nac3core: introduce ir runtime for implementing power operator and better range length calculation

This commit is contained in:
ychenfo 2021-12-18 04:44:20 +08:00
parent 52ccf31bb1
commit 9586910bec
11 changed files with 256 additions and 123 deletions

1
Cargo.lock generated
View File

@ -513,6 +513,7 @@ dependencies = [
"nac3parser",
"parking_lot",
"rayon",
"regex",
"test-case",
]

View File

@ -20,3 +20,6 @@ features = ["llvm13-0", "target-x86", "target-arm", "target-riscv", "no-libffi-l
test-case = "1.2.0"
indoc = "1.0"
insta = "1.5"
[build-dependencies]
regex = "1"

54
nac3core/build.rs Normal file
View File

@ -0,0 +1,54 @@
use regex::Regex;
use std::{
env,
io::Write,
process::{Command, Stdio},
};
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
const FILE: &str = "src/codegen/irrt/irrt.c";
println!("cargo:rerun-if-changed={}", FILE);
const FLAG: &[&str] = &[
FILE,
"-O3",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-Wno-implicit-function-declaration",
"-o",
"-",
];
let output = Command::new("clang")
.args(FLAG)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
let output = std::str::from_utf8(&output.stdout).unwrap();
let mut filtered_output = String::with_capacity(output.len());
let regex_filter = regex::Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
for f in regex_filter.captures_iter(output) {
assert!(f.len() == 1);
filtered_output.push_str(&f[0]);
filtered_output.push('\n');
}
let filtered_output = Regex::new("(#\\d+)|(, *![0-9A-Za-z.]+)|(![0-9A-Za-z.]+)|(!\".*?\")")
.unwrap()
.replace_all(&filtered_output, "");
let mut llvm_as = Command::new("llvm-as")
.stdin(Stdio::piped())
.arg("-o")
.arg(&format!("{}/irrt.bc", out_dir))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success())
}

View File

@ -3,7 +3,9 @@ use std::{collections::HashMap, convert::TryInto, iter::once};
use crate::{
codegen::{
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
get_llvm_type, CodeGenContext, CodeGenTask,
get_llvm_type,
irrt::*,
CodeGenContext, CodeGenTask,
},
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{DefinitionId, TopLevelDef},
@ -186,8 +188,8 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
Operator::Pow => integer_power(self, lhs, rhs).into(),
// special implementation?
Operator::Pow => unimplemented!(),
Operator::MatMult => unreachable!(),
}
}
@ -205,6 +207,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
} else {
unreachable!()
};
let float = self.ctx.f64_type();
match op {
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
@ -215,7 +218,6 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
let floor_intrinsic =
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
let float = self.ctx.f64_type();
let fn_type = float.fn_type(&[float.into()], false);
self.module.add_function("llvm.floor.f64", fn_type, None)
});
@ -225,6 +227,16 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
.left()
.unwrap()
}
Operator::Pow => {
let pow_intrinsic = self.module.get_function("llvm.pow.f64").unwrap_or_else(|| {
let fn_type = float.fn_type(&[float.into(), float.into()], false);
self.module.add_function("llvm.pow.f64", fn_type, None)
});
self.builder
.build_call(pow_intrinsic, &[lhs.into(), rhs.into()], "f_pow")
.try_as_basic_value()
.unwrap_left()
}
// special implementation?
_ => unimplemented!(),
}
@ -436,7 +448,8 @@ pub fn gen_call<'ctx, 'a, G: CodeGenerator>(
if let Some(obj) = &obj {
args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None });
}
let params = args.iter().map(|arg| ctx.get_llvm_type(generator, arg.ty).into()).collect_vec();
let params =
args.iter().map(|arg| ctx.get_llvm_type(generator, arg.ty).into()).collect_vec();
let fun_ty = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.ctx.void_type().fn_type(&params, false)
} else {
@ -630,6 +643,45 @@ pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator>(
}
}
pub fn gen_binop_expr<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
left: &Expr<Option<Type>>,
op: &Operator,
right: &Expr<Option<Type>>,
) -> ValueEnum<'ctx> {
let ty1 = ctx.unifier.get_representative(left.custom.unwrap());
let ty2 = ctx.unifier.get_representative(right.custom.unwrap());
let left = generator.gen_expr(ctx, left).unwrap().to_basic_value_enum(ctx, generator);
let right = generator.gen_expr(ctx, right).unwrap().to_basic_value_enum(ctx, generator);
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
ctx.gen_int_ops(op, left, right)
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
ctx.gen_float_ops(op, left, right)
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
// TODO: throw exception when rhs is out of i16 bound
// since llvm intrinsic only support to i16 for f64
let i16_t = ctx.ctx.i16_type();
let pow_intr = ctx.module.get_function("llvm.powi.f64.i16").unwrap_or_else(|| {
let f64_t = ctx.ctx.f64_type();
let ty = f64_t.fn_type(&[f64_t.into(), i16_t.into()], false);
ctx.module.add_function("llvm.powi.f64.i16", ty, None)
});
let right = ctx.builder.build_int_truncate(right.into_int_value(), i16_t, "r_pow");
ctx.builder
.build_call(pow_intr, &[left.into(), right.into()], "f_pow_i")
.try_as_basic_value()
.unwrap_left()
} else {
unimplemented!()
}
.into()
}
pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
@ -766,24 +818,7 @@ pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value().into()
}
ExprKind::BinOp { op, left, right } => {
let ty1 = ctx.unifier.get_representative(left.custom.unwrap());
let ty2 = ctx.unifier.get_representative(right.custom.unwrap());
let left = generator.gen_expr(ctx, left).unwrap().to_basic_value_enum(ctx, generator);
let right = generator.gen_expr(ctx, right).unwrap().to_basic_value_enum(ctx, generator);
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
ctx.gen_int_ops(op, left, right)
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
ctx.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
.into()
}
ExprKind::BinOp { op, left, right } => gen_binop_expr(generator, ctx, left, op, right),
ExprKind::UnaryOp { op, operand } => {
let ty = ctx.unifier.get_representative(operand.custom.unwrap());
let val = generator.gen_expr(ctx, operand).unwrap().to_basic_value_enum(ctx, generator);

View File

@ -0,0 +1,41 @@
typedef _ExtInt(8) int8_t;
typedef unsigned _ExtInt(8) uint8_t;
typedef _ExtInt(32) int32_t;
typedef unsigned _ExtInt(32) uint32_t;
typedef _ExtInt(64) int64_t;
typedef unsigned _ExtInt(64) uint64_t;
# define MAX(a, b) (a > b ? a : b)
# define MIN(a, b) (a > b ? b : a)
int32_t __nac3_irrt_range_slice_len(const int32_t start, const int32_t end, const int32_t step) {
int32_t diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
# define \
DEF_INT_EXP(T) \
T __nac3_irrt_int_exp_##T( \
T base, \
T exp \
) { \
T res = (T)1; \
/* repeated squaring method */ \
do { \
if (exp & 1) res *= base; /* for n odd */ \
exp >>= 1; \
base *= base; \
} while (exp); \
return res; \
} \
DEF_INT_EXP(int32_t)
DEF_INT_EXP(int64_t)

View File

@ -0,0 +1,85 @@
use super::*;
use inkwell::{
attributes::AttributeLoc,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
values::IntValue,
};
pub struct IrrtSymbolTable;
impl IrrtSymbolTable {
const LEN: &'static str = "__nac3_irrt_range_slice_len";
const POWER_I32: &'static str = "__nac3_irrt_int_exp_int32_t";
const POWER_I64: &'static str = "__nac3_irrt_int_exp_int64_t";
}
pub const ALL_IRRT_SYMBOLS: &[&str] =
&[IrrtSymbolTable::LEN, IrrtSymbolTable::POWER_I32, IrrtSymbolTable::POWER_I64];
fn load_irrt<'ctx, 'a>(ctx: &CodeGenContext<'ctx, 'a>, fun: &str) -> FunctionValue<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
);
let irrt_mod = Module::parse_bitcode_from_buffer(&bitcode_buf, ctx.ctx).unwrap();
irrt_mod.set_data_layout(&ctx.module.get_data_layout());
irrt_mod.set_triple(&ctx.module.get_triple());
ctx.module.link_in_module(irrt_mod).unwrap();
for f in ALL_IRRT_SYMBOLS {
let fun = ctx.module.get_function(f).unwrap();
fun.set_linkage(Linkage::Private);
if f == &IrrtSymbolTable::POWER_I32 || f == &IrrtSymbolTable::POWER_I64 {
// add alwaysinline attributes to power function to help them get inlined
// alwaysinline enum = 1, see release/13.x/llvm/include/llvm/IR/Attributes.td
fun.add_attribute(AttributeLoc::Function, ctx.ctx.create_enum_attribute(1, 0));
}
}
ctx.module.get_function(fun).unwrap()
}
// equivalent code:
// def length(start, end, step != 0):
// diff = end - start
// if diff > 0 and step > 0:
// return ((diff - 1) // step) + 1
// elif diff < 0 and step < 0:
// return ((diff + 1) // step) + 1
// else:
// return 0
pub fn calculate_len_for_slice_range<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const FUN_SYMBOL: &str = IrrtSymbolTable::LEN;
let len_func =
ctx.module.get_function(FUN_SYMBOL).unwrap_or_else(|| load_irrt(ctx, FUN_SYMBOL));
// TODO: throw exception when step == 0
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.try_as_basic_value()
.left()
.unwrap()
.into_int_value()
}
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width()) {
(32, 32) => IrrtSymbolTable::POWER_I32,
(64, 64) => IrrtSymbolTable::POWER_I64,
_ => unreachable!(),
};
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| load_irrt(ctx, symbol));
// TODO: throw exception when exp < 0
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.try_as_basic_value()
.unwrap_left()
.into_int_value()
}

View File

@ -31,6 +31,7 @@ pub mod concrete_type;
pub mod expr;
mod generator;
pub mod stmt;
pub mod irrt;
#[cfg(test)]
mod test;

View File

@ -1,7 +1,10 @@
use super::{
super::symbol_resolver::ValueEnum, expr::destructure_range, CodeGenContext, CodeGenerator,
};
use crate::typecheck::typedef::Type;
use crate::{
codegen::expr::gen_binop_expr,
typecheck::typedef::Type,
};
use inkwell::{
types::BasicTypeEnum,
values::{BasicValue, BasicValueEnum, PointerValue},
@ -417,26 +420,8 @@ pub fn gen_stmt<'ctx, 'a, G: CodeGenerator>(
StmtKind::For { .. } => return generator.gen_for(ctx, stmt),
StmtKind::With { .. } => return generator.gen_with(ctx, stmt),
StmtKind::AugAssign { target, op, value, .. } => {
let value = {
let ty1 = ctx.unifier.get_representative(target.custom.unwrap());
let ty2 = ctx.unifier.get_representative(value.custom.unwrap());
let left =
generator.gen_expr(ctx, target).unwrap().to_basic_value_enum(ctx, generator);
let right =
generator.gen_expr(ctx, value).unwrap().to_basic_value_enum(ctx, generator);
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
ctx.gen_int_ops(op, left, right)
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
ctx.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
};
generator.gen_assign(ctx, target, value.into());
let value = gen_binop_expr(generator, ctx, target, op, value);
generator.gen_assign(ctx, target, value);
}
_ => unimplemented!(),
};

View File

@ -1,7 +1,10 @@
use std::cell::RefCell;
use inkwell::{IntPredicate::{self, *}, FloatPredicate, values::IntValue};
use crate::{symbol_resolver::SymbolValue, codegen::expr::destructure_range};
use super::*;
use crate::{
codegen::{expr::destructure_range, irrt::*},
symbol_resolver::SymbolValue,
};
use inkwell::{FloatPredicate, IntPredicate};
use std::cell::RefCell;
type BuiltinInfo = (
Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>,
@ -17,7 +20,6 @@ pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
let string = primitives.0.str;
let num_ty = primitives.1.get_fresh_var_with_range(&[int32, int64, float, boolean]);
let var_map: HashMap<_, _> = vec![(num_ty.1, num_ty.0)].into_iter().collect();
let top_level_def_list = vec![
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
0,
@ -622,78 +624,3 @@ pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
]
)
}
// equivalent code:
// def length(start, end, step != 0):
// diff = end - start
// if diff > 0 and step > 0:
// return ((diff - 1) // step) + 1
// elif diff < 0 and step < 0:
// return ((diff + 1) // step) + 1
// else:
// return 0
pub fn calculate_len_for_slice_range<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
let int32 = ctx.ctx.i32_type();
let start = ctx.builder.build_int_s_extend(start, int32, "start");
let end = ctx.builder.build_int_s_extend(end, int32, "end");
let step = ctx.builder.build_int_s_extend(step, int32, "step");
let diff = ctx.builder.build_int_sub(end, start, "diff");
let diff_pos = ctx.builder.build_int_compare(SGT, diff, int32.const_zero(), "diffpos");
let step_pos = ctx.builder.build_int_compare(SGT, step, int32.const_zero(), "steppos");
let test_1 = ctx.builder.build_and(diff_pos, step_pos, "bothpos");
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_bb = ctx.ctx.append_basic_block(current, "then");
let else_bb = ctx.ctx.append_basic_block(current, "else");
let then_bb_2 = ctx.ctx.append_basic_block(current, "then_2");
let else_bb_2 = ctx.ctx.append_basic_block(current, "else_2");
let cont_bb_2 = ctx.ctx.append_basic_block(current, "cont_2");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(test_1, then_bb, else_bb);
ctx.builder.position_at_end(then_bb);
let length_pos = {
let diff_pos_min_1 = ctx.builder.build_int_sub(diff, int32.const_int(1, false), "diffminone");
let length_pos = ctx.builder.build_int_signed_div(diff_pos_min_1, step, "div");
ctx.builder.build_int_add(length_pos, int32.const_int(1, false), "add1")
};
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(else_bb);
let phi_1 = {
let diff_neg = ctx.builder.build_int_compare(SLT, diff, int32.const_zero(), "diffneg");
let step_neg = ctx.builder.build_int_compare(SLT, step, int32.const_zero(), "stepneg");
let test_2 = ctx.builder.build_and(diff_neg, step_neg, "bothneg");
ctx.builder.build_conditional_branch(test_2, then_bb_2, else_bb_2);
ctx.builder.position_at_end(then_bb_2);
let length_neg = {
let diff_neg_add_1 = ctx.builder.build_int_add(diff, int32.const_int(1, false), "diffminone");
let length_neg = ctx.builder.build_int_signed_div(diff_neg_add_1, step, "div");
ctx.builder.build_int_add(length_neg, int32.const_int(1, false), "add1")
};
ctx.builder.build_unconditional_branch(cont_bb_2);
ctx.builder.position_at_end(else_bb_2);
let length_zero = int32.const_zero();
ctx.builder.build_unconditional_branch(cont_bb_2);
ctx.builder.position_at_end(cont_bb_2);
let phi_1 = ctx.builder.build_phi(int32, "lenphi1");
phi_1.add_incoming(&[(&length_neg, then_bb_2), (&length_zero, else_bb_2)]);
phi_1.as_basic_value().into_int_value()
};
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(cont_bb);
let phi = ctx.builder.build_phi(int32, "lenphi");
phi.add_incoming(&[(&length_pos, then_bb), (&phi_1, cont_bb_2)]);
phi.as_basic_value().into_int_value()
}

View File

@ -183,7 +183,7 @@ pub fn impl_cmpop(
}
}
/// Add, Sub, Mult, Pow
/// Add, Sub, Mult
pub fn impl_basic_arithmetic(
unifier: &mut Unifier,
store: &PrimitiveStore,

View File

@ -268,6 +268,7 @@ fn main() {
let builder = PassManagerBuilder::create();
builder.set_optimization_level(OptimizationLevel::Aggressive);
let passes = PassManager::create(());
builder.set_inliner_with_threshold(255);
builder.populate_module_pass_manager(&passes);
passes.run_on(module);