core/ndstrides: implement binop

This commit is contained in:
lyken 2024-08-25 00:04:10 +08:00 committed by David Mak
parent fbfc0b293a
commit 9e40c83490
1 changed files with 59 additions and 81 deletions

View File

@ -8,7 +8,10 @@ use std::{
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{AnyType, BasicType, BasicTypeEnum},
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
values::{
BasicValue, BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue,
StructValue,
},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::{chain, izip, Either, Itertools};
@ -34,7 +37,10 @@ use super::{
need_sret, numpy,
object::{
any::AnyObject,
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject},
ndarray::{
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, NDArrayOut,
ScalarOrNDArray,
},
},
stmt::{
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
@ -1549,99 +1555,71 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let left =
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty1, value: left_val });
let right =
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty2, value: right_val });
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
// Inhomogeneous binary operations are not supported.
assert!(ctx.unifier.unioned(left.get_dtype(), right.get_dtype()));
if is_ndarray1 && is_ndarray2 {
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
let common_dtype = left.get_dtype();
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
let out = match op.variant {
BinopVariant::Normal => NDArrayOut::NewNDArray { dtype: common_dtype },
BinopVariant::AugAssign => {
// If this is an augmented assignment.
// `left` has to be an ndarray. If it were a scalar then NAC3 simply doesn't support it.
if let ScalarOrNDArray::NDArray(out_ndarray) = left {
NDArrayOut::WriteToNDArray { ndarray: out_ndarray }
} else {
panic!("left must be an ndarray")
}
}
};
let left_val =
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None);
let right_val =
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None);
let res = if op.base == Operator::MatMult {
// MatMult is the only binop which is not an elementwise op
numpy::ndarray_matmul_2d(
generator,
ctx,
ndarray_dtype1,
match op.variant {
BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(left_val),
},
left_val,
right_val,
)?
} else {
numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ndarray_dtype1,
match op.variant {
BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(left_val),
},
(left_val.as_base_value().into(), false),
(right_val.as_base_value().into(), false),
|generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values(
generator,
ctx,
(&Some(ndarray_dtype1), lhs),
op,
(&Some(ndarray_dtype2), rhs),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ndarray_dtype1,
)
},
)?
};
Ok(Some(res.as_base_value().into()))
if op.base == Operator::MatMult {
// Handle matrix multiplication.
todo!()
} else {
let (ndarray_dtype, _) =
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
let ndarray_val = NDArrayValue::from_ptr_val(
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
llvm_usize,
None,
);
let res = numpy::ndarray_elementwise_binop_impl(
// For other operations, they are all elementwise operations.
// There are only three cases:
// - LHS is a scalar, RHS is an ndarray.
// - LHS is an ndarray, RHS is a scalar.
// - LHS is an ndarray, RHS is an ndarray.
//
// For all cases, the scalar operand is promoted to an ndarray,
// the two are then broadcasted, and starmapped through.
let left = left.to_ndarray(generator, ctx);
let right = right.to_ndarray(generator, ctx);
let result = NDArrayObject::broadcast_starmap(
generator,
ctx,
ndarray_dtype,
match op.variant {
BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(ndarray_val),
},
(left_val, !is_ndarray1),
(right_val, !is_ndarray2),
|generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values(
&[left, right],
out,
|generator, ctx, scalars| {
let left_value = scalars[0];
let right_value = scalars[1];
let result = gen_binop_expr_with_values(
generator,
ctx,
(&Some(ndarray_dtype), lhs),
(&Some(left.dtype), left_value),
op,
(&Some(ndarray_dtype), rhs),
(&Some(right.dtype), right_value),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, ndarray_dtype)
},
)?;
.to_basic_value_enum(ctx, generator, common_dtype)?;
Ok(Some(res.as_base_value().into()))
Ok(result)
},
)
.unwrap();
Ok(Some(ValueEnum::Dynamic(result.instance.value.as_basic_value_enum())))
}
} else {
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());