[artiq] codegen: Reimplement polymorphic_print for strided ndarray

Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
This commit is contained in:
David Mak 2024-11-29 16:40:40 +08:00
parent e965a7c7ce
commit 73b0f2bcc9

View File

@ -12,11 +12,12 @@ use pyo3::{
PyObject, PyResult, Python, PyObject, PyResult, Python,
}; };
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
use nac3core::{ use nac3core::{
codegen::{ codegen::{
expr::{destructure_range, gen_call}, expr::{destructure_range, gen_call},
irrt::ndarray::call_ndarray_calc_size, irrt::ndarray::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave}, llvm_intrinsics::{call_int_smax, call_memcpy, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with}, stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
type_aligned_alloca, type_aligned_alloca,
types::NDArrayType, types::NDArrayType,
@ -43,8 +44,6 @@ use nac3core::{
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap}, typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
}; };
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
/// The parallelism mode within a block. /// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)] #[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode { enum ParallelMode {
@ -465,55 +464,47 @@ fn format_rpc_arg<'ctx>(
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty); let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let ndims = extract_ndims(&ctx.unifier, ndims); let ndims = extract_ndims(&ctx.unifier, ndims);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty); let dtype = ctx.get_llvm_type(generator, elem_ty);
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty, Some(ndims)); let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, Some(ndims))
let llvm_arg = llvm_arg_ty.map_value(arg.into_pointer_value(), None); .map_value(arg.into_pointer_value(), None);
let llvm_usize_sizeof = ctx let ndims = llvm_usize.const_int(ndims, false);
.builder
.build_int_truncate_or_bit_cast(
llvm_arg.get_type().size_type().size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let dims_buf_sz = // `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap(); // the reader.
// Turning it into a ContiguousNDArray to get a `data` that is contiguous.
let carray = ndarray.make_contiguous_ndarray(generator, ctx);
let buffer_size = let sizeof_usize = llvm_usize.size_of();
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap(); let sizeof_usize =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap(); let sizeof_pdata = dtype.ptr_type(AddressSpace::default()).size_of();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg")); let sizeof_pdata =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_pdata, llvm_usize, "").unwrap();
call_memcpy_generic( let sizeof_buf_shape = ctx.builder.build_int_mul(sizeof_usize, ndims, "").unwrap();
ctx, let sizeof_buf = ctx.builder.build_int_add(sizeof_buf_shape, sizeof_pdata, "").unwrap();
buffer.base_ptr(ctx, generator),
llvm_arg.ptr_to_data(ctx),
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
let pbuffer_dims_begin = // buf = { data: void*, shape: [size_t; ndims]; }
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) }; let buf = ctx.builder.build_array_alloca(llvm_i8, sizeof_buf, "rpc.arg").unwrap();
call_memcpy_generic( let buf = ArraySliceValue::from_ptr_val(buf, sizeof_buf, Some("rpc.arg"));
ctx, let buf_data = buf.base_ptr(ctx, generator);
pbuffer_dims_begin, let buf_shape =
llvm_arg.shape().base_ptr(ctx, generator), unsafe { buf.ptr_offset_unchecked(ctx, generator, &sizeof_pdata, None) };
dims_buf_sz,
llvm_i1.const_zero(),
);
buffer.base_ptr(ctx, generator) // Write to `buf->data`
let carray_data = carray.load_data(ctx);
let carray_data = ctx.builder.build_pointer_cast(carray_data, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_data, carray_data, sizeof_pdata, llvm_i1.const_zero());
// Write to `buf->shape`
let carray_shape = ndarray.shape().base_ptr(ctx, generator);
let carray_shape_i8 =
ctx.builder.build_pointer_cast(carray_shape, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_shape, carray_shape_i8, sizeof_buf_shape, llvm_i1.const_zero());
buf.base_ptr(ctx, generator)
} }
_ => { _ => {
@ -554,6 +545,8 @@ fn format_rpc_ret<'ctx>(
let llvm_i32 = ctx.ctx.i32_type(); let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false); let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default()); let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| { let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None) ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
@ -574,8 +567,7 @@ fn format_rpc_ret<'ctx>(
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) { let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i1 = ctx.ctx.bool_type(); let num_0 = llvm_usize.const_zero();
let llvm_usize = generator.get_size_type(ctx.ctx);
// Round `val` up to its modulo `power_of_two` // Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>, let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
@ -601,66 +593,49 @@ fn format_rpc_ret<'ctx>(
.unwrap() .unwrap()
}; };
// Setup types
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let ndarray_ndims = extract_ndims(&ctx.unifier, ndims);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_ret_ty =
NDArrayType::new(generator, ctx.ctx, llvm_elem_ty, Some(ndarray_ndims));
// Allocate the resulting ndarray // Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off. // A condition after format_rpc_ret ensures this will not be popped this off.
let ndarray = llvm_ret_ty.alloca(generator, ctx, Some("rpc.result")); let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&ctx.unifier, ndims);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, Some(ndims))
.construct_uninitialized(generator, ctx, llvm_usize.const_int(ndims, false), None);
// Setup ndims // NOTE: Current content of `ndarray`:
let ndims = // - * `data` - **NOT YET** allocated.
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) { // - * `itemsize` - initialized to be size_of(dtype).
assert_eq!(values.len(), 1); // - * `ndims` - initialized.
// - * `shape` - allocated; has uninitialized values.
// - * `strides` - allocated; has uninitialized values.
u64::try_from(values[0].clone()).unwrap() let itemsize = ndarray.load_itemsize(ctx); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
} else {
unreachable!();
};
// Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_shape(ctx, llvm_usize, ndarray.load_ndims(ctx));
/*
ndarray now:
- .ndims: initialized
- .shape: allocated but uninitialized .shape
- .data: uninitialized
*/
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_elem_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
.unwrap();
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be // Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment // (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_dims = let sizeof_usize = llvm_usize.size_of();
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap(); let sizeof_usize =
let buffer_size = ctx.builder.build_int_truncate_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
let sizeof_ptr = llvm_i8.ptr_type(AddressSpace::default()).size_of();
let sizeof_ptr =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_ptr, llvm_usize, "").unwrap();
let sizeof_shape =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), sizeof_usize, "").unwrap();
// Size of the buffer for the initial `rpc_recv()`.
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_ptr, sizeof_shape, "").unwrap();
let stackptr = call_stacksave(ctx, None); let stackptr = call_stacksave(ctx, None);
let buffer = let buffer = type_aligned_alloca(
type_aligned_alloca(generator, ctx, llvm_i8_8, buffer_size, Some("rpc.buffer")); generator,
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None); ctx,
llvm_i8_8,
unaligned_buffer_size,
Some("rpc.buffer"),
);
let buffer = ArraySliceValue::from_ptr_val(buffer, unaligned_buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape] // The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
// //
@ -668,7 +643,7 @@ fn format_rpc_ret<'ctx>(
let ndarray_nbytes = ctx let ndarray_nbytes = ctx
.build_call_or_invoke( .build_call_or_invoke(
rpc_recv, rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims]. &[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]
"rpc.size.next", "rpc.size.next",
) )
.map(BasicValueEnum::into_int_value) .map(BasicValueEnum::into_int_value)
@ -676,16 +651,14 @@ fn format_rpc_ret<'ctx>(
// debug_assert(ndarray_nbytes > 0) // debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let cmp = ctx
.builder
.build_int_compare(IntPredicate::UGT, ndarray_nbytes, num_0, "")
.unwrap();
ctx.make_assert( ctx.make_assert(
generator, generator,
ctx.builder cmp,
.build_int_compare(
IntPredicate::UGT,
ndarray_nbytes,
ndarray_nbytes.get_type().const_zero(),
"",
)
.unwrap(),
"0:AssertionError", "0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next", "Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None], [None, None, None],
@ -694,49 +667,50 @@ fn format_rpc_ret<'ctx>(
} }
// Copy shape from the buffer to `ndarray.shape`. // Copy shape from the buffer to `ndarray.shape`.
let pbuffer_dims = // We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) }; let pbuffer_shape =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &sizeof_ptr, None) };
let pbuffer_shape =
ctx.builder.build_pointer_cast(pbuffer_shape, llvm_pusize, "").unwrap();
// Copy shape from buffer to `ndarray.shape`
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
call_memcpy_generic(
ctx,
ndarray.shape().base_ptr(ctx, generator),
pbuffer_dims,
sizeof_dims,
llvm_i1.const_zero(),
);
// Restore stack from before allocation of buffer // Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr); call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`. // Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation // `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate) // (for ndarray.create_data() to know how many elements to allocate)
let num_elements = unsafe { ndarray.create_data(generator, ctx) }; // NOTE: the strides of `ndarray` has also been set to contiguous in `create_data`.
call_ndarray_calc_size(generator, ctx, &ndarray.shape(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes) // debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let sizeof_data = let num_elements = ndarray.size(generator, ctx);
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
let expected_ndarray_nbytes =
ctx.builder.build_int_mul(num_elements, itemsize, "").unwrap();
let cmp = ctx
.builder
.build_int_compare(
IntPredicate::UGE,
expected_ndarray_nbytes,
ndarray_nbytes,
"",
)
.unwrap();
ctx.make_assert( ctx.make_assert(
generator, generator,
ctx.builder.build_int_compare(IntPredicate::UGE, cmp,
sizeof_data,
ndarray_nbytes,
"",
).unwrap(),
"0:AssertionError", "0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes", "Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(sizeof_data), Some(ndarray_nbytes), None], [Some(expected_ndarray_nbytes), Some(ndarray_nbytes), None],
ctx.current_loc, ctx.current_loc,
); );
} }
unsafe { ndarray.create_data(generator, ctx) };
let ndarray_data = ndarray.data().base_ptr(ctx, generator); let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
// NOTE: Currently on `prehead_bb` // NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap(); ctx.builder.build_unconditional_branch(head_bb).unwrap();
@ -745,7 +719,7 @@ fn format_rpc_ret<'ctx>(
ctx.builder.position_at_end(head_bb); ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap(); let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]); phi.add_incoming(&[(&ndarray_data, prehead_bb)]);
let alloc_size = ctx let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next") .build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
@ -760,12 +734,13 @@ fn format_rpc_ret<'ctx>(
ctx.builder.position_at_end(alloc_bb); ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T) // Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof); let alloc_size = round_up(ctx, alloc_size, itemsize);
// TODO(Derppening): Candidate for refactor into type_aligned_alloca
let alloc_ptr = ctx let alloc_ptr = ctx
.builder .builder
.build_array_alloca( .build_array_alloca(
llvm_elem_ty, dtype_llvm,
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(), ctx.builder.build_int_unsigned_div(alloc_size, itemsize, "").unwrap(),
"rpc.alloc", "rpc.alloc",
) )
.unwrap(); .unwrap();