ProxyType,
|
||||
},
|
||||
values::{
|
||||
ndarray::{shape::parse_numpy_int_sequence, NDArrayValue},
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
|
||||
@ -35,14 +32,10 @@ use super::{
|
||||
};
|
||||
use crate::{
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{
|
||||
helper::{extract_ndims, PrimDef},
|
||||
numpy::unpack_ndarray_var_tys,
|
||||
DefinitionId,
|
||||
},
|
||||
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys, DefinitionId},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
typedef::{FunSignature, Type, TypeEnum},
|
||||
typedef::{FunSignature, Type},
|
||||
},
|
||||
};
|
||||
|
||||
@ -413,394 +406,6 @@ where
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Returns the number of dimensions for a multidimensional list as an [`IntValue`].
|
||||
fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ty: PointerType<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let list_ty = ListType::from_type(ty, llvm_usize);
|
||||
let list_elem_ty = list_ty.element_type().unwrap();
|
||||
|
||||
let ndims = llvm_usize.const_int(1, false);
|
||||
match list_elem_ty {
|
||||
BasicTypeEnum::PointerType(ptr_ty)
|
||||
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty))
|
||||
}
|
||||
|
||||
BasicTypeEnum::PointerType(ptr_ty)
|
||||
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
todo!("Getting ndims for list[ndarray] not supported")
|
||||
}
|
||||
|
||||
_ => ndims,
|
||||
}
|
||||
}
|
||||
|
||||
/// Flattens and copies the values from a multidimensional list into an [`NDArrayValue`].
|
||||
fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
|
||||
src_lst: ListValue<'ctx>,
|
||||
dim: u64,
|
||||
) -> Result<(), String> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let list_elem_ty = src_lst.get_type().element_type().unwrap();
|
||||
|
||||
match list_elem_ty {
|
||||
BasicTypeEnum::PointerType(ptr_ty)
|
||||
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
// The stride of elements in this dimension, i.e. the number of elements between arr[i]
|
||||
// and arr[i + 1] in this dimension
|
||||
let stride = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&dst_arr.shape(),
|
||||
(Some(llvm_usize.const_int(dim + 1, false)), None),
|
||||
);
|
||||
|
||||
gen_for_range_callback(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
true,
|
||||
|_, _| Ok(llvm_usize.const_zero()),
|
||||
(|_, ctx| Ok(src_lst.load_size(ctx, None)), false),
|
||||
|_, _| Ok(llvm_usize.const_int(1, false)),
|
||||
|generator, ctx, _, i| {
|
||||
let offset = ctx.builder.build_int_mul(stride, i, "").unwrap();
|
||||
let offset = ctx
|
||||
.builder
|
||||
.build_int_mul(
|
||||
offset,
|
||||
ctx.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
dst_arr.get_type().element_type().size_of().unwrap(),
|
||||
offset.get_type(),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let dst_ptr =
|
||||
unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() };
|
||||
|
||||
let nested_lst_elem = ListValue::from_pointer_value(
|
||||
unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) }
|
||||
.into_pointer_value(),
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
|
||||
ndarray_from_ndlist_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(dst_arr, dst_ptr),
|
||||
nested_lst_elem,
|
||||
dim + 1,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
}
|
||||
|
||||
BasicTypeEnum::PointerType(ptr_ty)
|
||||
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
todo!("Not implemented for list[ndarray]")
|
||||
}
|
||||
|
||||
_ => {
|
||||
let lst_len = src_lst.load_size(ctx, None);
|
||||
let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
|
||||
let sizeof_elem =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_elem, llvm_usize, "").unwrap();
|
||||
|
||||
let cpy_len = ctx
|
||||
.builder
|
||||
.build_int_mul(
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(lst_len, llvm_usize, "").unwrap(),
|
||||
sizeof_elem,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
dst_slice_ptr,
|
||||
src_lst.data().base_ptr(ctx, generator),
|
||||
cpy_len,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for `ndarray.array`.
|
||||
fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
object: BasicValueEnum<'ctx>,
|
||||
copy: IntValue<'ctx>,
|
||||
ndmin: IntValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let ndmin = ctx.builder.build_int_z_extend_or_bit_cast(ndmin, llvm_usize, "").unwrap();
|
||||
|
||||
// TODO(Derppening): Add assertions for sizes of different dimensions
|
||||
|
||||
// object is not a pointer - 0-dim NDArray
|
||||
if !object.is_pointer_value() {
|
||||
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, &[])?;
|
||||
|
||||
unsafe {
|
||||
ndarray.data().set_unchecked(ctx, generator, &llvm_usize.const_zero(), object);
|
||||
}
|
||||
|
||||
return Ok(ndarray);
|
||||
}
|
||||
|
||||
let object = object.into_pointer_value();
|
||||
|
||||
// object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims
|
||||
if NDArrayValue::is_representable(object, llvm_usize).is_ok() {
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let object = NDArrayValue::from_pointer_value(object, llvm_elem_ty, None, llvm_usize, None);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
let copy_nez = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, copy, llvm_i1.const_zero(), "")
|
||||
.unwrap();
|
||||
let ndmin_gt_ndims = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::UGT, ndmin, object.load_ndims(ctx), "")
|
||||
.unwrap();
|
||||
|
||||
Ok(ctx.builder.build_and(copy_nez, ndmin_gt_ndims, "").unwrap())
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray = create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&object,
|
||||
|_, ctx, object| {
|
||||
let ndims = object.load_ndims(ctx);
|
||||
let ndmin_gt_ndims = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::UGT, ndmin, object.load_ndims(ctx), "")
|
||||
.unwrap();
|
||||
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_select(ndmin_gt_ndims, ndmin, ndims, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap())
|
||||
},
|
||||
|generator, ctx, object, idx| {
|
||||
let ndims = object.load_ndims(ctx);
|
||||
let ndmin = llvm_intrinsics::call_int_umax(ctx, ndims, ndmin, None);
|
||||
// The number of dimensions to prepend 1's to
|
||||
let offset = ctx.builder.build_int_sub(ndmin, ndims, "").unwrap();
|
||||
|
||||
Ok(gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::UGE, idx, offset, "")
|
||||
.unwrap())
|
||||
},
|
||||
|_, _| Ok(Some(llvm_usize.const_int(1, false))),
|
||||
|_, ctx| Ok(Some(ctx.builder.build_int_sub(idx, offset, "").unwrap())),
|
||||
)?
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap())
|
||||
},
|
||||
)?;
|
||||
|
||||
ndarray_sliced_copyto_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(ndarray, ndarray.data().base_ptr(ctx, generator)),
|
||||
(object, object.data().base_ptr(ctx, generator)),
|
||||
0,
|
||||
&[],
|
||||
)?;
|
||||
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|_, _| Ok(Some(object.as_base_value())),
|
||||
)?;
|
||||
|
||||
return Ok(NDArrayValue::from_pointer_value(
|
||||
ndarray.map(BasicValueEnum::into_pointer_value).unwrap(),
|
||||
llvm_elem_ty,
|
||||
None,
|
||||
llvm_usize,
|
||||
None,
|
||||
));
|
||||
}
|
||||
|
||||
// Remaining case: TList
|
||||
assert!(ListValue::is_representable(object, llvm_usize).is_ok());
|
||||
let object = ListValue::from_pointer_value(object, llvm_usize, None);
|
||||
|
||||
// The number of dimensions to prepend 1's to
|
||||
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
|
||||
let ndmin = llvm_intrinsics::call_int_umax(ctx, ndims, ndmin, None);
|
||||
let offset = ctx.builder.build_int_sub(ndmin, ndims, "").unwrap();
|
||||
|
||||
let ndarray = create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&object,
|
||||
|generator, ctx, object| {
|
||||
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
|
||||
let ndmin_gt_ndims =
|
||||
ctx.builder.build_int_compare(IntPredicate::UGT, ndmin, ndims, "").unwrap();
|
||||
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_select(ndmin_gt_ndims, ndmin, ndims, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap())
|
||||
},
|
||||
|generator, ctx, object, idx| {
|
||||
Ok(gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, idx, offset, "").unwrap())
|
||||
},
|
||||
|_, _| Ok(Some(llvm_usize.const_int(1, false))),
|
||||
|generator, ctx| {
|
||||
let make_llvm_list = |elem_ty: BasicTypeEnum<'ctx>| {
|
||||
ctx.ctx.struct_type(
|
||||
&[elem_ty.ptr_type(AddressSpace::default()).into(), llvm_usize.into()],
|
||||
false,
|
||||
)
|
||||
};
|
||||
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_list_i8 = make_llvm_list(llvm_i8.into());
|
||||
let llvm_plist_i8 = llvm_list_i8.ptr_type(AddressSpace::default());
|
||||
|
||||
// Cast list to { i8*, usize } since we only care about the size
|
||||
let lst = generator
|
||||
.gen_var_alloc(
|
||||
ctx,
|
||||
ListType::new(generator, ctx.ctx, llvm_i8.into()).as_base_type().into(),
|
||||
None,
|
||||
)
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(
|
||||
lst,
|
||||
ctx.builder
|
||||
.build_bit_cast(object.as_base_value(), llvm_plist_i8, "")
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let stop = ctx.builder.build_int_sub(idx, offset, "").unwrap();
|
||||
gen_for_range_callback(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
true,
|
||||
|_, _| Ok(llvm_usize.const_zero()),
|
||||
(|_, _| Ok(stop), false),
|
||||
|_, _| Ok(llvm_usize.const_int(1, false)),
|
||||
|generator, ctx, _, _| {
|
||||
let plist_plist_i8 = make_llvm_list(llvm_plist_i8.into())
|
||||
.ptr_type(AddressSpace::default());
|
||||
|
||||
let this_dim = ctx
|
||||
.builder
|
||||
.build_load(lst, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.map(|v| ctx.builder.build_bit_cast(v, plist_plist_i8, "").unwrap())
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
let this_dim =
|
||||
ListValue::from_pointer_value(this_dim, llvm_usize, None);
|
||||
|
||||
// TODO: Assert this_dim.sz != 0
|
||||
|
||||
let next_dim = unsafe {
|
||||
this_dim.data().get_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_zero(),
|
||||
None,
|
||||
)
|
||||
}
|
||||
.into_pointer_value();
|
||||
ctx.builder
|
||||
.build_store(
|
||||
lst,
|
||||
ctx.builder
|
||||
.build_bit_cast(next_dim, llvm_plist_i8, "")
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
let lst = ListValue::from_pointer_value(
|
||||
ctx.builder
|
||||
.build_load(lst, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap(),
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
|
||||
Ok(Some(lst.load_size(ctx, None)))
|
||||
},
|
||||
)?
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap())
|
||||
},
|
||||
)?;
|
||||
|
||||
ndarray_from_ndlist_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(ndarray, ndarray.data().base_ptr(ctx, generator)),
|
||||
object,
|
||||
0,
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.eye`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
@ -1635,26 +1240,6 @@ pub fn gen_ndarray_array<'ctx>(
|
||||
assert!(matches!(args.len(), 1..=3));
|
||||
|
||||
let obj_ty = fun.0.args[0].ty;
|
||||
let obj_elem_ty = match &*context.unifier.get_ty(obj_ty) {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
unpack_ndarray_var_tys(&mut context.unifier, obj_ty).0
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
||||
let mut ty = *params.iter().next().unwrap().1;
|
||||
while let TypeEnum::TObj { obj_id, params, .. } = &*context.unifier.get_ty_immutable(ty)
|
||||
{
|
||||
if *obj_id != PrimDef::List.id() {
|
||||
break;
|
||||
}
|
||||
|
||||
ty = *params.iter().next().unwrap().1;
|
||||
}
|
||||
ty
|
||||
}
|
||||
|
||||
_ => obj_ty,
|
||||
};
|
||||
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
|
||||
|
||||
let copy_arg = if let Some(arg) =
|
||||
@ -1670,28 +1255,17 @@ pub fn gen_ndarray_array<'ctx>(
|
||||
)
|
||||
};
|
||||
|
||||
let ndmin_arg = if let Some(arg) =
|
||||
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
|
||||
{
|
||||
let ndmin_ty = fun.0.args[2].ty;
|
||||
arg.1.clone().to_basic_value_enum(context, generator, ndmin_ty)?
|
||||
} else {
|
||||
context.gen_symbol_val(
|
||||
generator,
|
||||
fun.0.args[2].default_value.as_ref().unwrap(),
|
||||
fun.0.args[2].ty,
|
||||
)
|
||||
};
|
||||
// The ndmin argument is ignored. We can simply force the ndarray's number of dimensions to be
|
||||
// the `ndims` of the function return type.
|
||||
let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
call_ndarray_array_impl(
|
||||
generator,
|
||||
context,
|
||||
obj_elem_ty,
|
||||
obj_arg,
|
||||
copy_arg.into_int_value(),
|
||||
ndmin_arg.into_int_value(),
|
||||
)
|
||||
.map(NDArrayValue::into)
|
||||
let copy = generator.bool_to_i1(context, copy_arg.into_int_value());
|
||||
let ndarray = NDArrayType::from_unifier_type(generator, context, fun.0.ret)
|
||||
.construct_numpy_array(generator, context, (obj_ty, obj_arg), copy, None)
|
||||
.atleast_nd(generator, context, ndims);
|
||||
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.eye`.
|
||||
|
245
nac3core/src/codegen/types/ndarray/array.rs
Normal file
245
nac3core/src/codegen/types/ndarray/array.rs
Normal file
@ -0,0 +1,245 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt,
|
||||
stmt::gen_if_else_expr_callback,
|
||||
types::{ndarray::NDArrayType, ListType, ProxyType},
|
||||
values::{
|
||||
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
|
||||
TypedArrayLikeAdapter, TypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
|
||||
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list_ty: Type,
|
||||
) -> (BasicTypeEnum<'ctx>, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
|
||||
|
||||
(ctx.get_llvm_type(generator, dtype), ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Implementation of `np_array(<list>, copy=True)`
|
||||
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
assert!(self.ndims.is_none_or(|self_ndims| self_ndims >= ndims_int));
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let list_value = list.as_i8_list(generator, ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = self.llvm_usize.const_int(ndims_int, false);
|
||||
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
|
||||
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
|
||||
let shape = TypedArrayLikeAdapter::from(
|
||||
shape,
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||
generator, ctx, list_value, ndims, &shape,
|
||||
);
|
||||
|
||||
let ndarray = Self::new(generator, ctx.ctx, dtype, Some(ndims_int))
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
unsafe { ndarray.create_data(generator, ctx) };
|
||||
|
||||
// Copy all contents from the list.
|
||||
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(
|
||||
generator, ctx, list_value, ndarray,
|
||||
);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=None)`
|
||||
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
// np_array without copying is only possible `list` is not nested.
|
||||
//
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
//
|
||||
// If `list` is `list[list[T]]` or worse, copy.
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
assert_eq!(ndims, 1);
|
||||
assert!(self.ndims.is_none_or(|self_ndims| self_ndims >= ndims));
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray = Self::new(generator, ctx.ctx, dtype, Some(1))
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
// Set data
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
|
||||
.unwrap();
|
||||
ndarray.store_data(ctx, data);
|
||||
|
||||
// ndarray->shape[0] = list->len;
|
||||
let shape = ndarray.shape();
|
||||
let list_len = list.load_size(ctx, None);
|
||||
unsafe {
|
||||
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
|
||||
}
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.set_strides_contiguous(generator, ctx);
|
||||
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, copy
|
||||
self.construct_numpy_array_from_list_copy_true_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=copy)`
|
||||
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy),
|
||||
|generator, ctx| {
|
||||
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
);
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
);
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
NDArrayType::new(generator, ctx.ctx, dtype, Some(ndims)).map_value(ndarray, None)
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<ndarray>, copy=copy)`.
|
||||
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(ndarray.get_type().dtype, self.dtype);
|
||||
assert!(ndarray.get_type().ndims.is_none_or(|ndarray_ndims| self
|
||||
.ndims
|
||||
.is_none_or(|self_ndims| self_ndims >= ndarray_ndims)));
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
ndarray.get_type().map_value(ndarray_val, name)
|
||||
}
|
||||
|
||||
/// Create a new ndarray like
|
||||
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
|
||||
///
|
||||
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
|
||||
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
|
||||
/// with the exact number of dimensions is needed.
|
||||
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(object_ty, object): (Type, BasicValueEnum<'ctx>),
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
match &*ctx.unifier.get_ty_immutable(object_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListType::from_unifier_type(generator, ctx, object_ty)
|
||||
.map_value(object.into_pointer_value(), None);
|
||||
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
|
||||
.map_value(object.into_pointer_value(), None);
|
||||
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
|
||||
}
|
||||
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
@ -24,6 +24,7 @@ pub use contiguous::*;
|
||||
pub use indexing::*;
|
||||
pub use nditer::*;
|
||||
|
||||
mod array;
|
||||
mod contiguous;
|
||||
pub mod factory;
|
||||
mod indexing;
|
||||
|
@ -8,7 +8,7 @@ use super::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
};
|
||||
use crate::codegen::{
|
||||
types::{structure::StructField, ListType},
|
||||
types::{structure::StructField, ListType, ProxyType},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
@ -116,6 +116,23 @@ impl<'ctx> ListValue<'ctx> {
|
||||
) -> IntValue<'ctx> {
|
||||
self.len_field(ctx).get(ctx, self.value, name)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`ListValue`] with the `items` pointer cast to `i8*`.
|
||||
#[must_use]
|
||||
pub fn as_i8_list<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> ListValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_list_i8 = <Self as ProxyValue>::Type::new(generator, ctx.ctx, llvm_i8.into());
|
||||
|
||||
Self::from_pointer_value(
|
||||
ctx.builder.build_pointer_cast(self.value, llvm_list_i8.as_base_type(), "").unwrap(),
|
||||
self.llvm_usize,
|
||||
self.name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyValue<'ctx> for ListValue<'ctx> {
|
||||
|
@ -173,7 +173,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
}
|
||||
|
||||
/// Stores the array of data elements `data` into this instance.
|
||||
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
|
||||
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
|
||||
|
Loading…
Reference in New Issue
Block a user