WIP: core: stuck on Instruction does not dominate all uses!

This commit is contained in:
lyken 2024-07-11 16:54:40 +08:00
parent d6451b11c1
commit 39a05d6be6
8 changed files with 583 additions and 110 deletions

View File

@ -8,9 +8,6 @@
NDArray-related implementations.
`*/
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
namespace {
namespace ndarray_util {
template <typename SizeT>
@ -105,14 +102,18 @@ namespace {
}
struct NDSlice {
// A poor-man's `std::variant<int, UserRange>`
// A poor-man's enum variant type
NDSliceType type;
/*
if type == INPUT_SLICE_TYPE_INDEX => `slice` points to a single `SizeT`
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange`
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange<SizeT>`
`SizeT` is controlled by the caller: `NDSlice` only cares about where that
slice is (the pointer), `NDSlice` does not care/know about the actual `sizeof()`
of the slice value.
*/
uint8_t *slice;
uint8_t* slice;
};
namespace ndarray_util {
@ -123,7 +124,7 @@ namespace {
SizeT final_ndims = ndims;
for (SizeT i = 0; i < num_slices; i++) {
if (slices[i].type == INPUT_SLICE_TYPE_INDEX) {
final_ndims--; // An integer slice demotes the rank by 1
final_ndims--; // An index demotes the rank by 1
}
}
return final_ndims;
@ -213,8 +214,7 @@ namespace {
}
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
// *pelement = 0;
// __builtin_memcpy(pelement, pvalue, itemsize);
__builtin_memcpy(pelement, pvalue, itemsize);
}
uint8_t* get_pelement_by_indices(const SizeT *indices) {
@ -284,7 +284,13 @@ namespace {
}
}
// To support numpy complex slices (e.g., `my_array[:50:2,4,:2:-1]`)
// To support numpy "basic indexing" https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing
// "Advanced indexing" https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing is not supported
//
// This function supports:
// - "scalar indexing",
// - "slicing and strides",
// - and "dimensional indexing tools" (TODO, but this is really easy to implement).
//
// Things assumed by this function:
// - `dst_ndarray` is allocated by the caller
@ -295,7 +301,7 @@ namespace {
// - `dst_ndarray->data` does not have to be set, it will be derived.
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->itemsize`
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
void slice(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
void subscript(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
@ -322,15 +328,15 @@ namespace {
// Handle when the ndslice is a slice (represented by UserSlice in IRRT)
// e.g., `my_array[::2, -5, ::-1]`
// ^^^------^^^^----- like these
UserSlice<SizeT>* user_slice = (UserSlice<SizeT>*) ndslice->slice;
Slice<SizeT> slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
UserSlice* user_slice = (UserSlice*) ndslice->slice;
Slice slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
// NOTE: There is no need to write special code to handle negative steps/strides.
// This simple implementation meticulously handles both positive and negative steps/strides.
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
dst_ndarray->data += slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
dst_ndarray->strides[dst_axis] = slice.step * this->strides[this_axis]; // Determine stride
dst_ndarray->shape[dst_axis] = slice.len(); // Determine shape dimension
dst_ndarray->data += (SizeT) slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
dst_ndarray->strides[dst_axis] = ((SizeT) slice.step) * this->strides[this_axis]; // Determine stride
dst_ndarray->shape[dst_axis] = (SizeT) slice.len(); // Determine shape dimension
// Next
dst_axis++;
@ -426,7 +432,7 @@ namespace {
for (SizeT i = 0; i < size; i++) {
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_nth_pelement(i);
uint8_t* this_pelement = this->get_nth_pelement(i);
this->set_pelement_value(src_pelement, src_pelement);
this->set_pelement_value(this_pelement, src_pelement);
}
}
};
@ -457,7 +463,19 @@ extern "C" {
ndarray->fill_generic(pvalue);
}
// void __nac3_ndarray_slice(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice<int32_t> *slices, NDArray<int32_t> *dst_ndarray) {
// // ndarray->slice(num_slices, slices, dst_ndarray);
// }
int32_t __nac3_ndarray_deduce_ndims_after_slicing(int32_t ndims, int32_t num_slices, const NDSlice* slices) {
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
}
int64_t __nac3_ndarray_deduce_ndims_after_slicing64(int64_t ndims, int64_t num_slices, const NDSlice* slices) {
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
}
void __nac3_ndarray_subscript(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int32_t> *dst_ndarray) {
ndarray->subscript(num_slices, slices, dst_ndarray);
}
void __nac3_ndarray_subscript64(NDArray<int64_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int64_t> *dst_ndarray) {
ndarray->subscript(num_slices, slices, dst_ndarray);
}
}

View File

@ -4,19 +4,15 @@
#include "irrt_typedefs.hpp"
namespace {
// A proper slice in IRRT, all negative indices have be resolved to absolute values.
// Even though nac3core's slices are always `int32_t`, we will template slice anyway
// since this struct is used as a general utility.
template <typename T>
struct Slice {
T start;
T stop;
T step;
SliceIndex start;
SliceIndex stop;
SliceIndex step;
// The length/The number of elements of the slice if it were a range,
// i.e., the value of `len(range(this->start, this->stop, this->end))`
T len() {
T diff = stop - start;
SliceIndex len() {
SliceIndex diff = stop - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
@ -27,38 +23,45 @@ namespace {
}
};
template<typename T>
T resolve_index_in_length(T length, T index) {
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
irrt_assert(length >= 0);
if (index < 0) {
// Remember that index is negative, so do a plus here
return max(length + index, 0);
return max<SliceIndex>(length + index, 0);
} else {
return min(length, index);
return min<SliceIndex>(length, index);
}
}
// A user-written Python-like slice.
//
// i.e., this slice is a triple of either an int or nothing. (e.g., `my_array[:10:2]`, `start` is None)
//
// You can "resolve" a `UserSlice` by using `UserSlice::indices(<length>)`
//
// NOTE: using a bitfield for the `*_defined` is better, at the
// cost of a more annoying implementation in nac3core inkwell
template <typename T>
struct UserSlice {
// Did the user specify `start`? If 0, `start` is undefined (and contains an empty value)
uint8_t start_defined;
T start;
SliceIndex start;
// Similar to `start_defined`
uint8_t stop_defined;
T stop;
SliceIndex stop;
// Similar to `start_defined`
uint8_t step_defined;
T step;
SliceIndex step;
// Like Python's `slice(start, stop, step).indices(length)`
Slice<T> indices(T length) {
Slice indices(SliceIndex length) {
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
irrt_assert(length >= 0);
irrt_assert(!step_defined || step != 0); // step_defined -> step != 0; step cannot be zero if specified by user
Slice<T> result;
Slice result;
result.step = step_defined ? step : 1;
bool step_is_negative = result.step < 0;

View File

@ -248,10 +248,10 @@ void test_ndarray_set_to_eye() {
}
void test_slice_1() {
// Test `slice(5, None, None).indices(100) == slice(5, 100, 1)`
// Test `subscript(5, None, None).indices(100) == subscript(5, 100, 1)`
BEGIN_TEST();
UserSlice<int> user_slice = {
UserSlice user_slice = {
.start_defined = 1,
.start = 5,
.stop_defined = 0,
@ -265,10 +265,10 @@ void test_slice_1() {
}
void test_slice_2() {
// Test `slice(400, 999, None).indices(100) == slice(100, 100, 1)`
// Test `subscript(400, 999, None).indices(100) == subscript(100, 100, 1)`
BEGIN_TEST();
UserSlice<int> user_slice = {
UserSlice user_slice = {
.start_defined = 1,
.start = 400,
.stop_defined = 0,
@ -282,10 +282,10 @@ void test_slice_2() {
}
void test_slice_3() {
// Test `slice(-10, -5, None).indices(100) == slice(90, 95, 1)`
// Test `subscript(-10, -5, None).indices(100) == subscript(90, 95, 1)`
BEGIN_TEST();
UserSlice<int> user_slice = {
UserSlice user_slice = {
.start_defined = 1,
.start = -10,
.stop_defined = 1,
@ -300,10 +300,10 @@ void test_slice_3() {
}
void test_slice_4() {
// Test `slice(None, None, -5).indices(100) == (99, -1, -5)`
// Test `subscript(None, None, -5).indices(100) == (99, -1, -5)`
BEGIN_TEST();
UserSlice<int> user_slice = {
UserSlice user_slice = {
.start_defined = 0,
.stop_defined = 0,
.step_defined = 1,
@ -366,14 +366,14 @@ void test_ndslice_1() {
};
// Create the slice in `ndarray[-2::, 1::2]`
UserSlice<int32_t> user_slice_1 = {
UserSlice user_slice_1 = {
.start_defined = 1,
.start = -2,
.stop_defined = 0,
.step_defined = 0
};
UserSlice<int32_t> user_slice_2 = {
UserSlice user_slice_2 = {
.start_defined = 1,
.start = 1,
.stop_defined = 0,
@ -387,7 +387,7 @@ void test_ndslice_1() {
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
};
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
int32_t expected_shape[dst_ndims] = { 2, 2 };
int32_t expected_strides[dst_ndims] = { 32, 16 };
@ -450,7 +450,7 @@ void test_ndslice_2() {
// Create the slice in `ndarray[2, ::-2]`
int32_t user_slice_1 = 2;
UserSlice<int32_t> user_slice_2 = {
UserSlice user_slice_2 = {
.start_defined = 0,
.stop_defined = 0,
.step_defined = 1,
@ -463,7 +463,7 @@ void test_ndslice_2() {
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
};
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
int32_t expected_shape[dst_ndims] = { 2 };
int32_t expected_strides[dst_ndims] = { -16 };

View File

@ -1793,7 +1793,7 @@ pub struct StructFields<'ctx> {
pub fields: Vec<StructField<'ctx>>,
}
struct StructFieldsBuilder<'ctx> {
pub struct StructFieldsBuilder<'ctx> {
gep_index_counter: u32,
/// Name of the struct to be built.
name: &'static str,
@ -1909,11 +1909,11 @@ impl<'ctx> StructFields<'ctx> {
}
impl<'ctx> StructFieldsBuilder<'ctx> {
fn start(name: &'static str) -> Self {
pub fn start(name: &'static str) -> Self {
StructFieldsBuilder { gep_index_counter: 0, name, fields: Vec::new() }
}
fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
pub fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
let index = self.gep_index_counter;
self.gep_index_counter += 1;
@ -1923,11 +1923,12 @@ impl<'ctx> StructFieldsBuilder<'ctx> {
field // Return to the caller to conveniently let them do whatever they want
}
fn end(self) -> StructFields<'ctx> {
pub fn end(self) -> StructFields<'ctx> {
StructFields { name: self.name, fields: self.fields }
}
}
// TODO: Use derppening's abstraction
#[derive(Debug, Clone, Copy)]
pub struct NpArrayType<'ctx> {
pub size_type: IntType<'ctx>,
@ -1952,15 +1953,15 @@ impl<'ctx> NpArrayType<'ctx> {
}
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
self.fields().whole_struct.get_struct_type(ctx)
self.fields(ctx).whole_struct.get_struct_type(ctx)
}
pub fn fields(&self) -> NpArrayStructFields<'ctx> {
pub fn fields(&self, ctx: &'ctx Context) -> NpArrayStructFields<'ctx> {
let mut builder = StructFieldsBuilder::start("NpArray");
let addrspace = AddressSpace::default();
let byte_type = self.size_type.get_context().i8_type();
let byte_type = ctx.i8_type();
// Make sure the struct matches PERFECTLY with that defined in `nac3core/irrt`.
let data = builder.add_field("data", byte_type.ptr_type(addrspace).into());
@ -2018,6 +2019,23 @@ impl<'ctx> NpArrayType<'ctx> {
return value;
}
pub fn value_from_ptr(
&self,
ctx: &'ctx Context,
in_ndarray_ptr: PointerValue<'ctx>,
) -> NpArrayValue<'ctx> {
if cfg!(debug_assertions) {
// Sanity check on `in_ndarray_ptr`'s type
let in_ndarray_struct_type =
in_ndarray_ptr.get_type().get_element_type().into_struct_type();
// unwrap to check
self.fields(ctx).whole_struct.is_type(in_ndarray_struct_type).unwrap();
}
NpArrayValue { ty: *self, ptr: in_ndarray_ptr }
}
}
#[derive(Debug, Clone, Copy)]
@ -2028,47 +2046,47 @@ pub struct NpArrayValue<'ctx> {
impl<'ctx> NpArrayValue<'ctx> {
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, new_data_ptr: PointerValue<'ctx>) {
let field = self.ty.fields().data;
let field = self.ty.fields(ctx.ctx).data;
field.store(ctx, self.ptr, new_data_ptr);
}
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let field = self.ty.fields().ndims;
let field = self.ty.fields(ctx.ctx).ndims;
field.load(ctx, self.ptr).into_int_value()
}
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, new_ndims: IntValue<'ctx>) {
let field = self.ty.fields().ndims;
let field = self.ty.fields(ctx.ctx).ndims;
field.store(ctx, self.ptr, new_ndims);
}
pub fn load_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let field = self.ty.fields().itemsize;
let field = self.ty.fields(ctx.ctx).itemsize;
field.load(ctx, self.ptr).into_int_value()
}
pub fn store_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>, new_itemsize: IntValue<'ctx>) {
let field = self.ty.fields().itemsize;
let field = self.ty.fields(ctx.ctx).itemsize;
field.store(ctx, self.ptr, new_itemsize);
}
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let field = self.ty.fields().shape;
let field = self.ty.fields(ctx.ctx).shape;
field.load(ctx, self.ptr).into_pointer_value()
}
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, new_shape_ptr: PointerValue<'ctx>) {
let field = self.ty.fields().shape;
let field = self.ty.fields(ctx.ctx).shape;
field.store(ctx, self.ptr, new_shape_ptr);
}
pub fn load_strides(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let field = self.ty.fields().strides;
let field = self.ty.fields(ctx.ctx).strides;
field.load(ctx, self.ptr).into_pointer_value()
}
pub fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
let field = self.ty.fields().strides;
let field = self.ty.fields(ctx.ctx).strides;
field.store(ctx, self.ptr, value);
}
@ -2078,7 +2096,7 @@ impl<'ctx> NpArrayValue<'ctx> {
ctx: &CodeGenContext<'ctx, '_>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
// Get the pointer to `shape`
let field = self.ty.fields().shape;
let field = self.ty.fields(ctx.ctx).shape;
let shape = field.load(ctx, self.ptr).into_pointer_value();
// Load `ndims`
@ -2097,7 +2115,7 @@ impl<'ctx> NpArrayValue<'ctx> {
ctx: &CodeGenContext<'ctx, '_>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
// Get the pointer to `strides`
let field = self.ty.fields().strides;
let field = self.ty.fields(ctx.ctx).strides;
let strides = field.load(ctx, self.ptr).into_pointer_value();
// Load `ndims`

View File

@ -1,10 +1,14 @@
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
use std::{
collections::HashMap,
convert::TryInto,
iter::{once, zip},
};
use crate::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayDataProxy, NDArrayValue,
ProxyType, ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
},
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
gen_in_range_check, get_llvm_abi_type, get_llvm_type,
@ -39,10 +43,12 @@ use inkwell::{
};
use itertools::{chain, izip, Either, Itertools};
use nac3parser::ast::{
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
Unaryop,
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Located, Location, Operator,
StrRef, Unaryop,
};
use super::classes::{NpArrayType, NpArrayValue};
pub fn get_subst_key(
unifier: &mut Unifier,
obj: Option<Type>,
@ -2094,18 +2100,97 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
/// Generates code for a subscript expression on an `ndarray`.
///
/// * `ty` - The `Type` of the `NDArray` elements.
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
/// * `v` - The `NDArray` value.
/// * `ndarray` - The `NDArray` value.
/// * `slice` - The slice expression used to subscript into the `ndarray`.
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
ndims: Type,
v: NDArrayValue<'ctx>,
ndarray: NpArrayValue<'ctx>,
slice: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
todo!()
// TODO: bounds check (on IRRT (how?), or using inkwell)
// TODO: For invalid `slice`, throw a proper error
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
let size_type = ndarray.ty.size_type;
debug_assert_eq!(size_type, generator.get_size_type(ctx.ctx)); // The ndarray's size_type somehow isn't that of `generator.get_size_type()`... there would be a bug
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// `entries` will flatten it out.
let entries = match &slice.node {
ExprKind::Tuple { elts, ctx } => elts.iter().collect_vec(),
_ => vec![slice],
};
// This could have been written as a `ndslices = entries.into_iter().map(...)`,
// but error shortcutting part would be annoying
let mut ndslices = vec![];
for entry in entries.into_iter() {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndslice = match &entry.node {
ExprKind::Slice { lower: start, upper: stop, step } => {
// Helper function here to deduce code duplication
let mut help = |value_expr: &Option<
Box<Located<ExprKind<Option<Type>>, Option<Type>>>,
>|
-> Result<_, String> {
Ok(match value_expr {
None => None,
Some(value_expr) => Some(
generator
.gen_expr(ctx, &value_expr)?
.unwrap()
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?
.into_int_value(),
),
})
};
let start = help(start)?;
let stop = help(stop)?;
let step = help(step)?;
// NOTE: Now start stop step should all be 32-bit ints after typechecking
// ...and `IrrtUserSlice` expects `int32`s
NDSlice::Slice(UserSlice { start, stop, step })
}
_ => {
// Anything else that is not a slice (might be illegal values),
// For nac3core, this should be e.g., an int32 constant, an int32 variable, otherwise its an error
let index = generator
.gen_expr(ctx, entry)?
.unwrap()
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?
.into_int_value();
NDSlice::Index(index)
}
};
ndslices.push(ndslice);
}
// Finally, perform the actual subscript logic
let subndarray = call_nac3_ndarray_subscript_and_alloc_dst(generator, ctx, ndarray, &ndslices.iter().collect_vec());
// ...and return the result
let result = ValueEnum::Dynamic(subndarray.ptr.into());
Ok(Some(result))
// let llvm_i1 = ctx.ctx.bool_type();
// let llvm_i32 = ctx.ctx.i32_type();
@ -3031,17 +3116,27 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
}
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
let (elem_ty, _) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
// Get the pointer to the ndarray described by `value`
let ndarray_ptr = if let Some(v) = generator.gen_expr(ctx, value)? {
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
.into_pointer_value()
} else {
return Ok(None);
};
let v = NDArrayValue::from_ptr_val(v, usize, None);
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
// Derive the current NDArray struct type independently...
let ndarray_ty = NpArrayType {
elem_type: ctx.get_llvm_type(generator, *elem_ty),
size_type: generator.get_size_type(ctx.ctx),
};
// ...and wrap it in `NDArrayValue`
let ndarray = ndarray_ty.value_from_ptr(ctx.ctx, ndarray_ptr);
// Implementation
return gen_ndarray_subscript_expr(generator, ctx, *elem_ty, ndarray, slice);
}
TypeEnum::TTuple { .. } => {
let index: u32 =

View File

@ -1,11 +1,18 @@
use crate::{typecheck::typedef::Type, util::SizeVariant};
use std::ops::Deref;
use crate::{
codegen::classes::{NDArrayType, StructFieldsBuilder},
typecheck::typedef::Type,
util::SizeVariant,
};
mod test;
use super::{
classes::{
check_basic_types_match, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue,
NDArrayValue, NpArrayType, NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
NDArrayValue, NpArrayType, NpArrayValue, StructField, StructFields, TypedArrayLikeAdapter,
UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
};
@ -16,8 +23,11 @@ use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType},
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue},
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType, StructType},
values::{
BasicValue, BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue,
PointerValue,
},
AddressSpace, IntPredicate,
};
use itertools::Either;
@ -930,6 +940,202 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// )
// }
pub fn get_sliceindex_type<'ctx>(ctx: &'ctx Context) -> IntType<'ctx> {
ctx.i32_type()
}
pub fn get_ndslicetype_constant_type<'ctx>(ctx: &'ctx Context) -> IntType<'ctx> {
ctx.i8_type()
}
// TODO: Move to classes.rs?
/// NOTE: All `IntValue<'ctx>` must be `int32_t`
pub struct UserSlice<'ctx> {
pub start: Option<IntValue<'ctx>>,
pub stop: Option<IntValue<'ctx>>,
pub step: Option<IntValue<'ctx>>,
}
pub struct IrrtUserSliceStructFields<'ctx> {
pub whole_struct: StructFields<'ctx>,
pub start_defined: StructField<'ctx>,
pub start: StructField<'ctx>,
pub stop_defined: StructField<'ctx>,
pub stop: StructField<'ctx>,
pub step_defined: StructField<'ctx>,
pub step: StructField<'ctx>,
}
// TODO: EMPTY STRUCT
struct IrrtUserSlice {}
impl IrrtUserSlice {
pub fn fields<'ctx>(ctx: &'ctx Context) -> IrrtUserSliceStructFields<'ctx> {
let int8 = ctx.i8_type();
// MUST match the corresponding struct defined in IRRT
let mut builder = StructFieldsBuilder::start("NDSlice");
let start_defined = builder.add_field("start_defined", int8.into());
let start = builder.add_field("start", get_sliceindex_type(ctx).into());
let stop_defined = builder.add_field("stop_defined", int8.into());
let stop = builder.add_field("stop", get_sliceindex_type(ctx).into());
let step_defined = builder.add_field("step_defined", int8.into());
let step = builder.add_field("step", get_sliceindex_type(ctx).into());
IrrtUserSliceStructFields {
start_defined,
start,
stop_defined,
stop,
step_defined,
step,
whole_struct: builder.end(),
}
}
pub fn alloca_user_slice<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
user_slice: &UserSlice<'ctx>,
) -> PointerValue<'ctx> {
// Derive the struct_type
let fields = Self::fields(ctx.ctx);
let struct_type = fields.whole_struct.get_struct_type(ctx.ctx);
// ...and then allocate for a real `UserSlice` in LLVM
let user_slice_ptr = ctx.builder.build_alloca(struct_type, "user_slice").unwrap();
// i8 type to set start_defined, stop_defined, step_defined.
let llvm_i8 = ctx.ctx.i8_type();
// Now write to `user_slice_ptr`
let help = |value_defined_field: StructField<'ctx>,
value_field: StructField<'ctx>,
value: Option<IntValue<'ctx>>| {
match value {
None => {
value_defined_field.store(ctx, user_slice_ptr, llvm_i8.const_zero());
value_field.store(
ctx,
user_slice_ptr,
get_sliceindex_type(ctx.ctx).const_zero(),
);
}
Some(value) => {
debug_assert_eq!(get_sliceindex_type(ctx.ctx), value.get_type()); // Sanity check just in case there is a bug somewhere
value_defined_field.store(ctx, user_slice_ptr, llvm_i8.const_int(1, false));
value_field.store(ctx, user_slice_ptr, value);
}
}
};
help(fields.start_defined, fields.start, user_slice.start);
help(fields.stop_defined, fields.stop, user_slice.stop);
help(fields.step_defined, fields.step, user_slice.step);
user_slice_ptr
}
}
// TODO: Move to classes.rs?
/// A numpy slice. This corresponds to `NDSlice` defined in IRRT,
/// but with more Rust sugar to help with implementing codegen.
pub enum NDSlice<'ctx> {
/// Index [`IntValue`] must be `int32_t`
Index(IntValue<'ctx>),
Slice(UserSlice<'ctx>),
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools; *should* be very easy to implement
}
// TODO: Empty struct
pub struct IrrtNDSlice {}
pub struct IrrtNDSliceStructFields<'ctx> {
pub whole_struct: StructFields<'ctx>,
pub type_: StructField<'ctx>,
pub slice: StructField<'ctx>,
}
impl IrrtNDSlice {
pub fn fields<'ctx>(ctx: &'ctx Context) -> IrrtNDSliceStructFields<'ctx> {
let mut builder = StructFieldsBuilder::start("NDSlice");
// MUST match the corresponding struct defined in IRRT
let type_ = builder.add_field("type", get_ndslicetype_constant_type(ctx).into());
let slice = builder.add_field("slice", get_opaque_uint8_ptr_type(ctx).into());
IrrtNDSliceStructFields { type_, slice, whole_struct: builder.end() }
}
pub fn alloca_ndslices<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndslices: &Vec<&NDSlice<'ctx>>,
) -> PointerValue<'ctx> {
let fields = Self::fields(ctx.ctx);
// Derive the number of slices
let count = ndslices.len();
let count_llvm = ctx.ctx.i32_type().const_int(count as u64, false);
// Allocate `count` number of ndslices, and ready to write
let struct_type = fields.whole_struct.get_struct_type(ctx.ctx);
let ndslices_ptr =
ctx.builder.build_array_alloca(struct_type, count_llvm, "ndslices").unwrap();
for (ndslice_i, ndslice) in ndslices.iter().enumerate() {
// Setup the values that will build a real `NDSlice` in LLVM
// NOTE: (A INPUT_SLICE_TYPE_* constant value for `NDSlice::type`, the ptr for `NDArray::slice`)
let (type_, slice_ptr): (u8, PointerValue<'ctx>) = match ndslice {
NDSlice::Index(index) => {
// Sanity check on `index.get_type()` just in case there is a bug somewhere
debug_assert_eq!(get_sliceindex_type(ctx.ctx), index.get_type());
// Refer to the IRRT to see what should be set to `uint8_t* slice`.
let slice_ptr = ctx
.builder
.build_alloca(get_sliceindex_type(ctx.ctx), "index_slice")
.unwrap();
ctx.builder.build_store(slice_ptr, *index).unwrap();
let type_ = 0; // const NDSliceType INPUT_SLICE_TYPE_INDEX = 0;
(type_, slice_ptr)
}
NDSlice::Slice(user_slice) => {
// Allocate the user_slice
let slice_ptr = IrrtUserSlice::alloca_user_slice(ctx, user_slice);
let type_ = 1; // const NDSliceType INPUT_SLICE_TYPE_SLICE = 1;
(type_, slice_ptr)
}
};
// Get the pointer to the ndslice_i-th entry of `ndslices_llvm` and write to it.
let gep_index = ctx.ctx.i32_type().const_int(ndslice_i as u64, false);
let ndslice_entry_ptr = unsafe {
ctx.builder
.build_in_bounds_gep(ndslices_ptr, &[gep_index], "ndslice_entry")
.unwrap()
};
// Write `type_`
let type_llvm = get_ndslicetype_constant_type(ctx.ctx).const_int(type_ as u64, false);
fields.type_.store(ctx, ndslice_entry_ptr, type_llvm);
// Write `slice`
// `slice_ptr` has to be casted to `uint8_t*` beforehand
let slice_ptr = ctx
.builder
.build_pointer_cast(slice_ptr, get_opaque_uint8_ptr_type(ctx.ctx), "slices_casted")
.unwrap();
fields.slice.store(ctx, ndslice_entry_ptr, slice_ptr);
}
ndslices_ptr
}
}
fn get_size_variant<'ctx>(ty: IntType<'ctx>) -> SizeVariant {
match ty.get_bit_width() {
32 => SizeVariant::Bits32,
@ -966,18 +1172,18 @@ where
}
pub fn get_irrt_ndarray_ptr_type<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ctx: &'ctx Context,
size_type: IntType<'ctx>,
) -> PointerType<'ctx> {
let i8_type = ctx.ctx.i8_type();
let i8_type = ctx.i8_type();
let ndarray_ty = NpArrayType { size_type, elem_type: i8_type.as_basic_type_enum() };
let struct_ty = ndarray_ty.get_struct_type(ctx.ctx);
let struct_ty = ndarray_ty.get_struct_type(ctx);
struct_ty.ptr_type(AddressSpace::default())
}
pub fn get_irrt_opaque_uint8_ptr_type<'ctx>(ctx: &CodeGenContext<'ctx, '_>) -> PointerType<'ctx> {
ctx.ctx.i8_type().ptr_type(AddressSpace::default())
pub fn get_opaque_uint8_ptr_type<'ctx>(ctx: &'ctx Context) -> PointerType<'ctx> {
ctx.i8_type().ptr_type(AddressSpace::default())
}
pub fn call_nac3_ndarray_size<'ctx>(
@ -987,7 +1193,7 @@ pub fn call_nac3_ndarray_size<'ctx>(
// Get the IRRT function
let size_type = ndarray.ty.size_type;
let function = get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_size", || {
size_type.fn_type(&[get_irrt_ndarray_ptr_type(ctx, size_type).into()], false)
size_type.fn_type(&[get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into()], false)
});
// Call the IRRT function
@ -1014,8 +1220,8 @@ pub fn call_nac3_ndarray_fill_generic<'ctx>(
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_fill_generic", || {
ctx.ctx.void_type().fn_type(
&[
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
get_irrt_opaque_uint8_ptr_type(ctx).into(), // uint8_t* pvalue
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* ndarray
get_opaque_uint8_ptr_type(ctx.ctx).into(), // uint8_t* pvalue
],
false,
)
@ -1026,7 +1232,8 @@ pub fn call_nac3_ndarray_fill_generic<'ctx>(
ctx.builder.build_store(pvalue, fill_value).unwrap();
// Cast pvalue to `uint8_t*`
let pvalue = ctx.builder.build_pointer_cast(pvalue, get_irrt_opaque_uint8_ptr_type(ctx), "").unwrap();
let pvalue =
ctx.builder.build_pointer_cast(pvalue, get_opaque_uint8_ptr_type(ctx.ctx), "").unwrap();
// Call the IRRT function
ctx.builder
@ -1041,22 +1248,25 @@ pub fn call_nac3_ndarray_fill_generic<'ctx>(
.unwrap();
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NpArrayValue<'ctx>,
) {
// Get the IRRT function
let size_type = ndarray.ty.size_type;
let function =
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_set_strides_by_shape", || {
let function = get_size_type_dependent_function(
ctx,
size_type,
"__nac3_ndarray_set_strides_by_shape",
|| {
ctx.ctx.void_type().fn_type(
&[
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* ndarray
],
false,
)
});
},
);
// Call the IRRT function
ctx.builder
@ -1069,3 +1279,132 @@ pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
)
.unwrap();
}
pub fn call_nac3_ndarray_deduce_ndims_after_slicing_raw<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
size_type: IntType<'ctx>,
ndims: IntValue<'ctx>,
num_slices: IntValue<'ctx>,
ndslices_ptr: PointerValue<'ctx>,
) -> IntValue<'ctx> {
// Get the IRRT function
let function = get_size_type_dependent_function(
ctx,
size_type,
"__nac3_ndarray_deduce_ndims_after_slicing",
|| {
size_type.fn_type(
&[
size_type.into(), // SizeT ndims
size_type.into(), // SizeT num_slices
IrrtNDSlice::fields(ctx.ctx)
.whole_struct
.get_struct_type(ctx.ctx)
.ptr_type(AddressSpace::default())
.into(), // NDSlice* slices
],
false,
)
},
);
// Call the IRRT function
ctx.builder
.build_call(
function,
&[
ndims.into(), // ndims
num_slices.into(), // num_slices
ndslices_ptr.into(), // slices
],
"ndims_after_slicing",
)
.unwrap()
.try_as_basic_value()
.unwrap_left()
.into_int_value()
}
// TODO: RENAME ME AND MY FRIENDS
pub fn call_nac3_ndarray_subscript_raw<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NpArrayValue<'ctx>,
num_slices: IntValue<'ctx>,
slices: PointerValue<'ctx>,
dst_ndarray: NpArrayValue<'ctx>,
) {
// Get the IRRT function
let size_type = ndarray.ty.size_type;
let function =
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_subscript", || {
ctx.ctx.void_type().fn_type(
&[
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* ndarray
size_type.into(), // SizeT num_slices
IrrtNDSlice::fields(ctx.ctx)
.whole_struct
.get_struct_type(ctx.ctx)
.ptr_type(AddressSpace::default())
.into(), // NDSlice* slices
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* dst_ndarray
],
false,
)
});
// Call the IRRT function
ctx.builder
.build_call(
function,
&[
ndarray.ptr.into(), // ndarray
num_slices.into(), // num_slices
slices.into(), // slices
dst_ndarray.ptr.into(), // dst_ndarray
],
"subndarray",
)
.unwrap();
}
pub fn call_nac3_ndarray_subscript_and_alloc_dst<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NpArrayValue<'ctx>,
ndslices: &Vec<&NDSlice<'ctx>>,
) -> NpArrayValue<'ctx>
where
G: CodeGenerator + ?Sized,
{
// First we will calculate the correct ndims of the dst_ndarray
// Then allocate for dst_ndarray (A known `ndims` value is required for this)
// Finally do call the IRRT function that actually does subscript
let size_type = ndarray.ty.size_type;
// Prepare the argument `ndims`
let ndims = ndarray.load_ndims(ctx);
// Prepare the argument `num_slices` in LLVM - which conveniently is simply `ndslices.len()`
let num_slices = size_type.const_int(ndslices.len() as u64, false);
// Prepare the argument `slices`
let ndslices_ptr = IrrtNDSlice::alloca_ndslices(ctx, ndslices);
// Deduce the ndims
let dst_ndims = call_nac3_ndarray_deduce_ndims_after_slicing_raw(
ctx,
ndarray.ty.size_type,
ndims,
num_slices,
ndslices_ptr,
);
// Allocate `dst_ndarray`
let dst_ndarray =
ndarray.ty.var_alloc(generator, ctx, dst_ndims, Some("subscript_dst_ndarray"));
call_nac3_ndarray_subscript_raw(ctx, ndarray, num_slices, ndslices_ptr, dst_ndarray);
dst_ndarray
}

View File

@ -37,7 +37,7 @@ use super::{
classes::NpArrayValue,
irrt::{
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size, get_irrt_ndarray_ptr_type,
get_irrt_opaque_uint8_ptr_type,
get_opaque_uint8_ptr_type,
},
stmt::gen_return,
};
@ -2306,7 +2306,7 @@ where
// We also have to cast `data_ptr` to `uint8_t*` because that is what `NDArray` has.
let data_ptr = ctx
.builder
.build_pointer_cast(data_ptr, get_irrt_opaque_uint8_ptr_type(ctx), "data_casted")
.build_pointer_cast(data_ptr, get_opaque_uint8_ptr_type(ctx.ctx), "data_casted")
.unwrap();
ndarray.store_data(ctx, data_ptr);
@ -2410,7 +2410,7 @@ pub fn gen_ndarray_zeros<'ctx>(
let ndarray = call_ndarray_fill_impl(
generator,
context,
float64_ty,
float64_ty, // `elem_ty` is always `float64`
shape,
shape_ty,
float64_llvm_type.const_zero().as_basic_value_enum(),
@ -2442,11 +2442,11 @@ pub fn gen_ndarray_ones<'ctx>(
let ndarray = call_ndarray_fill_impl(
generator,
context,
float64_ty,
float64_ty, // `elem_ty` is always `float64`
shape,
shape_ty,
float64_llvm_type.const_float(1.0).as_basic_value_enum(),
Some("np_zeros.result"),
Some("np_ones.result"),
)?;
Ok(ndarray.ptr)
}