diff --git a/nac3core/irrt/irrt.cpp b/nac3core/irrt/irrt.cpp index 09844d3b..39ddba67 100644 --- a/nac3core/irrt/irrt.cpp +++ b/nac3core/irrt/irrt.cpp @@ -11,4 +11,5 @@ #include "irrt/ndarray/indexing.hpp" #include "irrt/ndarray/array.hpp" #include "irrt/ndarray/reshape.hpp" -#include "irrt/ndarray/broadcast.hpp" \ No newline at end of file +#include "irrt/ndarray/broadcast.hpp" +#include "irrt/ndarray/transpose.hpp" \ No newline at end of file diff --git a/nac3core/irrt/irrt/ndarray/transpose.hpp b/nac3core/irrt/irrt/ndarray/transpose.hpp new file mode 100644 index 00000000..662ceb1e --- /dev/null +++ b/nac3core/irrt/irrt/ndarray/transpose.hpp @@ -0,0 +1,143 @@ +#pragma once + +#include "irrt/debug.hpp" +#include "irrt/exception.hpp" +#include "irrt/int_types.hpp" +#include "irrt/ndarray/def.hpp" +#include "irrt/slice.hpp" + +/* + * Notes on `np.transpose(, )` + * + * TODO: `axes`, if specified, can actually contain negative indices, + * but it is not documented in numpy. + * + * Supporting it for now. + */ + +namespace { +namespace ndarray::transpose { +/** + * @brief Do assertions on `` in `np.transpose(, )`. + * + * Note that `np.transpose`'s `` argument is optional. If the argument + * is specified but the user, use this function to do assertions on it. + * + * @param ndims The number of dimensions of `` + * @param num_axes Number of elements in `` as specified by the user. + * This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown. + * @param axes The user specified ``. + */ +template +void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) { + if (ndims != num_axes) { + raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM); + } + + // TODO: Optimize this + bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims); + for (SizeT i = 0; i < ndims; i++) + axe_specified[i] = false; + + for (SizeT i = 0; i < ndims; i++) { + SizeT axis = slice::resolve_index_in_length(ndims, axes[i]); + if (axis == -1) { + // TODO: numpy actually throws a `numpy.exceptions.AxisError` + raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims, + NO_PARAM); + } + + if (axe_specified[axis]) { + raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM); + } + + axe_specified[axis] = true; + } +} + +/** + * @brief Create a transpose view of `src_ndarray` and perform proper assertions. + * + * This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, )`. + * If `` is supposed to be `None`, caller can pass in a `nullptr` to ``. + * + * The transpose view created is returned by modifying `dst_ndarray`. + * + * The caller is responsible for setting up `dst_ndarray` before calling this function. + * Here is what this function expects from `dst_ndarray` when called: + * - `dst_ndarray->data` does not have to be initialized. + * - `dst_ndarray->itemsize` does not have to be initialized. + * - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`. + * - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values. + * - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values. + * When this function call ends: + * - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`) + * - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize` + * - `dst_ndarray->ndims` is unchanged + * - `dst_ndarray->shape` is updated according to how `np.transpose` works + * - `dst_ndarray->strides` is updated according to how `np.transpose` works + * + * @param src_ndarray The NDArray to build a transpose view on + * @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above, + * @param num_axes Number of elements in axes. Unused if `axes` is nullptr. + * @param axes Axes permutation. Set it to `nullptr` if `` is `None`. + */ +template +void transpose(const NDArray* src_ndarray, NDArray* dst_ndarray, SizeT num_axes, const SizeT* axes) { + debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims); + const auto ndims = src_ndarray->ndims; + + if (axes != nullptr) + assert_transpose_axes(ndims, num_axes, axes); + + dst_ndarray->data = src_ndarray->data; + dst_ndarray->itemsize = src_ndarray->itemsize; + + // Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes. + if (axes == nullptr) { + // `np.transpose(, axes=None)` + + /* + * Minor note: `np.transpose(, axes=None)` is equivalent to + * `np.transpose(, axes=[N-1, N-2, ..., 0])` - basically it + * is reversing the order of strides and shape. + * + * This is a fast implementation to handle this special (but very common) case. + */ + + for (SizeT axis = 0; axis < ndims; axis++) { + dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1]; + dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1]; + } + } else { + // `np.transpose(, )` + + // Permute strides and shape according to `axes`, while resolving negative indices in `axes` + for (SizeT axis = 0; axis < ndims; axis++) { + // `i` cannot be OUT_OF_BOUNDS because of assertions + SizeT i = slice::resolve_index_in_length(ndims, axes[axis]); + + dst_ndarray->shape[axis] = src_ndarray->shape[i]; + dst_ndarray->strides[axis] = src_ndarray->strides[i]; + } + } +} +} // namespace ndarray::transpose +} // namespace + +extern "C" { +using namespace ndarray::transpose; +void __nac3_ndarray_transpose(const NDArray* src_ndarray, + NDArray* dst_ndarray, + int32_t num_axes, + const int32_t* axes) { + transpose(src_ndarray, dst_ndarray, num_axes, axes); +} + +void __nac3_ndarray_transpose64(const NDArray* src_ndarray, + NDArray* dst_ndarray, + int64_t num_axes, + const int64_t* axes) { + transpose(src_ndarray, dst_ndarray, num_axes, axes); +} +} \ No newline at end of file diff --git a/nac3core/src/codegen/irrt/ndarray/mod.rs b/nac3core/src/codegen/irrt/ndarray/mod.rs index c640042b..ba22568e 100644 --- a/nac3core/src/codegen/irrt/ndarray/mod.rs +++ b/nac3core/src/codegen/irrt/ndarray/mod.rs @@ -22,6 +22,7 @@ pub use broadcast::*; pub use indexing::*; pub use iter::*; pub use reshape::*; +pub use transpose::*; mod array; mod basic; @@ -29,6 +30,7 @@ mod broadcast; mod indexing; mod iter; mod reshape; +mod transpose; /// Generates a call to `__nac3_ndarray_calc_size`. Returns a /// [`usize`][CodeGenerator::get_size_type] representing the calculated total size. diff --git a/nac3core/src/codegen/irrt/ndarray/transpose.rs b/nac3core/src/codegen/irrt/ndarray/transpose.rs new file mode 100644 index 00000000..57661fa7 --- /dev/null +++ b/nac3core/src/codegen/irrt/ndarray/transpose.rs @@ -0,0 +1,48 @@ +use inkwell::{values::IntValue, AddressSpace}; + +use crate::codegen::{ + expr::infer_and_call_function, + irrt::get_usize_dependent_function_name, + values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor}, + CodeGenContext, CodeGenerator, +}; + +/// Generates a call to `__nac3_ndarray_transpose`. +/// +/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`. +/// +/// `dst_ndarray` must fulfill the following preconditions: +/// +/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`. +/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values. +/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values. +pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>( + generator: &G, + ctx: &CodeGenContext<'ctx, '_>, + src_ndarray: NDArrayValue<'ctx>, + dst_ndarray: NDArrayValue<'ctx>, + axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>, +) { + let llvm_usize = generator.get_size_type(ctx.ctx); + + assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize)); + assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into())); + + let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose"); + infer_and_call_function( + ctx, + &name, + None, + &[ + src_ndarray.as_base_value().into(), + dst_ndarray.as_base_value().into(), + axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(), + axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| { + axes.base_ptr(ctx, generator) + }) + .into(), + ], + None, + None, + ); +} diff --git a/nac3core/src/codegen/numpy.rs b/nac3core/src/codegen/numpy.rs index ce4e2059..fdbb716b 100644 --- a/nac3core/src/codegen/numpy.rs +++ b/nac3core/src/codegen/numpy.rs @@ -1307,114 +1307,6 @@ pub fn gen_ndarray_fill<'ctx>( Ok(()) } -/// Generates LLVM IR for `ndarray.transpose`. -pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>( - generator: &mut G, - ctx: &mut CodeGenContext<'ctx, '_>, - (x1_ty, x1): (Type, BasicValueEnum<'ctx>), -) -> Result, String> { - const FN_NAME: &str = "ndarray_transpose"; - - let llvm_usize = generator.get_size_type(ctx.ctx); - - if let BasicValueEnum::PointerValue(n1) = x1 { - let llvm_ndarray_ty = NDArrayType::from_unifier_type(generator, ctx, x1_ty); - let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); - let n1 = llvm_ndarray_ty.map_value(n1, None); - let n_sz = n1.size(generator, ctx); - - // Dimensions are reversed in the transposed array - let out = create_ndarray_dyn_shape( - generator, - ctx, - elem_ty, - &n1, - |_, ctx, n| Ok(n.load_ndims(ctx)), - |generator, ctx, n, idx| { - let new_idx = ctx.builder.build_int_sub(n.load_ndims(ctx), idx, "").unwrap(); - let new_idx = ctx - .builder - .build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "") - .unwrap(); - unsafe { Ok(n.shape().get_typed_unchecked(ctx, generator, &new_idx, None)) } - }, - ) - .unwrap(); - - gen_for_callback_incrementing( - generator, - ctx, - None, - llvm_usize.const_zero(), - (n_sz, false), - |generator, ctx, _, idx| { - let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) }; - - let new_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; - let rem_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; - ctx.builder.build_store(new_idx, llvm_usize.const_zero()).unwrap(); - ctx.builder.build_store(rem_idx, idx).unwrap(); - - // Incrementally calculate the new index in the transposed array - // For each index, we first decompose it into the n-dims and use those to reconstruct the new index - // The formula used for indexing is: - // idx = dim_n * ( ... (dim2 * (dim0 * dim1) + dim1) + dim2 ... ) + dim_n - gen_for_callback_incrementing( - generator, - ctx, - None, - llvm_usize.const_zero(), - (n1.load_ndims(ctx), false), - |generator, ctx, _, ndim| { - let ndim_rev = - ctx.builder.build_int_sub(n1.load_ndims(ctx), ndim, "").unwrap(); - let ndim_rev = ctx - .builder - .build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "") - .unwrap(); - let dim = unsafe { - n1.shape().get_typed_unchecked(ctx, generator, &ndim_rev, None) - }; - - let rem_idx_val = - ctx.builder.build_load(rem_idx, "").unwrap().into_int_value(); - let new_idx_val = - ctx.builder.build_load(new_idx, "").unwrap().into_int_value(); - - let add_component = - ctx.builder.build_int_unsigned_rem(rem_idx_val, dim, "").unwrap(); - let rem_idx_val = - ctx.builder.build_int_unsigned_div(rem_idx_val, dim, "").unwrap(); - - let new_idx_val = ctx.builder.build_int_mul(new_idx_val, dim, "").unwrap(); - let new_idx_val = - ctx.builder.build_int_add(new_idx_val, add_component, "").unwrap(); - - ctx.builder.build_store(rem_idx, rem_idx_val).unwrap(); - ctx.builder.build_store(new_idx, new_idx_val).unwrap(); - - Ok(()) - }, - llvm_usize.const_int(1, false), - )?; - - let new_idx_val = ctx.builder.build_load(new_idx, "").unwrap().into_int_value(); - unsafe { out.data().set_unchecked(ctx, generator, &new_idx_val, elem) }; - Ok(()) - }, - llvm_usize.const_int(1, false), - )?; - - Ok(out.as_base_value().into()) - } else { - codegen_unreachable!( - ctx, - "{FN_NAME}() not supported for '{}'", - format!("'{}'", ctx.unifier.stringify(x1_ty)) - ) - } -} - /// Generates LLVM IR for `ndarray.dot`. /// Calculate inner product of two vectors or literals /// For matrix multiplication use `np_matmul` diff --git a/nac3core/src/codegen/values/ndarray/view.rs b/nac3core/src/codegen/values/ndarray/view.rs index 8334d379..450f7444 100644 --- a/nac3core/src/codegen/values/ndarray/view.rs +++ b/nac3core/src/codegen/values/ndarray/view.rs @@ -1,6 +1,6 @@ use std::iter::{once, repeat_n}; -use inkwell::values::IntValue; +use inkwell::values::{IntValue, PointerValue}; use itertools::Itertools; use crate::codegen::{ @@ -9,7 +9,7 @@ use crate::codegen::{ types::ndarray::NDArrayType, values::{ ndarray::{NDArrayValue, RustNDIndex}, - ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, + ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter, }, CodeGenContext, CodeGenerator, }; @@ -108,4 +108,50 @@ impl<'ctx> NDArrayValue<'ctx> { dst_ndarray } + + /// Create a transposed view on this ndarray like + /// [`np.transpose(, = None)`](https://numpy.org/doc/stable/reference/generated/numpy.transpose.html). + /// + /// * `axes` - If specified, should be an array of the permutation (negative indices are + /// **allowed**). + #[must_use] + pub fn transpose( + &self, + generator: &mut G, + ctx: &mut CodeGenContext<'ctx, '_>, + axes: Option>, + ) -> Self { + assert!(self.ndims.is_some(), "NDArrayValue::transpose is only supported for instances with compile-time known ndims (self.ndims = Some(...))"); + assert!( + axes.is_none_or(|axes| axes.get_type().get_element_type() == self.llvm_usize.into()) + ); + + // Define models + let transposed_ndarray = self.get_type().construct_uninitialized(generator, ctx, None); + + let axes = if let Some(axes) = axes { + let num_axes = self.llvm_usize.const_int(self.ndims.unwrap(), false); + + // `axes = nullptr` if `axes` is unspecified. + let axes = ArraySliceValue::from_ptr_val(axes, num_axes, None); + + Some(TypedArrayLikeAdapter::from( + axes, + |_, _, val| val.into_int_value(), + |_, _, val| val.into(), + )) + } else { + None + }; + + irrt::ndarray::call_nac3_ndarray_transpose( + generator, + ctx, + *self, + transposed_ndarray, + axes.as_ref(), + ); + + transposed_ndarray + } } diff --git a/nac3core/src/toplevel/builtins.rs b/nac3core/src/toplevel/builtins.rs index 3f71b983..538961a6 100644 --- a/nac3core/src/toplevel/builtins.rs +++ b/nac3core/src/toplevel/builtins.rs @@ -1349,7 +1349,12 @@ impl<'a> BuiltinBuilder<'a> { Box::new(move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; - Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?)) + + let ndarray = NDArrayType::from_unifier_type(generator, ctx, arg_ty) + .map_value(arg_val.into_pointer_value(), None); + + let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument + Ok(Some(ndarray.as_base_value().into())) }), ), diff --git a/nac3standalone/demo/src/ndarray.py b/nac3standalone/demo/src/ndarray.py index 374bcf73..170ac14c 100644 --- a/nac3standalone/demo/src/ndarray.py +++ b/nac3standalone/demo/src/ndarray.py @@ -210,6 +210,23 @@ def test_ndarray_nd_idx(): output_float64(x[1, 0]) output_float64(x[1, 1]) +def test_ndarray_transpose(): + x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]]) + y = np_transpose(x) + z = np_transpose(y) + + output_int32(np_shape(x)[0]) + output_int32(np_shape(x)[1]) + output_ndarray_float_2(x) + + output_int32(np_shape(y)[0]) + output_int32(np_shape(y)[1]) + output_ndarray_float_2(y) + + output_int32(np_shape(z)[0]) + output_int32(np_shape(z)[1]) + output_ndarray_float_2(z) + def test_ndarray_reshape(): w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) x = np_reshape(w, (1, 2, 1, -1)) @@ -1502,14 +1519,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar(): output_ndarray_float_2(nextafter_x_zeros) output_ndarray_float_2(nextafter_x_ones) -def test_ndarray_transpose(): - x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]]) - y = np_transpose(x) - z = np_transpose(y) - - output_ndarray_float_2(x) - output_ndarray_float_2(y) - def test_ndarray_dot(): x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0]) y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0]) @@ -1641,6 +1650,7 @@ def run() -> int32: test_ndarray_slices() test_ndarray_nd_idx() + test_ndarray_transpose() test_ndarray_reshape() test_ndarray_broadcast_to() @@ -1807,7 +1817,6 @@ def run() -> int32: test_ndarray_nextafter_broadcast() test_ndarray_nextafter_broadcast_lhs_scalar() test_ndarray_nextafter_broadcast_rhs_scalar() - test_ndarray_transpose() test_ndarray_dot() test_ndarray_cholesky()