core/ndstrides: define ndarray with strides

This commit is contained in:
lyken 2024-08-20 11:38:05 +08:00
parent e4493a7b88
commit 3e6b6205ce
No known key found for this signature in database
GPG Key ID: 3BD5FC6AC8325DD8
7 changed files with 902 additions and 10 deletions

View File

@ -1,4 +1,6 @@
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
#include <irrt/original.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/original.hpp>

View File

@ -0,0 +1,380 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace basic
{
/**
* @brief Asserts that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
if (shape[axis] < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
*
* This function throws error messages for output shape mismatches.
*/
template <typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
const SizeT *output_shape)
{
if (ndarray_ndims != output_ndims)
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
{
if (ndarray_shape[axis] != output_shape[axis])
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Returns the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
{
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
{
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
{
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The returned result
*/
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
{
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0)
{
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
}
else
{
return ndarray->shape[0];
}
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
{
// Other references:
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0)
{
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
{
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++)
{
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
{
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices`.
*/
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
uint8_t *element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Convenience function. Like `get_pelement_by_indices` but
* reinterprets the element pointer.
*/
template <typename SizeT, typename T> T *get_ptr(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
return (T *)get_pelement_by_indices(ndarray, indices);
}
/**
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
*
* This function does no bound check.
*/
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
{
uint8_t *element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape`
* and assuming that the ndarray is fully c-contagious.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
{
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
{
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// TODO: Make this faster with memcpy
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++)
{
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
int32_t output_ndims, const int32_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
int64_t output_ndims, const int64_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
{
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
{
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
{
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
{
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
{
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
{
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
{
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
{
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,47 @@
#pragma once
#include <irrt/int_types.hpp>
namespace
{
/**
* @brief The NDArray object
*
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template <typename SizeT> struct NDArray
{
/**
* @brief The underlying data this `ndarray` is pointing to.
*
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
*/
uint8_t *data;
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT *shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values.
*/
SizeT *strides;
};
} // namespace

View File

@ -5,10 +5,14 @@ use super::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
llvm_intrinsics,
model::*,
object::ndarray::NDArray,
CodeGenContext, CodeGenerator,
};
use crate::codegen::classes::TypedArrayLikeAccessor;
use crate::codegen::stmt::gen_for_callback_incrementing;
use function::CallFunction;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
@ -973,3 +977,115 @@ pub fn setup_irrt_exceptions<'ctx>(
global.set_initializer(&exn_id);
}
}
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
output_ndims: Instance<'ctx, Int<SizeT>>,
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
CallFunction::begin(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
.arg(output_shape)
.returning_void();
}
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}

View File

@ -1,7 +1,7 @@
use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
codegen::classes::{ListType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
@ -24,7 +24,9 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef};
use object::ndarray::NDArray;
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
@ -491,12 +493,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
}
_ => unreachable!(

View File

@ -1 +1,2 @@
pub mod any;
pub mod ndarray;

View File

@ -0,0 +1,349 @@
use inkwell::{context::Context, types::BasicType, values::PointerValue, AddressSpace};
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
},
model::*,
CodeGenContext, CodeGenerator,
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
use super::any::AnyObject;
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Out<Ptr<Int<Byte>>>,
pub itemsize: F::Out<Int<SizeT>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
///
/// See IRRT implementation for details about its fields.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
}
}
}
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, object.value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims)
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated on the stack.
//e
/// The returned ndarray's content will be:
/// - `data`: set to `nullptr`.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
) -> Self {
let ndarray = Struct(NDArray).alloca(generator, ctx);
let data = Ptr(Int(Byte)).nullptr(generator, ctx.ctx);
ndarray.set(ctx, |f| f.data, data);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize = Int(SizeT).s_extend_or_bit_cast(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.shape, shape);
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: ndarray }
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Instance<'ctx, Int<SizeT>>],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
}
ndarray
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let nbytes = self.nbytes(generator, ctx);
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
self.instance.set(ctx, |f| f.data, data);
self.set_strides_contiguous(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance
.get(generator, ctx, |f| f.strides)
.copy_from(generator, ctx, strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the n-th (0-based) scalar.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> AnyObject<'ctx> {
let ptr = self.get_nth_pelement(generator, ctx, nth);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Get the pointer to the element indexed by `indices`.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the scalar indexed by `indices`.
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> AnyObject<'ctx> {
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
}