core/ndstrides: implement broadcasting & np_broadcast_to()
This commit is contained in:
parent
916a2b4993
commit
d32268fb5d
@ -10,4 +10,5 @@
|
|||||||
#include "irrt/ndarray/iter.hpp"
|
#include "irrt/ndarray/iter.hpp"
|
||||||
#include "irrt/ndarray/indexing.hpp"
|
#include "irrt/ndarray/indexing.hpp"
|
||||||
#include "irrt/ndarray/array.hpp"
|
#include "irrt/ndarray/array.hpp"
|
||||||
#include "irrt/ndarray/reshape.hpp"
|
#include "irrt/ndarray/reshape.hpp"
|
||||||
|
#include "irrt/ndarray/broadcast.hpp"
|
165
nac3core/irrt/irrt/ndarray/broadcast.hpp
Normal file
165
nac3core/irrt/irrt/ndarray/broadcast.hpp
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "irrt/int_types.hpp"
|
||||||
|
#include "irrt/ndarray/def.hpp"
|
||||||
|
#include "irrt/slice.hpp"
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template<typename SizeT>
|
||||||
|
struct ShapeEntry {
|
||||||
|
SizeT ndims;
|
||||||
|
SizeT* shape;
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
namespace ndarray {
|
||||||
|
namespace broadcast {
|
||||||
|
/**
|
||||||
|
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||||
|
*
|
||||||
|
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||||
|
*/
|
||||||
|
template<typename SizeT>
|
||||||
|
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
|
||||||
|
if (src_ndims > target_ndims) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < src_ndims; i++) {
|
||||||
|
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||||
|
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||||
|
if (!(src_dim == 1 || target_dim == src_dim)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||||
|
*
|
||||||
|
* @param num_shapes Number of entries in `shapes`
|
||||||
|
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||||
|
* @param dst_ndims The length of `dst_shape`.
|
||||||
|
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||||
|
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||||
|
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||||
|
* of `np.broadcast_shapes` and write it here.
|
||||||
|
*/
|
||||||
|
template<typename SizeT>
|
||||||
|
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
|
||||||
|
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
|
||||||
|
dst_shape[dst_axis] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
SizeT max_ndims_found = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < num_shapes; i++) {
|
||||||
|
ShapeEntry<SizeT> entry = shapes[i];
|
||||||
|
|
||||||
|
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||||
|
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||||
|
|
||||||
|
#ifdef IRRT_DEBUG_ASSERT
|
||||||
|
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (SizeT j = 0; j < entry.ndims; j++) {
|
||||||
|
SizeT entry_axis = entry.ndims - j - 1;
|
||||||
|
SizeT dst_axis = dst_ndims - j - 1;
|
||||||
|
|
||||||
|
SizeT entry_dim = entry.shape[entry_axis];
|
||||||
|
SizeT dst_dim = dst_shape[dst_axis];
|
||||||
|
|
||||||
|
if (dst_dim == 1) {
|
||||||
|
dst_shape[dst_axis] = entry_dim;
|
||||||
|
} else if (entry_dim == 1 || entry_dim == dst_dim) {
|
||||||
|
// Do nothing
|
||||||
|
} else {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||||
|
"shape mismatch: objects cannot be broadcast "
|
||||||
|
"to a single shape.",
|
||||||
|
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||||
|
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||||
|
*
|
||||||
|
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||||
|
* and return the result by modifying `dst_ndarray`.
|
||||||
|
*
|
||||||
|
* # Notes on `dst_ndarray`
|
||||||
|
* The caller is responsible for allocating space for the resulting ndarray.
|
||||||
|
* Here is what this function expects from `dst_ndarray` when called:
|
||||||
|
* - `dst_ndarray->data` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||||
|
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||||
|
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||||
|
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||||
|
* When this function call ends:
|
||||||
|
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||||
|
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||||
|
* - `dst_ndarray->ndims` is unchanged.
|
||||||
|
* - `dst_ndarray->shape` is unchanged.
|
||||||
|
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||||
|
*/
|
||||||
|
template<typename SizeT>
|
||||||
|
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||||
|
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||||
|
src_ndarray->shape)) {
|
||||||
|
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
||||||
|
NO_PARAM);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_ndarray->data = src_ndarray->data;
|
||||||
|
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
|
||||||
|
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||||
|
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||||
|
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
|
||||||
|
// Freeze the steps in-place
|
||||||
|
dst_ndarray->strides[dst_axis] = 0;
|
||||||
|
} else {
|
||||||
|
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace broadcast
|
||||||
|
} // namespace ndarray
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
using namespace ndarray::broadcast;
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
||||||
|
broadcast_to(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
||||||
|
broadcast_to(src_ndarray, dst_ndarray);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
|
||||||
|
const ShapeEntry<int32_t>* shapes,
|
||||||
|
int32_t dst_ndims,
|
||||||
|
int32_t* dst_shape) {
|
||||||
|
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
|
||||||
|
const ShapeEntry<int64_t>* shapes,
|
||||||
|
int64_t dst_ndims,
|
||||||
|
int64_t* dst_shape) {
|
||||||
|
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||||
|
}
|
||||||
|
}
|
@ -10,7 +10,7 @@ use super::{
|
|||||||
model::*,
|
model::*,
|
||||||
object::{
|
object::{
|
||||||
list::List,
|
list::List,
|
||||||
ndarray::{indexing::NDIndex, nditer::NDIter, NDArray},
|
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
|
||||||
},
|
},
|
||||||
stmt::gen_for_callback_incrementing,
|
stmt::gen_for_callback_incrementing,
|
||||||
CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
@ -1176,3 +1176,30 @@ pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenera
|
|||||||
);
|
);
|
||||||
FnCall::builder(generator, ctx, &name).arg(size).arg(new_ndims).arg(new_shape).returning_void();
|
FnCall::builder(generator, ctx, &name).arg(size).arg(new_ndims).arg(new_shape).returning_void();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
|
||||||
|
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
num_shape_entries: Instance<'ctx, Int<SizeT>>,
|
||||||
|
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
|
||||||
|
dst_ndims: Instance<'ctx, Int<SizeT>>,
|
||||||
|
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
|
||||||
|
FnCall::builder(generator, ctx, &name)
|
||||||
|
.arg(num_shape_entries)
|
||||||
|
.arg(shape_entries)
|
||||||
|
.arg(dst_ndims)
|
||||||
|
.arg(dst_shape)
|
||||||
|
.returning_void();
|
||||||
|
}
|
||||||
|
139
nac3core/src/codegen/object/ndarray/broadcast.rs
Normal file
139
nac3core/src/codegen/object/ndarray/broadcast.rs
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
|
||||||
|
model::*,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::NDArrayObject;
|
||||||
|
|
||||||
|
/// Fields of [`ShapeEntry`]
|
||||||
|
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||||
|
pub ndims: F::Output<Int<SizeT>>,
|
||||||
|
pub shape: F::Output<Ptr<Int<SizeT>>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An IRRT structure used in broadcasting.
|
||||||
|
#[derive(Debug, Clone, Copy, Default)]
|
||||||
|
pub struct ShapeEntry;
|
||||||
|
|
||||||
|
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
||||||
|
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
||||||
|
|
||||||
|
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||||
|
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Create a broadcast view on this ndarray with a target shape.
|
||||||
|
///
|
||||||
|
/// The input shape will be checked to make sure that it contains no negative values.
|
||||||
|
///
|
||||||
|
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||||
|
/// The caller has to figure this out for this function.
|
||||||
|
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||||
|
#[must_use]
|
||||||
|
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
target_ndims: u64,
|
||||||
|
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) -> Self {
|
||||||
|
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
|
||||||
|
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
||||||
|
|
||||||
|
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
||||||
|
broadcast_ndarray
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/// A result produced by [`broadcast_all_ndarrays`]
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct BroadcastAllResult<'ctx> {
|
||||||
|
/// The statically known `ndims` of the broadcast result.
|
||||||
|
pub ndims: u64,
|
||||||
|
/// The broadcasting shape.
|
||||||
|
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
/// Broadcasted views on the inputs.
|
||||||
|
///
|
||||||
|
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||||
|
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||||
|
/// is the same as the input.
|
||||||
|
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
|
||||||
|
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
|
||||||
|
broadcast_ndims: u64,
|
||||||
|
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||||
|
) {
|
||||||
|
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
|
||||||
|
let num_shape_entries = Int(SizeT).const_int(
|
||||||
|
generator,
|
||||||
|
ctx.ctx,
|
||||||
|
u64::try_from(in_shape_entries.len()).unwrap(),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
|
||||||
|
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
|
||||||
|
let pshape_entry = shape_entries.offset_const(ctx, i64::try_from(i).unwrap());
|
||||||
|
|
||||||
|
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims, false);
|
||||||
|
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
||||||
|
|
||||||
|
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims, false);
|
||||||
|
call_nac3_ndarray_broadcast_shapes(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
num_shape_entries,
|
||||||
|
shape_entries,
|
||||||
|
broadcast_ndims,
|
||||||
|
broadcast_shape,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayObject<'ctx> {
|
||||||
|
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
|
||||||
|
/// containing all the information of the result of the broadcast operation.
|
||||||
|
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ndarrays: &[Self],
|
||||||
|
) -> BroadcastAllResult<'ctx> {
|
||||||
|
assert!(!ndarrays.is_empty());
|
||||||
|
|
||||||
|
// Infer the broadcast output ndims.
|
||||||
|
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
||||||
|
|
||||||
|
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int, false);
|
||||||
|
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
|
||||||
|
|
||||||
|
let shape_entries = ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
|
||||||
|
.collect_vec();
|
||||||
|
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
||||||
|
|
||||||
|
// Broadcast all the inputs to shape `dst_shape`.
|
||||||
|
let broadcast_ndarrays: Vec<_> = ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| {
|
||||||
|
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
|
||||||
|
BroadcastAllResult {
|
||||||
|
ndims: broadcast_ndims_int,
|
||||||
|
shape: broadcast_shape,
|
||||||
|
ndarrays: broadcast_ndarrays,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -1,4 +1,5 @@
|
|||||||
pub mod array;
|
pub mod array;
|
||||||
|
pub mod broadcast;
|
||||||
pub mod factory;
|
pub mod factory;
|
||||||
pub mod indexing;
|
pub mod indexing;
|
||||||
pub mod nditer;
|
pub mod nditer;
|
||||||
|
@ -521,7 +521,7 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
self.build_ndarray_property_getter_function(prim)
|
self.build_ndarray_property_getter_function(prim)
|
||||||
}
|
}
|
||||||
|
|
||||||
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
||||||
self.build_ndarray_view_function(prim)
|
self.build_ndarray_view_function(prim)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1469,7 +1469,10 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
|
|
||||||
/// Build np/sp functions that take as input `NDArray` only
|
/// Build np/sp functions that take as input `NDArray` only
|
||||||
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||||
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
|
debug_assert_prim_is_allowed(
|
||||||
|
prim,
|
||||||
|
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
|
||||||
|
);
|
||||||
|
|
||||||
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||||
&[self.primitives.ndarray],
|
&[self.primitives.ndarray],
|
||||||
@ -1497,7 +1500,10 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
||||||
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
||||||
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
||||||
PrimDef::FunNpReshape => {
|
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
|
||||||
|
// These two functions have the same function signature.
|
||||||
|
// Mixed together for convenience.
|
||||||
|
|
||||||
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
|
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
|
||||||
|
|
||||||
create_fn_by_codegen(
|
create_fn_by_codegen(
|
||||||
@ -1528,7 +1534,15 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||||
|
|
||||||
let new_ndarray = ndarray.reshape_or_copy(generator, ctx, ndims, shape);
|
let new_ndarray = match prim {
|
||||||
|
PrimDef::FunNpBroadcastTo => {
|
||||||
|
ndarray.broadcast_to(generator, ctx, ndims, shape)
|
||||||
|
}
|
||||||
|
PrimDef::FunNpReshape => {
|
||||||
|
ndarray.reshape_or_copy(generator, ctx, ndims, shape)
|
||||||
|
}
|
||||||
|
_ => unreachable!(),
|
||||||
|
};
|
||||||
Ok(Some(new_ndarray.instance.value.as_basic_value_enum()))
|
Ok(Some(new_ndarray.instance.value.as_basic_value_enum()))
|
||||||
}),
|
}),
|
||||||
)
|
)
|
||||||
|
@ -59,6 +59,7 @@ pub enum PrimDef {
|
|||||||
FunNpStrides,
|
FunNpStrides,
|
||||||
|
|
||||||
// NumPy ndarray view functions
|
// NumPy ndarray view functions
|
||||||
|
FunNpBroadcastTo,
|
||||||
FunNpTranspose,
|
FunNpTranspose,
|
||||||
FunNpReshape,
|
FunNpReshape,
|
||||||
|
|
||||||
@ -252,6 +253,7 @@ impl PrimDef {
|
|||||||
PrimDef::FunNpStrides => fun("np_strides", None),
|
PrimDef::FunNpStrides => fun("np_strides", None),
|
||||||
|
|
||||||
// NumPy NDArray view functions
|
// NumPy NDArray view functions
|
||||||
|
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
|
||||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||||
|
|
||||||
|
@ -1543,7 +1543,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
// 2-argument ndarray n-dimensional factory functions
|
// 2-argument ndarray n-dimensional factory functions
|
||||||
if id == &"np_reshape".into() && args.len() == 2 {
|
if ["np_reshape".into(), "np_broadcast_to".into()].contains(id) && args.len() == 2 {
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
let arg0 = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
let shape_expr = args.remove(0);
|
let shape_expr = args.remove(0);
|
||||||
|
@ -180,6 +180,7 @@ def patch(module):
|
|||||||
module.np_array = np.array
|
module.np_array = np.array
|
||||||
|
|
||||||
# NumPy NDArray view functions
|
# NumPy NDArray view functions
|
||||||
|
module.np_broadcast_to = np.broadcast_to
|
||||||
module.np_transpose = np.transpose
|
module.np_transpose = np.transpose
|
||||||
module.np_reshape = np.reshape
|
module.np_reshape = np.reshape
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user