nac3artiq: symbol resolver resolve typevar type
This commit is contained in:
parent
41e05cb2ec
commit
6e93e41a3b
|
@ -100,10 +100,13 @@ impl Nac3 {
|
|||
let val = id_fn.call1((member.get_item(1)?,))?.extract()?;
|
||||
name_to_pyid.insert(key.into(), val);
|
||||
}
|
||||
let typings = PyModule::import(py, "typing")?;
|
||||
let helper = PythonHelper {
|
||||
id_fn: builtins.getattr("id").unwrap().to_object(py),
|
||||
len_fn: builtins.getattr("len").unwrap().to_object(py),
|
||||
type_fn: builtins.getattr("type").unwrap().to_object(py),
|
||||
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
|
||||
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
|
||||
};
|
||||
Ok((
|
||||
module.getattr("__name__")?.extract()?,
|
||||
|
@ -442,10 +445,13 @@ impl Nac3 {
|
|||
};
|
||||
let mut synthesized = parse_program(&synthesized).unwrap();
|
||||
let builtins = PyModule::import(py, "builtins")?;
|
||||
let typings = PyModule::import(py, "typing")?;
|
||||
let helper = PythonHelper {
|
||||
id_fn: builtins.getattr("id").unwrap().to_object(py),
|
||||
len_fn: builtins.getattr("len").unwrap().to_object(py),
|
||||
type_fn: builtins.getattr("type").unwrap().to_object(py),
|
||||
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
|
||||
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
|
||||
};
|
||||
let resolver = Arc::new(Resolver(Arc::new(InnerResolver {
|
||||
id_to_type: self.builtins_ty.clone().into(),
|
||||
|
|
|
@ -43,6 +43,8 @@ pub struct PythonHelper {
|
|||
pub type_fn: PyObject,
|
||||
pub len_fn: PyObject,
|
||||
pub id_fn: PyObject,
|
||||
pub origin_ty_fn: PyObject,
|
||||
pub args_ty_fn: PyObject,
|
||||
}
|
||||
|
||||
struct PythonValue {
|
||||
|
@ -133,47 +135,46 @@ impl InnerResolver {
|
|||
}))
|
||||
}
|
||||
|
||||
fn get_obj_type(
|
||||
// handle python objects that represent types themselves
|
||||
// primitives and class types should be themselves, use `ty_id` to check,
|
||||
// TypeVars and GenericAlias(`A[int, bool]`) should use `ty_ty_id` to check
|
||||
// the `bool` value returned indicates whether they are instantiated or not
|
||||
fn get_pyty_obj_type(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
pyty: &PyAny,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
) -> PyResult<Option<Type>> {
|
||||
) -> PyResult<Result<(Type, bool), String>> {
|
||||
let ty_id: u64 = self
|
||||
.helper
|
||||
.id_fn
|
||||
.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?
|
||||
.call1(py, (pyty,))?
|
||||
.extract(py)?;
|
||||
let ty_ty_id: u64 = self
|
||||
.helper
|
||||
.id_fn
|
||||
.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?
|
||||
.extract(py)?;
|
||||
|
||||
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
|
||||
Ok(Some(primitives.int32))
|
||||
Ok(Ok((primitives.int32, true)))
|
||||
} else if ty_id == self.primitive_ids.int64 {
|
||||
Ok(Some(primitives.int64))
|
||||
Ok(Ok((primitives.int64, true)))
|
||||
} else if ty_id == self.primitive_ids.bool {
|
||||
Ok(Some(primitives.bool))
|
||||
Ok(Ok((primitives.bool, true)))
|
||||
} else if ty_id == self.primitive_ids.float {
|
||||
Ok(Some(primitives.float))
|
||||
Ok(Ok((primitives.float, true)))
|
||||
} else if ty_id == self.primitive_ids.list {
|
||||
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
|
||||
if len == 0 {
|
||||
let var = unifier.get_fresh_var().0;
|
||||
let list = unifier.add_ty(TypeEnum::TList { ty: var });
|
||||
Ok(Some(list))
|
||||
} else {
|
||||
let ty = self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
|
||||
Ok(ty.map(|ty| unifier.add_ty(TypeEnum::TList { ty })))
|
||||
}
|
||||
// do not handle type var param and concrete check here
|
||||
let var = unifier.get_fresh_var().0;
|
||||
let list = unifier.add_ty(TypeEnum::TList { ty: var });
|
||||
Ok(Ok((list, false)))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
let elements: &PyTuple = obj.cast_as()?;
|
||||
let types: Result<Option<Vec<_>>, _> = elements
|
||||
.iter()
|
||||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
|
||||
.collect();
|
||||
let types = types?;
|
||||
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
|
||||
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id) {
|
||||
// do not handle type var param and concrete check here
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
|
||||
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).cloned() {
|
||||
let def = defs[def_id.0].read();
|
||||
if let TopLevelDef::Class {
|
||||
object_id,
|
||||
|
@ -183,54 +184,275 @@ impl InnerResolver {
|
|||
..
|
||||
} = &*def
|
||||
{
|
||||
let var_map: HashMap<_, _> = type_vars
|
||||
.iter()
|
||||
.map(|var| {
|
||||
(
|
||||
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
|
||||
*id
|
||||
} else {
|
||||
unreachable!()
|
||||
},
|
||||
unifier.get_fresh_var().0,
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
let mut fields_ty = HashMap::new();
|
||||
for method in methods.iter() {
|
||||
fields_ty.insert(method.0, (method.1, false));
|
||||
}
|
||||
for field in fields.iter() {
|
||||
let name: String = field.0.into();
|
||||
let field_data = obj.getattr(&name)?;
|
||||
let ty = self
|
||||
.get_obj_type(py, field_data, unifier, defs, primitives)?
|
||||
.unwrap_or(primitives.none);
|
||||
let field_ty = unifier.subst(field.1, &var_map).unwrap_or(field.1);
|
||||
if unifier.unify(ty, field_ty).is_err() {
|
||||
// field type mismatch
|
||||
return Ok(None);
|
||||
// do not handle type var param and concrete check here, and no subst
|
||||
Ok(Ok({
|
||||
let ty = TypeEnum::TObj {
|
||||
obj_id: *object_id,
|
||||
params: RefCell::new({
|
||||
type_vars
|
||||
.iter()
|
||||
.map(|x| {
|
||||
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
|
||||
(*id, *x)
|
||||
} else {
|
||||
println!("{}", unifier.default_stringify(*x));
|
||||
unreachable!()
|
||||
}
|
||||
}).collect()
|
||||
}),
|
||||
fields: RefCell::new({
|
||||
let mut res = methods
|
||||
.iter()
|
||||
.map(|(iden, ty, _)| (*iden, (*ty, false)))
|
||||
.collect::<HashMap<_, _>>();
|
||||
res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2))));
|
||||
res
|
||||
})
|
||||
};
|
||||
// here also false, later instantiation use python object to check compatible
|
||||
(unifier.add_ty(ty), false)
|
||||
}))
|
||||
} else {
|
||||
// only object is supported, functions are not supported
|
||||
unreachable!("function type is not supported, should not be queried")
|
||||
}
|
||||
} else if ty_ty_id == self.primitive_ids.typevar {
|
||||
let constraint_types = {
|
||||
let constraints = pyty.getattr("__constraints__").unwrap();
|
||||
let mut result: Vec<Type> = vec![];
|
||||
for i in 0.. {
|
||||
if let Ok(constr) = constraints.get_item(i) {
|
||||
result.push({
|
||||
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
|
||||
Ok((ty, _)) => {
|
||||
if unifier.is_concrete(ty, &[]) {
|
||||
ty
|
||||
} else {
|
||||
return Ok(Err(format!(
|
||||
"the {}th constraint of TypeVar `{}` is not concrete",
|
||||
i + 1,
|
||||
pyty.getattr("__name__")?.extract::<String>()?
|
||||
)))
|
||||
}
|
||||
},
|
||||
Err(err) => return Ok(Err(err))
|
||||
}
|
||||
})
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
result
|
||||
};
|
||||
let res = unifier.get_fresh_var_with_range(&constraint_types).0;
|
||||
Ok(Ok((res, true)))
|
||||
} else if ty_ty_id == self.primitive_ids.generic_alias.0 || ty_ty_id == self.primitive_ids.generic_alias.1 {
|
||||
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
|
||||
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
|
||||
let args: &PyTuple = args.cast_as(py)?;
|
||||
let origin_ty = match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
|
||||
Ok((ty, false)) => ty,
|
||||
Ok((_, true)) => return Ok(Err("instantiated type does not take type parameters".into())),
|
||||
Err(err) => return Ok(Err(err))
|
||||
};
|
||||
|
||||
match &*unifier.get_ty(origin_ty) {
|
||||
TypeEnum::TList { .. } => {
|
||||
if args.len() == 1 {
|
||||
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
|
||||
Ok(ty) => ty,
|
||||
Err(err) => return Ok(Err(err))
|
||||
};
|
||||
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
|
||||
panic!("type list should take concrete parameters in type var ranges")
|
||||
}
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
|
||||
} else {
|
||||
return Ok(Err(format!("type list needs exactly 1 type parameters, found {}", args.len())))
|
||||
}
|
||||
},
|
||||
TypeEnum::TTuple { .. } => {
|
||||
let args = match args
|
||||
.iter()
|
||||
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>, _>>() {
|
||||
Ok(args) if !args.is_empty() => args
|
||||
.into_iter()
|
||||
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
|
||||
panic!("type tuple should take concrete parameters in type var ranges")
|
||||
} else {
|
||||
x
|
||||
}
|
||||
)
|
||||
.collect::<Vec<_>>(),
|
||||
Err(err) => return Ok(Err(err)),
|
||||
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
|
||||
};
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
|
||||
},
|
||||
TypeEnum::TObj { params, obj_id, .. } => {
|
||||
let subst = {
|
||||
let params = &*params.borrow();
|
||||
if params.len() != args.len() {
|
||||
return Ok(Err(format!(
|
||||
"for class #{}, expect {} type parameters, got {}.",
|
||||
obj_id.0,
|
||||
params.len(),
|
||||
args.len(),
|
||||
)))
|
||||
}
|
||||
let args = match args
|
||||
.iter()
|
||||
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>, _>>() {
|
||||
Ok(args) => args
|
||||
.into_iter()
|
||||
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
|
||||
panic!("type class should take concrete parameters in type var ranges")
|
||||
} else {
|
||||
x
|
||||
}
|
||||
)
|
||||
.collect::<Vec<_>>(),
|
||||
Err(err) => return Ok(Err(err)),
|
||||
};
|
||||
params
|
||||
.iter()
|
||||
.zip(args.iter())
|
||||
.map(|((id, _), ty)| (*id, *ty))
|
||||
.collect::<HashMap<_, _>>()
|
||||
};
|
||||
Ok(Ok((unifier.subst(origin_ty, &subst).unwrap_or(origin_ty), true)))
|
||||
},
|
||||
TypeEnum::TVirtual { .. } => {
|
||||
if args.len() == 1 {
|
||||
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
|
||||
Ok(ty) => ty,
|
||||
Err(err) => return Ok(Err(err))
|
||||
};
|
||||
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
|
||||
panic!("virtual class should take concrete parameters in type var ranges")
|
||||
}
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true)))
|
||||
} else {
|
||||
return Ok(Err(format!("virtual class needs exactly 1 type parameters, found {}", args.len())))
|
||||
}
|
||||
}
|
||||
_ => unimplemented!()
|
||||
}
|
||||
} else if ty_id == self.primitive_ids.virtual_id {
|
||||
Ok(Ok(({
|
||||
let ty = TypeEnum::TVirtual { ty: unifier.get_fresh_var().0 };
|
||||
unifier.add_ty(ty)
|
||||
}, false)))
|
||||
} else {
|
||||
Ok(Err("unknown type".into()))
|
||||
}
|
||||
}
|
||||
|
||||
fn get_obj_type(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
) -> PyResult<Option<Type>> {
|
||||
let ty = self.helper.type_fn.call1(py, (obj,)).unwrap();
|
||||
let (extracted_ty, inst_check) = match self.get_pyty_obj_type(
|
||||
py,
|
||||
{
|
||||
if [self.primitive_ids.typevar,
|
||||
self.primitive_ids.generic_alias.0,
|
||||
self.primitive_ids.generic_alias.1
|
||||
].contains(&self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?) {
|
||||
obj
|
||||
} else {
|
||||
ty.as_ref(py)
|
||||
}
|
||||
},
|
||||
unifier,
|
||||
defs,
|
||||
primitives
|
||||
)? {
|
||||
Ok(s) => s,
|
||||
Err(_) => return Ok(None)
|
||||
};
|
||||
return match (&*unifier.get_ty(extracted_ty), inst_check) {
|
||||
// do the instantiation for these three types
|
||||
(TypeEnum::TList { ty }, false) => {
|
||||
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
|
||||
if len == 0 {
|
||||
assert!(matches!(
|
||||
&*unifier.get_ty(extracted_ty),
|
||||
TypeEnum::TVar { meta: nac3core::typecheck::typedef::TypeVarMeta::Generic, range, .. }
|
||||
if range.borrow().is_empty()
|
||||
));
|
||||
Ok(Some(extracted_ty))
|
||||
} else {
|
||||
let actual_ty = self
|
||||
.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
|
||||
if let Some(actual_ty) = actual_ty {
|
||||
unifier.unify(*ty, actual_ty).unwrap();
|
||||
Ok(Some(extracted_ty))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
}
|
||||
(TypeEnum::TTuple { .. }, false) => {
|
||||
let elements: &PyTuple = obj.cast_as()?;
|
||||
let types: Result<Option<Vec<_>>, _> = elements
|
||||
.iter()
|
||||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
|
||||
.collect();
|
||||
let types = types?;
|
||||
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
|
||||
}
|
||||
(TypeEnum::TObj { params, fields, .. }, false) => {
|
||||
let var_map = params
|
||||
.borrow()
|
||||
.iter()
|
||||
.map(|(id_var, ty)| {
|
||||
if let TypeEnum::TVar { id, range, .. } = &*unifier.get_ty(*ty) {
|
||||
assert_eq!(*id, *id_var);
|
||||
(*id, unifier.get_fresh_var_with_range(&range.borrow()).0)
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
// loop through non-function fields of the class to get the instantiated value
|
||||
for field in fields.borrow().iter() {
|
||||
let name: String = (*field.0).into();
|
||||
if let TypeEnum::TFunc( .. ) = &*unifier.get_ty(field.1.0) {
|
||||
continue;
|
||||
} else {
|
||||
let field_data = obj.getattr(&name)?;
|
||||
let ty = self
|
||||
.get_obj_type(py, field_data, unifier, defs, primitives)?
|
||||
.unwrap_or(primitives.none);
|
||||
let field_ty = unifier.subst(field.1.0, &var_map).unwrap_or(field.1.0);
|
||||
if unifier.unify(ty, field_ty).is_err() {
|
||||
// field type mismatch
|
||||
return Ok(None);
|
||||
}
|
||||
}
|
||||
fields_ty.insert(field.0, (ty, field.2));
|
||||
}
|
||||
for (_, ty) in var_map.iter() {
|
||||
// must be concrete type
|
||||
if !unifier.is_concrete(*ty, &[]) {
|
||||
return Ok(None);
|
||||
return Ok(None)
|
||||
}
|
||||
}
|
||||
Ok(Some(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id: *object_id,
|
||||
fields: RefCell::new(fields_ty),
|
||||
params: RefCell::new(var_map),
|
||||
})))
|
||||
} else {
|
||||
// only object is supported, functions are not supported
|
||||
Ok(None)
|
||||
return Ok(Some(unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty)));
|
||||
}
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
_ => Ok(Some(extracted_ty))
|
||||
};
|
||||
}
|
||||
|
||||
fn get_obj_value<'ctx, 'a>(
|
||||
|
|
Loading…
Reference in New Issue