WIP: stuck on #460

This commit is contained in:
lyken 2024-07-16 12:28:08 +08:00
parent d90604b713
commit 496171a4a5
9 changed files with 496 additions and 293 deletions

View File

@ -31,7 +31,9 @@ use crate::{
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef}, toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
typecheck::{ typecheck::{
magic_methods::{Binop, BinopVariant, HasOpInfo}, magic_methods::{Binop, BinopVariant, HasOpInfo},
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap}, typedef::{
iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap,
},
}, },
}; };
use inkwell::{ use inkwell::{
@ -1061,98 +1063,132 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
ctx.builder.build_store(index, zero_size_t).unwrap(); ctx.builder.build_store(index, zero_size_t).unwrap();
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap()); let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
let list; let list;
let list_content; let list_content;
if is_range { // The implementation of the for loop logic depends on
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range")); // the typechecker type of `iter`.
let (start, stop, step) = destructure_range(ctx, iter_val); let iter_ty = iter.custom.unwrap();
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap(); match &*ctx.unifier.get_ty(iter_ty) {
// add 1 to the length as the value is rounded to zero TypeEnum::TObj { obj_id, params, .. }
// the length may be 1 more than the actual length if the division is exact, but the if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
// length is a upper bound only anyway so it does not matter. {
let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap(); // `iter` is a `List[T]`, and `T` is the element type
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap();
// in case length is non-positive
let is_valid =
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check").unwrap();
let list_alloc_size = ctx // Get the `T` out of `List[T]` - it is defined to be the 1st param.
.builder let list_elem_ty = iter_type_vars(params).nth(0).unwrap().ty;
.build_select(
is_valid, let length = ctx
ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len").unwrap(), .build_gep_and_load(
zero_size_t, iter_val.into_pointer_value(),
"listcomp.alloc_size", &[zero_size_t, int32.const_int(1, false)],
Some("length"),
)
.into_int_value();
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp"));
list_content = list.data().base_ptr(ctx, generator);
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
// counter = -1
ctx.builder.build_store(counter, size_t.const_int(u64::MAX, true)).unwrap();
ctx.builder.build_unconditional_branch(test_bb).unwrap();
ctx.builder.position_at_end(test_bb);
let tmp =
ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap();
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap();
ctx.builder.build_store(counter, tmp).unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero_size_t, zero_32],
Some("arr.addr"),
)
.into_pointer_value();
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
generator.gen_assign(ctx, target, val.into(), list_elem_ty)?;
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
// `iter` is a `range(start, stop, step)`, and `int32` is the element type
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
let (start, stop, step) = destructure_range(ctx, iter_val);
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
// add 1 to the length as the value is rounded to zero
// the length may be 1 more than the actual length if the division is exact, but the
// length is a upper bound only anyway so it does not matter.
let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap();
let length =
ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap();
// in case length is non-positive
let is_valid =
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check").unwrap();
let list_alloc_size = ctx
.builder
.build_select(
is_valid,
ctx.builder
.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len")
.unwrap(),
zero_size_t,
"listcomp.alloc_size",
)
.unwrap();
list = allocate_list(
generator,
ctx,
Some(elem_ty),
list_alloc_size.into_int_value(),
Some("listcomp.addr"),
);
list_content = list.data().base_ptr(ctx, generator);
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
ctx.builder
.build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap())
.unwrap();
ctx.builder
.build_conditional_branch(
gen_in_range_check(ctx, start, stop, step),
test_bb,
cont_bb,
)
.unwrap();
ctx.builder.position_at_end(test_bb);
// add and test
let tmp = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(),
step,
"start_loop",
)
.unwrap();
ctx.builder.build_store(i, tmp).unwrap();
ctx.builder
.build_conditional_branch(
gen_in_range_check(ctx, tmp, stop, step),
body_bb,
cont_bb,
)
.unwrap();
ctx.builder.position_at_end(body_bb);
}
_ => {
panic!(
"unsupported iterator type in list comprehension: {}",
ctx.unifier.stringify(iter_ty)
) )
.unwrap(); }
list = allocate_list(
generator,
ctx,
Some(elem_ty),
list_alloc_size.into_int_value(),
Some("listcomp.addr"),
);
list_content = list.data().base_ptr(ctx, generator);
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
ctx.builder
.build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap())
.unwrap();
ctx.builder
.build_conditional_branch(gen_in_range_check(ctx, start, stop, step), test_bb, cont_bb)
.unwrap();
ctx.builder.position_at_end(test_bb);
// add and test
let tmp = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(),
step,
"start_loop",
)
.unwrap();
ctx.builder.build_store(i, tmp).unwrap();
ctx.builder
.build_conditional_branch(gen_in_range_check(ctx, tmp, stop, step), body_bb, cont_bb)
.unwrap();
ctx.builder.position_at_end(body_bb);
} else {
let length = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero_size_t, int32.const_int(1, false)],
Some("length"),
)
.into_int_value();
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp"));
list_content = list.data().base_ptr(ctx, generator);
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
// counter = -1
ctx.builder.build_store(counter, size_t.const_int(u64::MAX, true)).unwrap();
ctx.builder.build_unconditional_branch(test_bb).unwrap();
ctx.builder.position_at_end(test_bb);
let tmp = ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap();
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap();
ctx.builder.build_store(counter, tmp).unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero_size_t, zero_32],
Some("arr.addr"),
)
.into_pointer_value();
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
generator.gen_assign(ctx, target, val.into())?;
} }
// Emits the content of `cont_bb` // Emits the content of `cont_bb`
@ -2190,6 +2226,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
None => None, None => None,
Some(value_expr) => Some( Some(value_expr) => Some(
slice_index_model.review( slice_index_model.review(
ctx.ctx,
generator generator
.gen_expr(ctx, value_expr)? .gen_expr(ctx, value_expr)?
.unwrap() .unwrap()
@ -2210,6 +2247,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
// For nac3core, this should be e.g., an int32 constant, an int32 variable, otherwise its an error // For nac3core, this should be e.g., an int32 constant, an int32 variable, otherwise its an error
let index = slice_index_model.review( let index = slice_index_model.review(
ctx.ctx,
generator generator
.gen_expr(ctx, subscript_expr)? .gen_expr(ctx, subscript_expr)?
.unwrap() .unwrap()
@ -2931,7 +2969,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
let ndarray_ptr_model = PointerModel(StructModel(NpArray { sizet })); let ndarray_ptr_model = PointerModel(StructModel(NpArray { sizet }));
let v = v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?; let v = v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?;
ndarray_ptr_model.review(v.as_any_value_enum()) ndarray_ptr_model.review(ctx.ctx, v.as_any_value_enum())
} else { } else {
return Ok(None); return Ok(None);
}; };

View File

@ -123,11 +123,12 @@ pub trait CodeGenerator {
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>, target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>, value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> ) -> Result<(), String>
where where
Self: Sized, Self: Sized,
{ {
gen_assign(self, ctx, target, value) gen_assign(self, ctx, target, value, value_ty)
} }
/// Generate code for a while expression. /// Generate code for a while expression.

View File

@ -61,7 +61,7 @@ impl<'ctx, 'a> FunctionBuilder<'ctx, 'a> {
}); });
let ret = self.ctx.builder.build_call(function, &param_vals, name).unwrap(); let ret = self.ctx.builder.build_call(function, &param_vals, name).unwrap();
return_model.review(ret.as_any_value_enum()) return_model.review(self.ctx.ctx, ret.as_any_value_enum())
} }
// TODO: Code duplication, but otherwise returning<S: Optic<'ctx>> cannot resolve S if return_optic = None // TODO: Code duplication, but otherwise returning<S: Optic<'ctx>> cannot resolve S if return_optic = None

View File

@ -10,7 +10,7 @@ MemorySetter a
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::BasicTypeEnum, types::{AnyTypeEnum, BasicTypeEnum},
values::{AnyValueEnum, BasicValueEnum}, values::{AnyValueEnum, BasicValueEnum},
}; };
@ -25,15 +25,19 @@ pub trait ModelValue<'ctx>: Clone + Copy {
// Should have been within [`Model<ctx>`], // Should have been within [`Model<ctx>`],
// but rust object safety requirements made it necessary to // but rust object safety requirements made it necessary to
// split this interface out // split this interface out
pub trait CanCheckLLVMType { pub trait CanCheckLLVMType<'ctx> {
fn check_llvm_type<'ctx>(&self, ctx: &'ctx Context) -> Result<(), String>; fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String>;
} }
pub trait Model<'ctx>: Clone + Copy + CanCheckLLVMType + Sized { pub trait Model<'ctx>: Clone + Copy + CanCheckLLVMType<'ctx> + Sized {
type Value: ModelValue<'ctx>; type Value: ModelValue<'ctx>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>; fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>;
fn review(&self, value: AnyValueEnum<'ctx>) -> Self::Value; fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value;
fn alloca(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Pointer<'ctx, Self> { fn alloca(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Pointer<'ctx, Self> {
Pointer { Pointer {

View File

@ -1,9 +1,9 @@
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::{BasicType, BasicTypeEnum, StructType}, types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, StructType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, StructValue}, values::{AnyValueEnum, BasicValue, BasicValueEnum, StructValue},
}; };
use itertools::Itertools; use itertools::{izip, Itertools};
use crate::codegen::CodeGenContext; use crate::codegen::CodeGenContext;
@ -20,7 +20,10 @@ pub struct Field<E> {
struct FieldLLVM<'ctx> { struct FieldLLVM<'ctx> {
gep_index: u64, gep_index: u64,
name: &'ctx str, name: &'ctx str,
llvm_type: Box<dyn CanCheckLLVMType>, llvm_type: BasicTypeEnum<'ctx>,
// Only CanCheckLLVMType is needed, dont put in the whole `Model<'ctx>`
llvm_type_model: Box<dyn CanCheckLLVMType<'ctx> + 'ctx>,
} }
pub struct FieldBuilder<'ctx> { pub struct FieldBuilder<'ctx> {
@ -42,46 +45,27 @@ impl<'ctx> FieldBuilder<'ctx> {
index index
} }
pub fn add_field<E: Model<'ctx>>(&mut self, name: &'static str, element: E) -> Field<E> { pub fn add_field<E: Model<'ctx> + 'ctx>(&mut self, name: &'static str, element: E) -> Field<E> {
let gep_index = self.next_gep_index(); let gep_index = self.next_gep_index();
self.fields.push(FieldLLVM { gep_index, name, llvm_type: element.get_llvm_type(self.ctx) }); self.fields.push(FieldLLVM {
gep_index,
name,
llvm_type: element.get_llvm_type(self.ctx),
llvm_type_model: Box::new(element),
});
Field { gep_index, name, element } Field { gep_index, name, element }
} }
pub fn add_field_auto<E: Model<'ctx> + Default>(&mut self, name: &'static str) -> Field<E> { pub fn add_field_auto<E: Model<'ctx> + Default + 'ctx>(
&mut self,
name: &'static str,
) -> Field<E> {
self.add_field(name, E::default()) self.add_field(name, E::default())
} }
} }
fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> Result<(), String>
where
A: BasicType<'ctx>,
B: BasicType<'ctx>,
{
let expected = expected.as_basic_type_enum();
let got = got.as_basic_type_enum();
// Put those logic into here,
// otherwise there is always a fallback reporting on any kind of mismatch
match (expected, got) {
(BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
if expected.get_bit_width() != got.get_bit_width() {
return Err(format!(
"Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
));
}
}
(expected, got) => {
if expected != got {
return Err(format!("Expected {expected}, got {got}"));
}
}
}
Ok(())
}
pub trait IsStruct<'ctx>: Clone + Copy { pub trait IsStruct<'ctx>: Clone + Copy {
type Fields; type Fields;
@ -98,14 +82,39 @@ pub trait IsStruct<'ctx>: Clone + Copy {
let mut builder = FieldBuilder::new(ctx, self.struct_name()); let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder); // Self::Fields is discarded self.build_fields(&mut builder); // Self::Fields is discarded
let field_types = let field_types = builder.fields.iter().map(|f| f.llvm_type).collect_vec();
builder.fields.iter().map(|field_info| field_info.llvm_type).collect_vec(); ctx.struct_type(&field_types, false)
ctx.struct_type(&field_types, false).as_basic_type_enum().into_pointer_type().get_el
} }
fn check_struct_type(&self) { fn check_struct_type(
// Datatypes behind &self,
// check_basic_types_match ctx: &'ctx Context,
scrutinee: StructType<'ctx>,
) -> Result<(), String> {
// Details about scrutinee
let scrutinee_field_types = scrutinee.get_field_types();
// Details about the defined specifications of this struct
// We will access them through builder
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder);
// Check # of fields
if builder.fields.len() != scrutinee_field_types.len() {
return Err(format!(
"Expecting struct to have {} field(s), but scrutinee has {} field(s)",
builder.fields.len(),
scrutinee_field_types.len()
));
}
// Check the types of each field
// TODO: Traceback?
for (f, scrutinee_field_type) in izip!(builder.fields, scrutinee_field_types) {
f.llvm_type_model.check_llvm_type(ctx, scrutinee_field_type.as_any_type_enum())?;
}
Ok(())
} }
} }
@ -125,8 +134,18 @@ impl<'ctx, S: IsStruct<'ctx>> ModelValue<'ctx> for Struct<'ctx, S> {
} }
impl<'ctx, S: IsStruct<'ctx>> CanCheckLLVMType<'ctx> for StructModel<S> { impl<'ctx, S: IsStruct<'ctx>> CanCheckLLVMType<'ctx> for StructModel<S> {
fn check_llvm_type<'ctx>(&self, ctx: &'ctx Context) -> Result<(), String> { fn check_llvm_type(
todo!() &self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// Check if scrutinee is even a struct type
let AnyTypeEnum::StructType(scrutinee) = scrutinee else {
return Err(format!("Expecting a struct type, but got {scrutinee:?}"));
};
// Ok. now check the struct type *thoroughly*
self.0.check_struct_type(ctx, scrutinee)
} }
} }
@ -137,8 +156,10 @@ impl<'ctx, S: IsStruct<'ctx>> Model<'ctx> for StructModel<S> {
self.0.get_struct_type(ctx).as_basic_type_enum() self.0.get_struct_type(ctx).as_basic_type_enum()
} }
fn review(&self, value: AnyValueEnum<'ctx>) -> Self::Value { fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
// TODO: check structure // Check that `value` is not some bogus values or an incorrect StructValue
self.check_llvm_type(ctx, value.get_type()).unwrap();
Struct { structure: self.0, value: value.into_struct_value() } Struct { structure: self.0, value: value.into_struct_value() }
} }
} }

View File

@ -1,6 +1,6 @@
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::{BasicType, BasicTypeEnum, IntType}, types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, IntValue}, values::{AnyValueEnum, BasicValue, BasicValueEnum, IntValue},
}; };
@ -8,6 +8,38 @@ use crate::codegen::CodeGenContext;
use super::core::*; use super::core::*;
fn check_int_llvm_type<'ctx>(
scrutinee: AnyTypeEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<(), String> {
// Check if llvm_type is int type
let AnyTypeEnum::IntType(scrutinee) = scrutinee else {
return Err(format!("Expecting an int type but got {scrutinee:?}"));
};
// Check bit width
if scrutinee.get_bit_width() != expected_int_type.get_bit_width() {
return Err(format!(
"Expecting an int type of {}-bit(s) but got int type {}-bit(s)",
expected_int_type.get_bit_width(),
scrutinee.get_bit_width()
));
}
Ok(())
}
fn review_int_llvm_value<'ctx>(
value: AnyValueEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<IntValue<'ctx>, String> {
// Check if value is of int type, error if that is anything else
check_int_llvm_type(value.get_type().as_any_type_enum(), expected_int_type)?;
// Ok, it is must be an int
Ok(value.into_int_value())
}
#[derive(Debug, Clone, Copy)] #[derive(Debug, Clone, Copy)]
pub struct IntModel<'ctx>(pub IntType<'ctx>); pub struct IntModel<'ctx>(pub IntType<'ctx>);
@ -20,6 +52,16 @@ impl<'ctx> ModelValue<'ctx> for Int<'ctx> {
} }
} }
impl<'ctx> CanCheckLLVMType<'ctx> for IntModel<'ctx> {
fn check_llvm_type(
&self,
_ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
check_int_llvm_type(scrutinee, self.0)
}
}
impl<'ctx> Model<'ctx> for IntModel<'ctx> { impl<'ctx> Model<'ctx> for IntModel<'ctx> {
type Value = Int<'ctx>; type Value = Int<'ctx>;
@ -27,9 +69,9 @@ impl<'ctx> Model<'ctx> for IntModel<'ctx> {
self.0.as_basic_type_enum() self.0.as_basic_type_enum()
} }
fn review(&self, value: AnyValueEnum<'ctx>) -> Self::Value { fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let int = value.into_int_value(); let int = value.into_int_value();
assert_eq!(int.get_type().get_bit_width(), self.0.get_bit_width()); self.check_llvm_type(ctx, int.get_type().as_any_type_enum()).unwrap();
Int(int) Int(int)
} }
} }
@ -90,6 +132,47 @@ pub struct FixedInt<'ctx, T: IsFixedInt> {
pub value: IntValue<'ctx>, pub value: IntValue<'ctx>,
} }
// Default instance is to enable `FieldBuilder::add_field_auto`
pub trait IsFixedInt: Clone + Copy + Default {
fn get_int_type(ctx: &Context) -> IntType<'_>;
fn get_bit_width() -> u32; // This is required, instead of only relying on get_int_type
}
impl<'ctx, T: IsFixedInt> ModelValue<'ctx> for FixedInt<'ctx, T> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, T: IsFixedInt> CanCheckLLVMType<'ctx> for FixedIntModel<T> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
check_int_llvm_type(scrutinee, T::get_int_type(ctx))
}
}
impl<'ctx, T: IsFixedInt> Model<'ctx> for FixedIntModel<T> {
type Value = FixedInt<'ctx, T>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
T::get_int_type(ctx).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let value = review_int_llvm_value(value, T::get_int_type(ctx)).unwrap();
FixedInt { int: self.0, value }
}
}
impl<'ctx, T: IsFixedInt> FixedIntModel<T> {
pub fn constant(&self, ctx: &'ctx Context, value: u64) -> FixedInt<'ctx, T> {
FixedInt { int: self.0, value: T::get_int_type(ctx).const_int(value, false) }
}
}
impl<'ctx, T: IsFixedInt> FixedInt<'ctx, T> { impl<'ctx, T: IsFixedInt> FixedInt<'ctx, T> {
pub fn to_int(self) -> Int<'ctx> { pub fn to_int(self) -> Int<'ctx> {
Int(self.value) Int(self.value)
@ -111,37 +194,7 @@ impl<'ctx, T: IsFixedInt> FixedInt<'ctx, T> {
} }
} }
// Default instance is to enable `FieldBuilder::add_field_auto` // Some pre-defined fixed ints
pub trait IsFixedInt: Clone + Copy + Default {
fn get_int_type(ctx: &Context) -> IntType<'_>;
fn get_bit_width() -> u32; // This is required, instead of only relying on get_int_type
}
impl<'ctx, T: IsFixedInt> ModelValue<'ctx> for FixedInt<'ctx, T> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, T: IsFixedInt> Model<'ctx> for FixedIntModel<T> {
type Value = FixedInt<'ctx, T>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
T::get_int_type(ctx).as_basic_type_enum()
}
fn review(&self, value: AnyValueEnum<'ctx>) -> Self::Value {
let value = value.into_int_value();
assert_eq!(value.get_type().get_bit_width(), T::get_bit_width());
FixedInt { int: self.0, value }
}
}
impl<'ctx, T: IsFixedInt> FixedIntModel<T> {
pub fn constant(&self, ctx: &'ctx Context, value: u64) -> FixedInt<'ctx, T> {
FixedInt { int: self.0, value: T::get_int_type(ctx).const_int(value, false) }
}
}
#[derive(Debug, Clone, Copy, Default)] #[derive(Debug, Clone, Copy, Default)]
pub struct Bool; pub struct Bool;

View File

@ -1,6 +1,6 @@
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::{BasicType, BasicTypeEnum}, types::{AnyTypeEnum, BasicType, BasicTypeEnum},
values::{AnyValue, AnyValueEnum, BasicValue, BasicValueEnum, PointerValue}, values::{AnyValue, AnyValueEnum, BasicValue, BasicValueEnum, PointerValue},
AddressSpace, AddressSpace,
}; };
@ -31,7 +31,7 @@ impl<'ctx, E: Model<'ctx>> Pointer<'ctx, E> {
pub fn load(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> E::Value { pub fn load(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> E::Value {
let val = ctx.builder.build_load(self.value, name).unwrap(); let val = ctx.builder.build_load(self.value, name).unwrap();
self.element.review(val.as_any_value_enum()) self.element.review(ctx.ctx, val.as_any_value_enum())
} }
pub fn to_opaque(self) -> OpaquePointer<'ctx> { pub fn to_opaque(self) -> OpaquePointer<'ctx> {
@ -59,6 +59,25 @@ impl<'ctx, E: Model<'ctx>> Pointer<'ctx, E> {
} }
} }
impl<'ctx, E: Model<'ctx>> CanCheckLLVMType<'ctx> for PointerModel<E> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// Check if scrutinee is even a PointerValue
let AnyTypeEnum::PointerType(scrutinee) = scrutinee else {
return Err(format!("Expecting a pointer value, but got {scrutinee:?}"));
};
// Check the type of what the pointer is pointing at
// TODO: This will be deprecated by inkwell > llvm14 because `get_element_type()` will be gone
self.0.check_llvm_type(ctx, scrutinee.get_element_type())?; // TODO: Include backtrace?
Ok(())
}
}
impl<'ctx, E: Model<'ctx>> Model<'ctx> for PointerModel<E> { impl<'ctx, E: Model<'ctx>> Model<'ctx> for PointerModel<E> {
type Value = Pointer<'ctx, E>; type Value = Pointer<'ctx, E>;
@ -66,7 +85,9 @@ impl<'ctx, E: Model<'ctx>> Model<'ctx> for PointerModel<E> {
self.0.get_llvm_type(ctx).ptr_type(AddressSpace::default()).as_basic_type_enum() self.0.get_llvm_type(ctx).ptr_type(AddressSpace::default()).as_basic_type_enum()
} }
fn review(&self, value: AnyValueEnum<'ctx>) -> Self::Value { fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
self.check_llvm_type(ctx, value.get_type()).unwrap();
// TODO: Check get_element_type()? for LLVM 14 at least... // TODO: Check get_element_type()? for LLVM 14 at least...
Pointer { element: self.0, value: value.into_pointer_value() } Pointer { element: self.0, value: value.into_pointer_value() }
} }
@ -85,6 +106,21 @@ impl<'ctx> ModelValue<'ctx> for OpaquePointer<'ctx> {
} }
} }
impl<'ctx> CanCheckLLVMType<'ctx> for OpaquePointerModel {
fn check_llvm_type(
&self,
_ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// OpaquePointerModel only cares that it is a pointer,
// but not what the pointer is pointing at
match scrutinee {
AnyTypeEnum::PointerType(_) => Ok(()),
_ => Err(format!("Expecting a pointer type, but got {scrutinee:?}")),
}
}
}
impl<'ctx> Model<'ctx> for OpaquePointerModel { impl<'ctx> Model<'ctx> for OpaquePointerModel {
type Value = OpaquePointer<'ctx>; type Value = OpaquePointer<'ctx>;
@ -92,11 +128,11 @@ impl<'ctx> Model<'ctx> for OpaquePointerModel {
ctx.i8_type().ptr_type(AddressSpace::default()).as_basic_type_enum() ctx.i8_type().ptr_type(AddressSpace::default()).as_basic_type_enum()
} }
fn review(&self, value: AnyValueEnum<'ctx>) -> Self::Value { fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let ptr = value.into_pointer_value(); // Check if value is even of a pointer type
// TODO: remove this check once LLVM pointers do not have `get_element_type()` self.check_llvm_type(ctx, value.get_type()).unwrap();
assert_eq!(ptr.get_type().get_element_type().into_int_type().get_bit_width(), 8);
OpaquePointer(ptr) OpaquePointer(value.into_pointer_value())
} }
} }

View File

@ -13,7 +13,7 @@ use crate::{
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef}, toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
typecheck::{ typecheck::{
magic_methods::Binop, magic_methods::Binop,
typedef::{FunSignature, Type, TypeEnum}, typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
}, },
}; };
use inkwell::{ use inkwell::{
@ -202,6 +202,7 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>, target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>, value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> { ) -> Result<(), String> {
/* /*
To handle assignment statements `target = value`, with To handle assignment statements `target = value`, with
@ -213,8 +214,9 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
- Case 3. Indexed ndarray assignment `ndarray.__setitem__` - Case 3. Indexed ndarray assignment `ndarray.__setitem__`
- e.g., `my_ndarray[::-1, :] = 3`, `my_ndarray[:, 3::-1] = their_ndarray[10::2]` - e.g., `my_ndarray[::-1, :] = 3`, `my_ndarray[:, 3::-1] = their_ndarray[10::2]`
- NOTE: Technically speaking, if `target` is sliced in such as way that it is referencing a - NOTE: Technically speaking, if `target` is sliced in such as way that it is referencing a
single element/scalar, we *could* implement gen_store_target for this special case; single element/scalar, we *could* implement gen_store_target for this special case
but it is much, *much* simpler to generalize all indexed ndarray assignment without (to point to the raw address of that scalar in the ndarray); but it is much,
*much* simpler to generalize all indexed ndarray assignment without
special handling on that edgecase. special handling on that edgecase.
- Otherwise, use `gen_store_target` - Otherwise, use `gen_store_target`
*/ */
@ -230,11 +232,13 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
}; };
for (i, elt) in elts.iter().enumerate() { for (i, elt) in elts.iter().enumerate() {
let elem_ty = elt.custom.unwrap();
let v = ctx let v = ctx
.builder .builder
.build_extract_value(v, u32::try_from(i).unwrap(), "struct_elem") .build_extract_value(v, u32::try_from(i).unwrap(), "struct_elem")
.unwrap(); .unwrap();
generator.gen_assign(ctx, elt, v.into())?; generator.gen_assign(ctx, elt, v.into(), elem_ty)?;
} }
return Ok(()); // Terminate return Ok(()); // Terminate
@ -311,11 +315,26 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
ctx, ctx,
generator, generator,
target.custom.unwrap(), target.custom.unwrap(),
); )?;
// let value = value.to_basic_value_enum(ctx, generator, value); match &*ctx.unifier.get_ty(value_ty) {
TypeEnum::TObj { obj_id, .. }
todo!(); if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// `value` is an `ndarray[dtype, ndims]`
todo!()
}
_ => {
// TODO: Inferencer's assignment forces `target` and `value` to have the same type
// NOTE: gen_assign() has already been extended, I will keep it in place
// in participation for when this is extended to be no longer the case.
todo!("support scalar assignment")
// panic!(
// "Unsupported ndarray assignment value: {}",
// ctx.unifier.stringify(value_ty)
// );
}
}
return Ok(()); // Terminate return Ok(()); // Terminate
} }
@ -325,7 +344,8 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
} }
} }
// None of the cases match. We should actually use `gen_store_target`. // The assignment expression matches none of the special cases.
// We should actually use `gen_store_target`.
let name = if let ExprKind::Name { id, .. } = &target.node { let name = if let ExprKind::Name { id, .. } = &target.node {
format!("{id}.addr") format!("{id}.addr")
} else { } else {
@ -369,9 +389,6 @@ pub fn gen_for<G: CodeGenerator>(
let orelse_bb = let orelse_bb =
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") }; if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") };
// Whether the iterable is a range() expression
let is_iterable_range_expr = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
// The BB containing the increment expression // The BB containing the increment expression
let incr_bb = ctx.ctx.append_basic_block(current, "for.incr"); let incr_bb = ctx.ctx.append_basic_block(current, "for.incr");
// The BB containing the loop condition check // The BB containing the loop condition check
@ -385,108 +402,136 @@ pub fn gen_for<G: CodeGenerator>(
} else { } else {
return Ok(()); return Ok(());
}; };
if is_iterable_range_expr {
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) = generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, start).unwrap();
// Check "If step is zero, ValueError is raised."
let rangenez =
ctx.builder.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "").unwrap();
ctx.make_assert(
generator,
rangenez,
"ValueError",
"range() arg 3 must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
// The implementation of the for loop logic depends on
// the typechecker type of `iter`.
let iter_ty = iter.custom.unwrap();
match &*ctx.unifier.get_ty(iter_ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{ {
// `iter` is a `List[T]`, and `T` is the element type
// Get the `T` out of `List[T]` - it is defined to be the 1st param.
let list_elem_ty = iter_type_vars(params).nth(0).unwrap().ty;
// Implementation
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
let len = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
Some("len"),
)
.into_int_value();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(cond_bb); ctx.builder.position_at_end(cond_bb);
ctx.builder let index = ctx
.build_conditional_branch( .builder
gen_in_range_check( .build_load(index_addr, "for.index")
ctx, .map(BasicValueEnum::into_int_value)
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(), .unwrap();
stop, let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
step, ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
),
body_bb, ctx.builder.position_at_end(incr_bb);
orelse_bb, let index =
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
ctx.builder.build_store(index_addr, inc).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
.into_pointer_value();
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
generator.gen_assign(ctx, target, val.into(), list_elem_ty)?;
generator.gen_block(ctx, body.iter())?;
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
// `iter` is a `range(start, stop, step)`, and `int32` is the element type
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, start).unwrap();
// Check "If step is zero, ValueError is raised."
let rangenez = ctx
.builder
.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
rangenez,
"ValueError",
"range() arg 3 must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
{
ctx.builder.position_at_end(cond_bb);
ctx.builder
.build_conditional_branch(
gen_in_range_check(
ctx,
ctx.builder
.build_load(i, "")
.map(BasicValueEnum::into_int_value)
.unwrap(),
stop,
step,
),
body_bb,
orelse_bb,
)
.unwrap();
}
ctx.builder.position_at_end(incr_bb);
let next_i = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
step,
"inc",
) )
.unwrap(); .unwrap();
ctx.builder.build_store(i, next_i).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
ctx.builder
.build_store(
target_i,
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
)
.unwrap();
generator.gen_block(ctx, body.iter())?;
}
_ => {
panic!("unsupported iterator type in for loop: {}", ctx.unifier.stringify(iter_ty))
} }
ctx.builder.position_at_end(incr_bb);
let next_i = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
step,
"inc",
)
.unwrap();
ctx.builder.build_store(i, next_i).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
ctx.builder
.build_store(
target_i,
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
)
.unwrap();
generator.gen_block(ctx, body.iter())?;
} else {
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
let len = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
Some("len"),
)
.into_int_value();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(cond_bb);
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
ctx.builder.position_at_end(incr_bb);
let index =
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
ctx.builder.build_store(index_addr, inc).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
.into_pointer_value();
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
generator.gen_assign(ctx, target, val.into())?;
generator.gen_block(ctx, body.iter())?;
} }
for (k, (_, _, counter)) in &var_assignment { for (k, (_, _, counter)) in &var_assignment {
@ -1629,14 +1674,18 @@ pub fn gen_stmt<G: CodeGenerator>(
} }
StmtKind::AnnAssign { target, value, .. } => { StmtKind::AnnAssign { target, value, .. } => {
if let Some(value) = value { if let Some(value) = value {
let value_ty = value.custom.unwrap();
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) }; let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
generator.gen_assign(ctx, target, value)?; generator.gen_assign(ctx, target, value, value_ty)?;
} }
} }
StmtKind::Assign { targets, value, .. } => { StmtKind::Assign { targets, value, .. } => {
// TODO: Is the implementation wrong? It looks very strange.
let value_ty = value.custom.unwrap();
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) }; let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
for target in targets { for target in targets {
generator.gen_assign(ctx, target, value.clone())?; generator.gen_assign(ctx, target, value.clone(), value_ty)?;
} }
} }
StmtKind::Continue { .. } => { StmtKind::Continue { .. } => {
@ -1650,6 +1699,7 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::For { .. } => generator.gen_for(ctx, stmt)?, StmtKind::For { .. } => generator.gen_for(ctx, stmt)?,
StmtKind::With { .. } => generator.gen_with(ctx, stmt)?, StmtKind::With { .. } => generator.gen_with(ctx, stmt)?,
StmtKind::AugAssign { target, op, value, .. } => { StmtKind::AugAssign { target, op, value, .. } => {
let value_ty = value.custom.unwrap();
let value = gen_binop_expr( let value = gen_binop_expr(
generator, generator,
ctx, ctx,
@ -1658,7 +1708,7 @@ pub fn gen_stmt<G: CodeGenerator>(
value, value,
stmt.location, stmt.location,
)?; )?;
generator.gen_assign(ctx, target, value.unwrap())?; generator.gen_assign(ctx, target, value.unwrap(), value_ty)?;
} }
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?, StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => { StmtKind::Raise { exc, .. } => {

View File

@ -1470,7 +1470,7 @@ impl<'a> BuiltinBuilder<'a> {
let ndarray_ptr_model = let ndarray_ptr_model =
PointerModel(StructModel(NpArray { sizet })); PointerModel(StructModel(NpArray { sizet }));
let ndarray_ptr = let ndarray_ptr =
ndarray_ptr_model.review(arg.as_any_value_enum()); ndarray_ptr_model.review(ctx.ctx, arg.as_any_value_enum());
// Calculate len // Calculate len
// NOTE: Unsized object is asserted in IRRT // NOTE: Unsized object is asserted in IRRT