nac3artiq: symbol resolver resolve typevar type

This commit is contained in:
ychenfo 2021-11-30 21:44:48 +08:00
parent 41e05cb2ec
commit 6e93e41a3b
2 changed files with 293 additions and 65 deletions

View File

@ -100,10 +100,13 @@ impl Nac3 {
let val = id_fn.call1((member.get_item(1)?,))?.extract()?; let val = id_fn.call1((member.get_item(1)?,))?.extract()?;
name_to_pyid.insert(key.into(), val); name_to_pyid.insert(key.into(), val);
} }
let typings = PyModule::import(py, "typing")?;
let helper = PythonHelper { let helper = PythonHelper {
id_fn: builtins.getattr("id").unwrap().to_object(py), id_fn: builtins.getattr("id").unwrap().to_object(py),
len_fn: builtins.getattr("len").unwrap().to_object(py), len_fn: builtins.getattr("len").unwrap().to_object(py),
type_fn: builtins.getattr("type").unwrap().to_object(py), type_fn: builtins.getattr("type").unwrap().to_object(py),
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
}; };
Ok(( Ok((
module.getattr("__name__")?.extract()?, module.getattr("__name__")?.extract()?,
@ -442,10 +445,13 @@ impl Nac3 {
}; };
let mut synthesized = parse_program(&synthesized).unwrap(); let mut synthesized = parse_program(&synthesized).unwrap();
let builtins = PyModule::import(py, "builtins")?; let builtins = PyModule::import(py, "builtins")?;
let typings = PyModule::import(py, "typing")?;
let helper = PythonHelper { let helper = PythonHelper {
id_fn: builtins.getattr("id").unwrap().to_object(py), id_fn: builtins.getattr("id").unwrap().to_object(py),
len_fn: builtins.getattr("len").unwrap().to_object(py), len_fn: builtins.getattr("len").unwrap().to_object(py),
type_fn: builtins.getattr("type").unwrap().to_object(py), type_fn: builtins.getattr("type").unwrap().to_object(py),
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
}; };
let resolver = Arc::new(Resolver(Arc::new(InnerResolver { let resolver = Arc::new(Resolver(Arc::new(InnerResolver {
id_to_type: self.builtins_ty.clone().into(), id_to_type: self.builtins_ty.clone().into(),

View File

@ -43,6 +43,8 @@ pub struct PythonHelper {
pub type_fn: PyObject, pub type_fn: PyObject,
pub len_fn: PyObject, pub len_fn: PyObject,
pub id_fn: PyObject, pub id_fn: PyObject,
pub origin_ty_fn: PyObject,
pub args_ty_fn: PyObject,
} }
struct PythonValue { struct PythonValue {
@ -133,47 +135,46 @@ impl InnerResolver {
})) }))
} }
fn get_obj_type( // handle python objects that represent types themselves
// primitives and class types should be themselves, use `ty_id` to check,
// TypeVars and GenericAlias(`A[int, bool]`) should use `ty_ty_id` to check
// the `bool` value returned indicates whether they are instantiated or not
fn get_pyty_obj_type(
&self, &self,
py: Python, py: Python,
obj: &PyAny, pyty: &PyAny,
unifier: &mut Unifier, unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>], defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
) -> PyResult<Option<Type>> { ) -> PyResult<Result<(Type, bool), String>> {
let ty_id: u64 = self let ty_id: u64 = self
.helper .helper
.id_fn .id_fn
.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))? .call1(py, (pyty,))?
.extract(py)?;
let ty_ty_id: u64 = self
.helper
.id_fn
.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?
.extract(py)?; .extract(py)?;
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 { if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
Ok(Some(primitives.int32)) Ok(Ok((primitives.int32, true)))
} else if ty_id == self.primitive_ids.int64 { } else if ty_id == self.primitive_ids.int64 {
Ok(Some(primitives.int64)) Ok(Ok((primitives.int64, true)))
} else if ty_id == self.primitive_ids.bool { } else if ty_id == self.primitive_ids.bool {
Ok(Some(primitives.bool)) Ok(Ok((primitives.bool, true)))
} else if ty_id == self.primitive_ids.float { } else if ty_id == self.primitive_ids.float {
Ok(Some(primitives.float)) Ok(Ok((primitives.float, true)))
} else if ty_id == self.primitive_ids.list { } else if ty_id == self.primitive_ids.list {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?; // do not handle type var param and concrete check here
if len == 0 {
let var = unifier.get_fresh_var().0; let var = unifier.get_fresh_var().0;
let list = unifier.add_ty(TypeEnum::TList { ty: var }); let list = unifier.add_ty(TypeEnum::TList { ty: var });
Ok(Some(list)) Ok(Ok((list, false)))
} else {
let ty = self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
Ok(ty.map(|ty| unifier.add_ty(TypeEnum::TList { ty })))
}
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
let elements: &PyTuple = obj.cast_as()?; // do not handle type var param and concrete check here
let types: Result<Option<Vec<_>>, _> = elements Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
.iter() } else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).cloned() {
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id) {
let def = defs[def_id.0].read(); let def = defs[def_id.0].read();
if let TopLevelDef::Class { if let TopLevelDef::Class {
object_id, object_id,
@ -183,54 +184,275 @@ impl InnerResolver {
.. ..
} = &*def } = &*def
{ {
let var_map: HashMap<_, _> = type_vars // do not handle type var param and concrete check here, and no subst
Ok(Ok({
let ty = TypeEnum::TObj {
obj_id: *object_id,
params: RefCell::new({
type_vars
.iter() .iter()
.map(|var| { .map(|x| {
( if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) { (*id, *x)
*id } else {
println!("{}", unifier.default_stringify(*x));
unreachable!()
}
}).collect()
}),
fields: RefCell::new({
let mut res = methods
.iter()
.map(|(iden, ty, _)| (*iden, (*ty, false)))
.collect::<HashMap<_, _>>();
res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2))));
res
})
};
// here also false, later instantiation use python object to check compatible
(unifier.add_ty(ty), false)
}))
} else {
// only object is supported, functions are not supported
unreachable!("function type is not supported, should not be queried")
}
} else if ty_ty_id == self.primitive_ids.typevar {
let constraint_types = {
let constraints = pyty.getattr("__constraints__").unwrap();
let mut result: Vec<Type> = vec![];
for i in 0.. {
if let Ok(constr) = constraints.get_item(i) {
result.push({
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
Ok((ty, _)) => {
if unifier.is_concrete(ty, &[]) {
ty
} else {
return Ok(Err(format!(
"the {}th constraint of TypeVar `{}` is not concrete",
i + 1,
pyty.getattr("__name__")?.extract::<String>()?
)))
}
},
Err(err) => return Ok(Err(err))
}
})
} else {
break;
}
}
result
};
let res = unifier.get_fresh_var_with_range(&constraint_types).0;
Ok(Ok((res, true)))
} else if ty_ty_id == self.primitive_ids.generic_alias.0 || ty_ty_id == self.primitive_ids.generic_alias.1 {
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
let args: &PyTuple = args.cast_as(py)?;
let origin_ty = match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
Ok((ty, false)) => ty,
Ok((_, true)) => return Ok(Err("instantiated type does not take type parameters".into())),
Err(err) => return Ok(Err(err))
};
match &*unifier.get_ty(origin_ty) {
TypeEnum::TList { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err))
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
panic!("type list should take concrete parameters in type var ranges")
}
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
} else {
return Ok(Err(format!("type list needs exactly 1 type parameters, found {}", args.len())))
}
},
TypeEnum::TTuple { .. } => {
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) if !args.is_empty() => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type tuple should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
},
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
let params = &*params.borrow();
if params.len() != args.len() {
return Ok(Err(format!(
"for class #{}, expect {} type parameters, got {}.",
obj_id.0,
params.len(),
args.len(),
)))
}
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type class should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
};
params
.iter()
.zip(args.iter())
.map(|((id, _), ty)| (*id, *ty))
.collect::<HashMap<_, _>>()
};
Ok(Ok((unifier.subst(origin_ty, &subst).unwrap_or(origin_ty), true)))
},
TypeEnum::TVirtual { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err))
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
panic!("virtual class should take concrete parameters in type var ranges")
}
Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true)))
} else {
return Ok(Err(format!("virtual class needs exactly 1 type parameters, found {}", args.len())))
}
}
_ => unimplemented!()
}
} else if ty_id == self.primitive_ids.virtual_id {
Ok(Ok(({
let ty = TypeEnum::TVirtual { ty: unifier.get_fresh_var().0 };
unifier.add_ty(ty)
}, false)))
} else {
Ok(Err("unknown type".into()))
}
}
fn get_obj_type(
&self,
py: Python,
obj: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Option<Type>> {
let ty = self.helper.type_fn.call1(py, (obj,)).unwrap();
let (extracted_ty, inst_check) = match self.get_pyty_obj_type(
py,
{
if [self.primitive_ids.typevar,
self.primitive_ids.generic_alias.0,
self.primitive_ids.generic_alias.1
].contains(&self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?) {
obj
} else {
ty.as_ref(py)
}
},
unifier,
defs,
primitives
)? {
Ok(s) => s,
Err(_) => return Ok(None)
};
return match (&*unifier.get_ty(extracted_ty), inst_check) {
// do the instantiation for these three types
(TypeEnum::TList { ty }, false) => {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
assert!(matches!(
&*unifier.get_ty(extracted_ty),
TypeEnum::TVar { meta: nac3core::typecheck::typedef::TypeVarMeta::Generic, range, .. }
if range.borrow().is_empty()
));
Ok(Some(extracted_ty))
} else {
let actual_ty = self
.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
if let Some(actual_ty) = actual_ty {
unifier.unify(*ty, actual_ty).unwrap();
Ok(Some(extracted_ty))
} else {
Ok(None)
}
}
}
(TypeEnum::TTuple { .. }, false) => {
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Option<Vec<_>>, _> = elements
.iter()
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
}
(TypeEnum::TObj { params, fields, .. }, false) => {
let var_map = params
.borrow()
.iter()
.map(|(id_var, ty)| {
if let TypeEnum::TVar { id, range, .. } = &*unifier.get_ty(*ty) {
assert_eq!(*id, *id_var);
(*id, unifier.get_fresh_var_with_range(&range.borrow()).0)
} else { } else {
unreachable!() unreachable!()
},
unifier.get_fresh_var().0,
)
})
.collect();
let mut fields_ty = HashMap::new();
for method in methods.iter() {
fields_ty.insert(method.0, (method.1, false));
} }
for field in fields.iter() { })
let name: String = field.0.into(); .collect::<HashMap<_, _>>();
// loop through non-function fields of the class to get the instantiated value
for field in fields.borrow().iter() {
let name: String = (*field.0).into();
if let TypeEnum::TFunc( .. ) = &*unifier.get_ty(field.1.0) {
continue;
} else {
let field_data = obj.getattr(&name)?; let field_data = obj.getattr(&name)?;
let ty = self let ty = self
.get_obj_type(py, field_data, unifier, defs, primitives)? .get_obj_type(py, field_data, unifier, defs, primitives)?
.unwrap_or(primitives.none); .unwrap_or(primitives.none);
let field_ty = unifier.subst(field.1, &var_map).unwrap_or(field.1); let field_ty = unifier.subst(field.1.0, &var_map).unwrap_or(field.1.0);
if unifier.unify(ty, field_ty).is_err() { if unifier.unify(ty, field_ty).is_err() {
// field type mismatch // field type mismatch
return Ok(None); return Ok(None);
} }
fields_ty.insert(field.0, (ty, field.2)); }
} }
for (_, ty) in var_map.iter() { for (_, ty) in var_map.iter() {
// must be concrete type // must be concrete type
if !unifier.is_concrete(*ty, &[]) { if !unifier.is_concrete(*ty, &[]) {
return Ok(None); return Ok(None)
} }
} }
Ok(Some(unifier.add_ty(TypeEnum::TObj { return Ok(Some(unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty)));
obj_id: *object_id,
fields: RefCell::new(fields_ty),
params: RefCell::new(var_map),
})))
} else {
// only object is supported, functions are not supported
Ok(None)
}
} else {
Ok(None)
} }
_ => Ok(Some(extracted_ty))
};
} }
fn get_obj_value<'ctx, 'a>( fn get_obj_value<'ctx, 'a>(