nac3core: parse type annotation python forwardref handling
This commit is contained in:
parent
66a9eda3c1
commit
dab06bdb58
@ -25,7 +25,6 @@ class virtual(Generic[T]):
|
||||
import device_db
|
||||
core_arguments = device_db.device_db["core"]["arguments"]
|
||||
|
||||
|
||||
compiler = nac3artiq.NAC3(core_arguments["target"])
|
||||
allow_registration = True
|
||||
# Delay NAC3 analysis until all referenced variables are supposed to exist on the CPython side.
|
||||
|
@ -13,7 +13,7 @@ use crate::{
|
||||
use crate::{location::Location, typecheck::typedef::TypeEnum};
|
||||
use inkwell::values::BasicValueEnum;
|
||||
use itertools::{chain, izip};
|
||||
use nac3parser::ast::{Expr, StrRef};
|
||||
use nac3parser::ast::{Constant::Str, Expr, StrRef};
|
||||
use parking_lot::RwLock;
|
||||
|
||||
#[derive(Clone, PartialEq, Debug)]
|
||||
@ -79,159 +79,168 @@ pub fn parse_type_annotation<T>(
|
||||
let list_id = ids[6];
|
||||
let tuple_id = ids[7];
|
||||
|
||||
match &expr.node {
|
||||
Name { id, .. } => {
|
||||
if *id == int32_id {
|
||||
Ok(primitives.int32)
|
||||
} else if *id == int64_id {
|
||||
Ok(primitives.int64)
|
||||
} else if *id == float_id {
|
||||
Ok(primitives.float)
|
||||
} else if *id == bool_id {
|
||||
Ok(primitives.bool)
|
||||
} else if *id == none_id {
|
||||
Ok(primitives.none)
|
||||
} else {
|
||||
let obj_id = resolver.get_identifier_def(*id);
|
||||
if let Some(obj_id) = obj_id {
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
let fields = RefCell::new(
|
||||
chain(
|
||||
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
|
||||
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
|
||||
)
|
||||
.collect(),
|
||||
);
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields,
|
||||
params: Default::default(),
|
||||
}))
|
||||
} else {
|
||||
Err("Cannot use function name as type".into())
|
||||
let name_handling = |id: &StrRef, unifier: &mut Unifier| {
|
||||
if *id == int32_id {
|
||||
Ok(primitives.int32)
|
||||
} else if *id == int64_id {
|
||||
Ok(primitives.int64)
|
||||
} else if *id == float_id {
|
||||
Ok(primitives.float)
|
||||
} else if *id == bool_id {
|
||||
Ok(primitives.bool)
|
||||
} else if *id == none_id {
|
||||
Ok(primitives.none)
|
||||
} else {
|
||||
let obj_id = resolver.get_identifier_def(*id);
|
||||
if let Some(obj_id) = obj_id {
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
let fields = RefCell::new(
|
||||
chain(
|
||||
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
|
||||
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
|
||||
)
|
||||
.collect(),
|
||||
);
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields,
|
||||
params: Default::default(),
|
||||
}))
|
||||
} else {
|
||||
// it could be a type variable
|
||||
let ty = resolver
|
||||
.get_symbol_type(unifier, top_level_defs, primitives, *id)
|
||||
.ok_or_else(|| "unknown type variable name".to_owned())?;
|
||||
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
|
||||
Ok(ty)
|
||||
} else {
|
||||
Err(format!("Unknown type annotation {}", id))
|
||||
}
|
||||
Err("Cannot use function name as type".into())
|
||||
}
|
||||
} else {
|
||||
// it could be a type variable
|
||||
let ty = resolver
|
||||
.get_symbol_type(unifier, top_level_defs, primitives, *id)
|
||||
.ok_or_else(|| "unknown type variable name".to_owned())?;
|
||||
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
|
||||
Ok(ty)
|
||||
} else {
|
||||
Err(format!("Unknown type annotation {}", id))
|
||||
}
|
||||
}
|
||||
}
|
||||
Subscript { value, slice, .. } => {
|
||||
if let Name { id, .. } = &value.node {
|
||||
if *id == virtual_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
|
||||
} else if *id == list_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TList { ty }))
|
||||
} else if *id == tuple_id {
|
||||
if let Tuple { elts, .. } = &slice.node {
|
||||
let ty = elts
|
||||
.iter()
|
||||
.map(|elt| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
elt,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
|
||||
} else {
|
||||
Err("Expected multiple elements for tuple".into())
|
||||
}
|
||||
} else {
|
||||
let types = if let Tuple { elts, .. } = &slice.node {
|
||||
elts.iter()
|
||||
.map(|v| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
v,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
} else {
|
||||
vec![parse_type_annotation(
|
||||
};
|
||||
|
||||
let subscript_name_handle = |id: &StrRef, slice: &Expr<T>, unifier: &mut Unifier| {
|
||||
if *id == virtual_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
|
||||
} else if *id == list_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TList { ty }))
|
||||
} else if *id == tuple_id {
|
||||
if let Tuple { elts, .. } = &slice.node {
|
||||
let ty = elts
|
||||
.iter()
|
||||
.map(|elt| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?]
|
||||
};
|
||||
elt,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
|
||||
} else {
|
||||
Err("Expected multiple elements for tuple".into())
|
||||
}
|
||||
} else {
|
||||
let types = if let Tuple { elts, .. } = &slice.node {
|
||||
elts.iter()
|
||||
.map(|v| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
v,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
} else {
|
||||
vec![parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?]
|
||||
};
|
||||
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if types.len() != type_vars.len() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got {}",
|
||||
type_vars.len(),
|
||||
types.len()
|
||||
));
|
||||
}
|
||||
let mut subst = HashMap::new();
|
||||
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
|
||||
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
|
||||
*id
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
subst.insert(id, *ty);
|
||||
}
|
||||
let mut fields = fields
|
||||
.iter()
|
||||
.map(|(attr, ty, is_mutable)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, *is_mutable))
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
fields.extend(methods.iter().map(|(attr, ty, _)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, false))
|
||||
}));
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields: fields.into(),
|
||||
params: subst.into(),
|
||||
}))
|
||||
} else {
|
||||
Err("Cannot use function name as type".into())
|
||||
}
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if types.len() != type_vars.len() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got {}",
|
||||
type_vars.len(),
|
||||
types.len()
|
||||
));
|
||||
}
|
||||
let mut subst = HashMap::new();
|
||||
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
|
||||
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
|
||||
*id
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
subst.insert(id, *ty);
|
||||
}
|
||||
let mut fields = fields
|
||||
.iter()
|
||||
.map(|(attr, ty, is_mutable)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, *is_mutable))
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
fields.extend(methods.iter().map(|(attr, ty, _)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, false))
|
||||
}));
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields: fields.into(),
|
||||
params: subst.into(),
|
||||
}))
|
||||
} else {
|
||||
Err("Cannot use function name as type".into())
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
match &expr.node {
|
||||
Name { id, .. } => name_handling(id, unifier),
|
||||
Constant { value: Str(id), .. } => name_handling(&id.clone().into(), unifier),
|
||||
Subscript { value, slice, .. } => {
|
||||
if let Name { id, .. } = &value.node {
|
||||
subscript_name_handle(id, slice, unifier)
|
||||
} else if let Constant { value: Str(id), .. } = &value.node {
|
||||
subscript_name_handle(&id.clone().into(), slice, unifier)
|
||||
} else {
|
||||
Err("unsupported type expression".into())
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use std::cell::RefCell;
|
||||
|
||||
use crate::typecheck::typedef::TypeVarMeta;
|
||||
|
||||
use ast::Constant::Str;
|
||||
use super::*;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
@ -49,58 +49,127 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
primitives: &PrimitiveStore,
|
||||
expr: &ast::Expr<T>,
|
||||
// the key stores the type_var of this topleveldef::class, we only need this field here
|
||||
mut locked: HashMap<DefinitionId, Vec<Type>>,
|
||||
locked: HashMap<DefinitionId, Vec<Type>>,
|
||||
) -> Result<TypeAnnotation, String> {
|
||||
match &expr.node {
|
||||
ast::ExprKind::Name { id, .. } => {
|
||||
if id == &"int32".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int32))
|
||||
} else if id == &"int64".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int64))
|
||||
} else if id == &"float".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.float))
|
||||
} else if id == &"bool".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.bool))
|
||||
} else if id == &"None".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.none))
|
||||
} else if id == &"str".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.str))
|
||||
} else if let Some(obj_id) = resolver.get_identifier_def(*id) {
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
return Err("function cannot be used as a type".into());
|
||||
}
|
||||
let name_handle = |id: &StrRef, unifier: &mut Unifier, locked: HashMap<DefinitionId, Vec<Type>>| {
|
||||
if id == &"int32".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int32))
|
||||
} else if id == &"int64".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int64))
|
||||
} else if id == &"float".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.float))
|
||||
} else if id == &"bool".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.bool))
|
||||
} else if id == &"None".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.none))
|
||||
} else if id == &"str".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.str))
|
||||
} else if let Some(obj_id) = resolver.get_identifier_def(*id) {
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
return Err("function cannot be used as a type".into());
|
||||
}
|
||||
};
|
||||
// check param number here
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"expect {} type variable parameter but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
|
||||
} else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
|
||||
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
|
||||
Ok(TypeAnnotation::TypeVar(ty))
|
||||
} else {
|
||||
Err("not a type variable identifier".into())
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
}
|
||||
};
|
||||
// check param number here
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"expect {} type variable parameter but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
|
||||
} else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
|
||||
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
|
||||
Ok(TypeAnnotation::TypeVar(ty))
|
||||
} else {
|
||||
Err("not a type variable identifier".into())
|
||||
}
|
||||
} else {
|
||||
Err("name cannot be parsed as a type annotation".into())
|
||||
}
|
||||
};
|
||||
|
||||
let class_name_handle =
|
||||
|id: &StrRef, slice: &ast::Expr<T>, unifier: &mut Unifier, mut locked: HashMap<DefinitionId, Vec<Type>>| {
|
||||
if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
|
||||
.contains(id)
|
||||
{
|
||||
return Err("keywords cannot be class name".into());
|
||||
}
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| "unknown class name".to_string())?;
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
unreachable!("must be class here")
|
||||
}
|
||||
} else {
|
||||
Err("name cannot be parsed as a type annotation".into())
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
// we do not check whether the application of type variables are compatible here
|
||||
let param_type_infos = {
|
||||
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
elts.iter().collect_vec()
|
||||
} else {
|
||||
vec![slice]
|
||||
};
|
||||
if type_vars.len() != params_ast.len() {
|
||||
return Err(format!(
|
||||
"expect {} type parameters but got {}",
|
||||
type_vars.len(),
|
||||
params_ast.len()
|
||||
));
|
||||
}
|
||||
let result = params_ast
|
||||
.into_iter()
|
||||
.map(|x| {
|
||||
parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
{
|
||||
locked.insert(obj_id, type_vars.clone());
|
||||
locked.clone()
|
||||
},
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
// make sure the result do not contain any type vars
|
||||
let no_type_var = result
|
||||
.iter()
|
||||
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
|
||||
if no_type_var {
|
||||
result
|
||||
} else {
|
||||
return Err("application of type vars to generic class \
|
||||
is not currently supported"
|
||||
.into());
|
||||
}
|
||||
};
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
|
||||
};
|
||||
match &expr.node {
|
||||
ast::ExprKind::Name { id, .. } => name_handle(id, unifier, locked),
|
||||
ast::ExprKind::Constant { value: Str(id), .. } => name_handle(&id.clone().into(), unifier, locked),
|
||||
// virtual
|
||||
ast::ExprKind::Subscript { value, slice, .. }
|
||||
if {
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"virtual".into())
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"virtual".into()) ||
|
||||
matches!(&value.node, ast::ExprKind::Constant { value: Str(id), .. } if id == "virtual")
|
||||
} =>
|
||||
{
|
||||
let def = parse_ast_to_type_annotation_kinds(
|
||||
@ -120,7 +189,8 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
// list
|
||||
ast::ExprKind::Subscript { value, slice, .. }
|
||||
if {
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"list".into())
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"list".into()) ||
|
||||
matches!(&value.node, ast::ExprKind::Constant { value: Str(id), .. } if id == "list")
|
||||
} =>
|
||||
{
|
||||
let def_ann = parse_ast_to_type_annotation_kinds(
|
||||
@ -137,7 +207,8 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
// tuple
|
||||
ast::ExprKind::Subscript { value, slice, .. }
|
||||
if {
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"tuple".into())
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"tuple".into()) ||
|
||||
matches!(&value.node, ast::ExprKind::Constant { value: Str(id), .. } if id == "tuple")
|
||||
} =>
|
||||
{
|
||||
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
@ -163,71 +234,9 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
// custom class
|
||||
ast::ExprKind::Subscript { value, slice, .. } => {
|
||||
if let ast::ExprKind::Name { id, .. } = &value.node {
|
||||
if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
|
||||
.contains(id)
|
||||
{
|
||||
return Err("keywords cannot be class name".into());
|
||||
}
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| "unknown class name".to_string())?;
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
unreachable!("must be class here")
|
||||
}
|
||||
} else {
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
}
|
||||
};
|
||||
// we do not check whether the application of type variables are compatible here
|
||||
let param_type_infos = {
|
||||
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
elts.iter().collect_vec()
|
||||
} else {
|
||||
vec![slice.as_ref()]
|
||||
};
|
||||
if type_vars.len() != params_ast.len() {
|
||||
return Err(format!(
|
||||
"expect {} type parameters but got {}",
|
||||
type_vars.len(),
|
||||
params_ast.len()
|
||||
));
|
||||
}
|
||||
let result = params_ast
|
||||
.into_iter()
|
||||
.map(|x| {
|
||||
parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
{
|
||||
locked.insert(obj_id, type_vars.clone());
|
||||
locked.clone()
|
||||
},
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
// make sure the result do not contain any type vars
|
||||
let no_type_var = result
|
||||
.iter()
|
||||
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
|
||||
if no_type_var {
|
||||
result
|
||||
} else {
|
||||
return Err("application of type vars to generic class \
|
||||
is not currently supported"
|
||||
.into());
|
||||
}
|
||||
};
|
||||
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
|
||||
class_name_handle(id, slice, unifier, locked)
|
||||
} else if let ast::ExprKind::Constant { value: Str(id), .. } = &value.node {
|
||||
class_name_handle(&id.clone().into(), slice, unifier, locked)
|
||||
} else {
|
||||
Err("unsupported expression type for class name".into())
|
||||
}
|
||||
@ -368,13 +377,7 @@ pub fn get_type_from_type_annotation_kinds(
|
||||
/// But note that here we do not make a duplication of `T`, `V`, we direclty
|
||||
/// use them as they are in the TopLevelDef::Class since those in the
|
||||
/// TopLevelDef::Class.type_vars will be substitute later when seeing applications/instantiations
|
||||
/// the Type of their fields and methods will also be subst when application/instantiation \
|
||||
/// \
|
||||
/// Note this implicit self type is different with seeing `A[T, V]` explicitly outside
|
||||
/// the class def ast body, where it is a new instantiation of the generic class `A`,
|
||||
/// but equivalent to seeing `A[T, V]` inside the class def body ast, where although we
|
||||
/// create copies of `T` and `V`, we will find them out as occured type vars in the analyze_class()
|
||||
/// and unify them with the class generic `T`, `V`
|
||||
/// the Type of their fields and methods will also be subst when application/instantiation
|
||||
pub fn make_self_type_annotation(type_vars: &[Type], object_id: DefinitionId) -> TypeAnnotation {
|
||||
TypeAnnotation::CustomClass {
|
||||
id: object_id,
|
||||
|
Loading…
Reference in New Issue
Block a user