WIP: core: stuck on Instruction does not dominate all uses!
This commit is contained in:
parent
d6451b11c1
commit
39a05d6be6
|
@ -8,9 +8,6 @@
|
|||
NDArray-related implementations.
|
||||
`*/
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
|
||||
namespace {
|
||||
namespace ndarray_util {
|
||||
template <typename SizeT>
|
||||
|
@ -105,12 +102,16 @@ namespace {
|
|||
}
|
||||
|
||||
struct NDSlice {
|
||||
// A poor-man's `std::variant<int, UserRange>`
|
||||
// A poor-man's enum variant type
|
||||
NDSliceType type;
|
||||
|
||||
/*
|
||||
if type == INPUT_SLICE_TYPE_INDEX => `slice` points to a single `SizeT`
|
||||
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange`
|
||||
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange<SizeT>`
|
||||
|
||||
`SizeT` is controlled by the caller: `NDSlice` only cares about where that
|
||||
slice is (the pointer), `NDSlice` does not care/know about the actual `sizeof()`
|
||||
of the slice value.
|
||||
*/
|
||||
uint8_t* slice;
|
||||
};
|
||||
|
@ -123,7 +124,7 @@ namespace {
|
|||
SizeT final_ndims = ndims;
|
||||
for (SizeT i = 0; i < num_slices; i++) {
|
||||
if (slices[i].type == INPUT_SLICE_TYPE_INDEX) {
|
||||
final_ndims--; // An integer slice demotes the rank by 1
|
||||
final_ndims--; // An index demotes the rank by 1
|
||||
}
|
||||
}
|
||||
return final_ndims;
|
||||
|
@ -213,8 +214,7 @@ namespace {
|
|||
}
|
||||
|
||||
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
// *pelement = 0;
|
||||
// __builtin_memcpy(pelement, pvalue, itemsize);
|
||||
__builtin_memcpy(pelement, pvalue, itemsize);
|
||||
}
|
||||
|
||||
uint8_t* get_pelement_by_indices(const SizeT *indices) {
|
||||
|
@ -284,7 +284,13 @@ namespace {
|
|||
}
|
||||
}
|
||||
|
||||
// To support numpy complex slices (e.g., `my_array[:50:2,4,:2:-1]`)
|
||||
// To support numpy "basic indexing" https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing
|
||||
// "Advanced indexing" https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing is not supported
|
||||
//
|
||||
// This function supports:
|
||||
// - "scalar indexing",
|
||||
// - "slicing and strides",
|
||||
// - and "dimensional indexing tools" (TODO, but this is really easy to implement).
|
||||
//
|
||||
// Things assumed by this function:
|
||||
// - `dst_ndarray` is allocated by the caller
|
||||
|
@ -295,7 +301,7 @@ namespace {
|
|||
// - `dst_ndarray->data` does not have to be set, it will be derived.
|
||||
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->itemsize`
|
||||
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
|
||||
void slice(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
|
||||
void subscript(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
|
||||
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
|
||||
|
@ -322,15 +328,15 @@ namespace {
|
|||
// Handle when the ndslice is a slice (represented by UserSlice in IRRT)
|
||||
// e.g., `my_array[::2, -5, ::-1]`
|
||||
// ^^^------^^^^----- like these
|
||||
UserSlice<SizeT>* user_slice = (UserSlice<SizeT>*) ndslice->slice;
|
||||
Slice<SizeT> slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
|
||||
UserSlice* user_slice = (UserSlice*) ndslice->slice;
|
||||
Slice slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
|
||||
|
||||
// NOTE: There is no need to write special code to handle negative steps/strides.
|
||||
// This simple implementation meticulously handles both positive and negative steps/strides.
|
||||
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
|
||||
dst_ndarray->data += slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
|
||||
dst_ndarray->strides[dst_axis] = slice.step * this->strides[this_axis]; // Determine stride
|
||||
dst_ndarray->shape[dst_axis] = slice.len(); // Determine shape dimension
|
||||
dst_ndarray->data += (SizeT) slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT) slice.step) * this->strides[this_axis]; // Determine stride
|
||||
dst_ndarray->shape[dst_axis] = (SizeT) slice.len(); // Determine shape dimension
|
||||
|
||||
// Next
|
||||
dst_axis++;
|
||||
|
@ -426,7 +432,7 @@ namespace {
|
|||
for (SizeT i = 0; i < size; i++) {
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_nth_pelement(i);
|
||||
uint8_t* this_pelement = this->get_nth_pelement(i);
|
||||
this->set_pelement_value(src_pelement, src_pelement);
|
||||
this->set_pelement_value(this_pelement, src_pelement);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -457,7 +463,19 @@ extern "C" {
|
|||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
// void __nac3_ndarray_slice(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice<int32_t> *slices, NDArray<int32_t> *dst_ndarray) {
|
||||
// // ndarray->slice(num_slices, slices, dst_ndarray);
|
||||
// }
|
||||
int32_t __nac3_ndarray_deduce_ndims_after_slicing(int32_t ndims, int32_t num_slices, const NDSlice* slices) {
|
||||
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_deduce_ndims_after_slicing64(int64_t ndims, int64_t num_slices, const NDSlice* slices) {
|
||||
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_subscript(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int32_t> *dst_ndarray) {
|
||||
ndarray->subscript(num_slices, slices, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_subscript64(NDArray<int64_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int64_t> *dst_ndarray) {
|
||||
ndarray->subscript(num_slices, slices, dst_ndarray);
|
||||
}
|
||||
}
|
|
@ -4,19 +4,15 @@
|
|||
#include "irrt_typedefs.hpp"
|
||||
|
||||
namespace {
|
||||
// A proper slice in IRRT, all negative indices have be resolved to absolute values.
|
||||
// Even though nac3core's slices are always `int32_t`, we will template slice anyway
|
||||
// since this struct is used as a general utility.
|
||||
template <typename T>
|
||||
struct Slice {
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
SliceIndex start;
|
||||
SliceIndex stop;
|
||||
SliceIndex step;
|
||||
|
||||
// The length/The number of elements of the slice if it were a range,
|
||||
// i.e., the value of `len(range(this->start, this->stop, this->end))`
|
||||
T len() {
|
||||
T diff = stop - start;
|
||||
SliceIndex len() {
|
||||
SliceIndex diff = stop - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
|
@ -27,38 +23,45 @@ namespace {
|
|||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
T resolve_index_in_length(T length, T index) {
|
||||
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
|
||||
irrt_assert(length >= 0);
|
||||
if (index < 0) {
|
||||
// Remember that index is negative, so do a plus here
|
||||
return max(length + index, 0);
|
||||
return max<SliceIndex>(length + index, 0);
|
||||
} else {
|
||||
return min(length, index);
|
||||
return min<SliceIndex>(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
// A user-written Python-like slice.
|
||||
//
|
||||
// i.e., this slice is a triple of either an int or nothing. (e.g., `my_array[:10:2]`, `start` is None)
|
||||
//
|
||||
// You can "resolve" a `UserSlice` by using `UserSlice::indices(<length>)`
|
||||
//
|
||||
// NOTE: using a bitfield for the `*_defined` is better, at the
|
||||
// cost of a more annoying implementation in nac3core inkwell
|
||||
template <typename T>
|
||||
struct UserSlice {
|
||||
// Did the user specify `start`? If 0, `start` is undefined (and contains an empty value)
|
||||
uint8_t start_defined;
|
||||
T start;
|
||||
SliceIndex start;
|
||||
|
||||
// Similar to `start_defined`
|
||||
uint8_t stop_defined;
|
||||
T stop;
|
||||
SliceIndex stop;
|
||||
|
||||
// Similar to `start_defined`
|
||||
uint8_t step_defined;
|
||||
T step;
|
||||
SliceIndex step;
|
||||
|
||||
// Like Python's `slice(start, stop, step).indices(length)`
|
||||
Slice<T> indices(T length) {
|
||||
Slice indices(SliceIndex length) {
|
||||
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
|
||||
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
|
||||
irrt_assert(length >= 0);
|
||||
irrt_assert(!step_defined || step != 0); // step_defined -> step != 0; step cannot be zero if specified by user
|
||||
|
||||
Slice<T> result;
|
||||
Slice result;
|
||||
result.step = step_defined ? step : 1;
|
||||
bool step_is_negative = result.step < 0;
|
||||
|
||||
|
|
|
@ -248,10 +248,10 @@ void test_ndarray_set_to_eye() {
|
|||
}
|
||||
|
||||
void test_slice_1() {
|
||||
// Test `slice(5, None, None).indices(100) == slice(5, 100, 1)`
|
||||
// Test `subscript(5, None, None).indices(100) == subscript(5, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 5,
|
||||
.stop_defined = 0,
|
||||
|
@ -265,10 +265,10 @@ void test_slice_1() {
|
|||
}
|
||||
|
||||
void test_slice_2() {
|
||||
// Test `slice(400, 999, None).indices(100) == slice(100, 100, 1)`
|
||||
// Test `subscript(400, 999, None).indices(100) == subscript(100, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 400,
|
||||
.stop_defined = 0,
|
||||
|
@ -282,10 +282,10 @@ void test_slice_2() {
|
|||
}
|
||||
|
||||
void test_slice_3() {
|
||||
// Test `slice(-10, -5, None).indices(100) == slice(90, 95, 1)`
|
||||
// Test `subscript(-10, -5, None).indices(100) == subscript(90, 95, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = -10,
|
||||
.stop_defined = 1,
|
||||
|
@ -300,10 +300,10 @@ void test_slice_3() {
|
|||
}
|
||||
|
||||
void test_slice_4() {
|
||||
// Test `slice(None, None, -5).indices(100) == (99, -1, -5)`
|
||||
// Test `subscript(None, None, -5).indices(100) == (99, -1, -5)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
|
@ -366,14 +366,14 @@ void test_ndslice_1() {
|
|||
};
|
||||
|
||||
// Create the slice in `ndarray[-2::, 1::2]`
|
||||
UserSlice<int32_t> user_slice_1 = {
|
||||
UserSlice user_slice_1 = {
|
||||
.start_defined = 1,
|
||||
.start = -2,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0
|
||||
};
|
||||
|
||||
UserSlice<int32_t> user_slice_2 = {
|
||||
UserSlice user_slice_2 = {
|
||||
.start_defined = 1,
|
||||
.start = 1,
|
||||
.stop_defined = 0,
|
||||
|
@ -387,7 +387,7 @@ void test_ndslice_1() {
|
|||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2, 2 };
|
||||
int32_t expected_strides[dst_ndims] = { 32, 16 };
|
||||
|
@ -450,7 +450,7 @@ void test_ndslice_2() {
|
|||
|
||||
// Create the slice in `ndarray[2, ::-2]`
|
||||
int32_t user_slice_1 = 2;
|
||||
UserSlice<int32_t> user_slice_2 = {
|
||||
UserSlice user_slice_2 = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
|
@ -463,7 +463,7 @@ void test_ndslice_2() {
|
|||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2 };
|
||||
int32_t expected_strides[dst_ndims] = { -16 };
|
||||
|
|
|
@ -1793,7 +1793,7 @@ pub struct StructFields<'ctx> {
|
|||
pub fields: Vec<StructField<'ctx>>,
|
||||
}
|
||||
|
||||
struct StructFieldsBuilder<'ctx> {
|
||||
pub struct StructFieldsBuilder<'ctx> {
|
||||
gep_index_counter: u32,
|
||||
/// Name of the struct to be built.
|
||||
name: &'static str,
|
||||
|
@ -1909,11 +1909,11 @@ impl<'ctx> StructFields<'ctx> {
|
|||
}
|
||||
|
||||
impl<'ctx> StructFieldsBuilder<'ctx> {
|
||||
fn start(name: &'static str) -> Self {
|
||||
pub fn start(name: &'static str) -> Self {
|
||||
StructFieldsBuilder { gep_index_counter: 0, name, fields: Vec::new() }
|
||||
}
|
||||
|
||||
fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
|
||||
pub fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
|
||||
let index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
|
||||
|
@ -1923,11 +1923,12 @@ impl<'ctx> StructFieldsBuilder<'ctx> {
|
|||
field // Return to the caller to conveniently let them do whatever they want
|
||||
}
|
||||
|
||||
fn end(self) -> StructFields<'ctx> {
|
||||
pub fn end(self) -> StructFields<'ctx> {
|
||||
StructFields { name: self.name, fields: self.fields }
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Use derppening's abstraction
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NpArrayType<'ctx> {
|
||||
pub size_type: IntType<'ctx>,
|
||||
|
@ -1952,15 +1953,15 @@ impl<'ctx> NpArrayType<'ctx> {
|
|||
}
|
||||
|
||||
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
self.fields().whole_struct.get_struct_type(ctx)
|
||||
self.fields(ctx).whole_struct.get_struct_type(ctx)
|
||||
}
|
||||
|
||||
pub fn fields(&self) -> NpArrayStructFields<'ctx> {
|
||||
pub fn fields(&self, ctx: &'ctx Context) -> NpArrayStructFields<'ctx> {
|
||||
let mut builder = StructFieldsBuilder::start("NpArray");
|
||||
|
||||
let addrspace = AddressSpace::default();
|
||||
|
||||
let byte_type = self.size_type.get_context().i8_type();
|
||||
let byte_type = ctx.i8_type();
|
||||
|
||||
// Make sure the struct matches PERFECTLY with that defined in `nac3core/irrt`.
|
||||
let data = builder.add_field("data", byte_type.ptr_type(addrspace).into());
|
||||
|
@ -2018,6 +2019,23 @@ impl<'ctx> NpArrayType<'ctx> {
|
|||
|
||||
return value;
|
||||
}
|
||||
|
||||
pub fn value_from_ptr(
|
||||
&self,
|
||||
ctx: &'ctx Context,
|
||||
in_ndarray_ptr: PointerValue<'ctx>,
|
||||
) -> NpArrayValue<'ctx> {
|
||||
if cfg!(debug_assertions) {
|
||||
// Sanity check on `in_ndarray_ptr`'s type
|
||||
|
||||
let in_ndarray_struct_type =
|
||||
in_ndarray_ptr.get_type().get_element_type().into_struct_type();
|
||||
|
||||
// unwrap to check
|
||||
self.fields(ctx).whole_struct.is_type(in_ndarray_struct_type).unwrap();
|
||||
}
|
||||
NpArrayValue { ty: *self, ptr: in_ndarray_ptr }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
|
@ -2028,47 +2046,47 @@ pub struct NpArrayValue<'ctx> {
|
|||
|
||||
impl<'ctx> NpArrayValue<'ctx> {
|
||||
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, new_data_ptr: PointerValue<'ctx>) {
|
||||
let field = self.ty.fields().data;
|
||||
let field = self.ty.fields(ctx.ctx).data;
|
||||
field.store(ctx, self.ptr, new_data_ptr);
|
||||
}
|
||||
|
||||
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||
let field = self.ty.fields().ndims;
|
||||
let field = self.ty.fields(ctx.ctx).ndims;
|
||||
field.load(ctx, self.ptr).into_int_value()
|
||||
}
|
||||
|
||||
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, new_ndims: IntValue<'ctx>) {
|
||||
let field = self.ty.fields().ndims;
|
||||
let field = self.ty.fields(ctx.ctx).ndims;
|
||||
field.store(ctx, self.ptr, new_ndims);
|
||||
}
|
||||
|
||||
pub fn load_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||
let field = self.ty.fields().itemsize;
|
||||
let field = self.ty.fields(ctx.ctx).itemsize;
|
||||
field.load(ctx, self.ptr).into_int_value()
|
||||
}
|
||||
|
||||
pub fn store_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>, new_itemsize: IntValue<'ctx>) {
|
||||
let field = self.ty.fields().itemsize;
|
||||
let field = self.ty.fields(ctx.ctx).itemsize;
|
||||
field.store(ctx, self.ptr, new_itemsize);
|
||||
}
|
||||
|
||||
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
let field = self.ty.fields().shape;
|
||||
let field = self.ty.fields(ctx.ctx).shape;
|
||||
field.load(ctx, self.ptr).into_pointer_value()
|
||||
}
|
||||
|
||||
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, new_shape_ptr: PointerValue<'ctx>) {
|
||||
let field = self.ty.fields().shape;
|
||||
let field = self.ty.fields(ctx.ctx).shape;
|
||||
field.store(ctx, self.ptr, new_shape_ptr);
|
||||
}
|
||||
|
||||
pub fn load_strides(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
let field = self.ty.fields().strides;
|
||||
let field = self.ty.fields(ctx.ctx).strides;
|
||||
field.load(ctx, self.ptr).into_pointer_value()
|
||||
}
|
||||
|
||||
pub fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
let field = self.ty.fields().strides;
|
||||
let field = self.ty.fields(ctx.ctx).strides;
|
||||
field.store(ctx, self.ptr, value);
|
||||
}
|
||||
|
||||
|
@ -2078,7 +2096,7 @@ impl<'ctx> NpArrayValue<'ctx> {
|
|||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// Get the pointer to `shape`
|
||||
let field = self.ty.fields().shape;
|
||||
let field = self.ty.fields(ctx.ctx).shape;
|
||||
let shape = field.load(ctx, self.ptr).into_pointer_value();
|
||||
|
||||
// Load `ndims`
|
||||
|
@ -2097,7 +2115,7 @@ impl<'ctx> NpArrayValue<'ctx> {
|
|||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// Get the pointer to `strides`
|
||||
let field = self.ty.fields().strides;
|
||||
let field = self.ty.fields(ctx.ctx).strides;
|
||||
let strides = field.load(ctx, self.ptr).into_pointer_value();
|
||||
|
||||
// Load `ndims`
|
||||
|
|
|
@ -1,10 +1,14 @@
|
|||
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
||||
use std::{
|
||||
collections::HashMap,
|
||||
convert::TryInto,
|
||||
iter::{once, zip},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
|
||||
ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayDataProxy, NDArrayValue,
|
||||
ProxyType, ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
||||
},
|
||||
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
||||
gen_in_range_check, get_llvm_abi_type, get_llvm_type,
|
||||
|
@ -39,10 +43,12 @@ use inkwell::{
|
|||
};
|
||||
use itertools::{chain, izip, Either, Itertools};
|
||||
use nac3parser::ast::{
|
||||
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
|
||||
Unaryop,
|
||||
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Located, Location, Operator,
|
||||
StrRef, Unaryop,
|
||||
};
|
||||
|
||||
use super::classes::{NpArrayType, NpArrayValue};
|
||||
|
||||
pub fn get_subst_key(
|
||||
unifier: &mut Unifier,
|
||||
obj: Option<Type>,
|
||||
|
@ -2094,18 +2100,97 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
|
|||
/// Generates code for a subscript expression on an `ndarray`.
|
||||
///
|
||||
/// * `ty` - The `Type` of the `NDArray` elements.
|
||||
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
|
||||
/// * `v` - The `NDArray` value.
|
||||
/// * `ndarray` - The `NDArray` value.
|
||||
/// * `slice` - The slice expression used to subscript into the `ndarray`.
|
||||
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
ndims: Type,
|
||||
v: NDArrayValue<'ctx>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
slice: &Expr<Option<Type>>,
|
||||
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
||||
todo!()
|
||||
// TODO: bounds check (on IRRT (how?), or using inkwell)
|
||||
// TODO: For invalid `slice`, throw a proper error
|
||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||
|
||||
let size_type = ndarray.ty.size_type;
|
||||
debug_assert_eq!(size_type, generator.get_size_type(ctx.ctx)); // The ndarray's size_type somehow isn't that of `generator.get_size_type()`... there would be a bug
|
||||
|
||||
// Annoying notes about `slice`
|
||||
// - `my_array[5]`
|
||||
// - slice is a `Constant`
|
||||
// - `my_array[:5]`
|
||||
// - slice is a `Slice`
|
||||
// - `my_array[:]`
|
||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||
// - `my_array[:, :]`
|
||||
// - slice is now a `Tuple` of two `Slice`-s
|
||||
//
|
||||
// In summary:
|
||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||
//
|
||||
// `entries` will flatten it out.
|
||||
let entries = match &slice.node {
|
||||
ExprKind::Tuple { elts, ctx } => elts.iter().collect_vec(),
|
||||
_ => vec![slice],
|
||||
};
|
||||
|
||||
// This could have been written as a `ndslices = entries.into_iter().map(...)`,
|
||||
// but error shortcutting part would be annoying
|
||||
let mut ndslices = vec![];
|
||||
for entry in entries.into_iter() {
|
||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||
let ndslice = match &entry.node {
|
||||
ExprKind::Slice { lower: start, upper: stop, step } => {
|
||||
// Helper function here to deduce code duplication
|
||||
let mut help = |value_expr: &Option<
|
||||
Box<Located<ExprKind<Option<Type>>, Option<Type>>>,
|
||||
>|
|
||||
-> Result<_, String> {
|
||||
Ok(match value_expr {
|
||||
None => None,
|
||||
Some(value_expr) => Some(
|
||||
generator
|
||||
.gen_expr(ctx, &value_expr)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?
|
||||
.into_int_value(),
|
||||
),
|
||||
})
|
||||
};
|
||||
|
||||
let start = help(start)?;
|
||||
let stop = help(stop)?;
|
||||
let step = help(step)?;
|
||||
|
||||
// NOTE: Now start stop step should all be 32-bit ints after typechecking
|
||||
// ...and `IrrtUserSlice` expects `int32`s
|
||||
NDSlice::Slice(UserSlice { start, stop, step })
|
||||
}
|
||||
_ => {
|
||||
// Anything else that is not a slice (might be illegal values),
|
||||
// For nac3core, this should be e.g., an int32 constant, an int32 variable, otherwise its an error
|
||||
|
||||
let index = generator
|
||||
.gen_expr(ctx, entry)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?
|
||||
.into_int_value();
|
||||
|
||||
NDSlice::Index(index)
|
||||
}
|
||||
};
|
||||
ndslices.push(ndslice);
|
||||
}
|
||||
|
||||
// Finally, perform the actual subscript logic
|
||||
let subndarray = call_nac3_ndarray_subscript_and_alloc_dst(generator, ctx, ndarray, &ndslices.iter().collect_vec());
|
||||
|
||||
// ...and return the result
|
||||
let result = ValueEnum::Dynamic(subndarray.ptr.into());
|
||||
Ok(Some(result))
|
||||
|
||||
// let llvm_i1 = ctx.ctx.bool_type();
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
@ -3031,17 +3116,27 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
|||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
||||
let (elem_ty, _) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
||||
|
||||
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
||||
// Get the pointer to the ndarray described by `value`
|
||||
let ndarray_ptr = if let Some(v) = generator.gen_expr(ctx, value)? {
|
||||
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
||||
.into_pointer_value()
|
||||
} else {
|
||||
return Ok(None);
|
||||
};
|
||||
let v = NDArrayValue::from_ptr_val(v, usize, None);
|
||||
|
||||
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
|
||||
// Derive the current NDArray struct type independently...
|
||||
let ndarray_ty = NpArrayType {
|
||||
elem_type: ctx.get_llvm_type(generator, *elem_ty),
|
||||
size_type: generator.get_size_type(ctx.ctx),
|
||||
};
|
||||
|
||||
// ...and wrap it in `NDArrayValue`
|
||||
let ndarray = ndarray_ty.value_from_ptr(ctx.ctx, ndarray_ptr);
|
||||
|
||||
// Implementation
|
||||
return gen_ndarray_subscript_expr(generator, ctx, *elem_ty, ndarray, slice);
|
||||
}
|
||||
TypeEnum::TTuple { .. } => {
|
||||
let index: u32 =
|
||||
|
|
|
@ -1,11 +1,18 @@
|
|||
use crate::{typecheck::typedef::Type, util::SizeVariant};
|
||||
use std::ops::Deref;
|
||||
|
||||
use crate::{
|
||||
codegen::classes::{NDArrayType, StructFieldsBuilder},
|
||||
typecheck::typedef::Type,
|
||||
util::SizeVariant,
|
||||
};
|
||||
|
||||
mod test;
|
||||
|
||||
use super::{
|
||||
classes::{
|
||||
check_basic_types_match, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue,
|
||||
NDArrayValue, NpArrayType, NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
NDArrayValue, NpArrayType, NpArrayValue, StructField, StructFields, TypedArrayLikeAdapter,
|
||||
UntypedArrayLikeAccessor,
|
||||
},
|
||||
llvm_intrinsics, CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
@ -16,8 +23,11 @@ use inkwell::{
|
|||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType},
|
||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue},
|
||||
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType, StructType},
|
||||
values::{
|
||||
BasicValue, BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue,
|
||||
PointerValue,
|
||||
},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
@ -930,6 +940,202 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
|
|||
// )
|
||||
// }
|
||||
|
||||
pub fn get_sliceindex_type<'ctx>(ctx: &'ctx Context) -> IntType<'ctx> {
|
||||
ctx.i32_type()
|
||||
}
|
||||
|
||||
pub fn get_ndslicetype_constant_type<'ctx>(ctx: &'ctx Context) -> IntType<'ctx> {
|
||||
ctx.i8_type()
|
||||
}
|
||||
|
||||
// TODO: Move to classes.rs?
|
||||
/// NOTE: All `IntValue<'ctx>` must be `int32_t`
|
||||
pub struct UserSlice<'ctx> {
|
||||
pub start: Option<IntValue<'ctx>>,
|
||||
pub stop: Option<IntValue<'ctx>>,
|
||||
pub step: Option<IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
pub struct IrrtUserSliceStructFields<'ctx> {
|
||||
pub whole_struct: StructFields<'ctx>,
|
||||
|
||||
pub start_defined: StructField<'ctx>,
|
||||
pub start: StructField<'ctx>,
|
||||
|
||||
pub stop_defined: StructField<'ctx>,
|
||||
pub stop: StructField<'ctx>,
|
||||
|
||||
pub step_defined: StructField<'ctx>,
|
||||
pub step: StructField<'ctx>,
|
||||
}
|
||||
|
||||
// TODO: EMPTY STRUCT
|
||||
struct IrrtUserSlice {}
|
||||
|
||||
impl IrrtUserSlice {
|
||||
pub fn fields<'ctx>(ctx: &'ctx Context) -> IrrtUserSliceStructFields<'ctx> {
|
||||
let int8 = ctx.i8_type();
|
||||
|
||||
// MUST match the corresponding struct defined in IRRT
|
||||
let mut builder = StructFieldsBuilder::start("NDSlice");
|
||||
let start_defined = builder.add_field("start_defined", int8.into());
|
||||
let start = builder.add_field("start", get_sliceindex_type(ctx).into());
|
||||
let stop_defined = builder.add_field("stop_defined", int8.into());
|
||||
let stop = builder.add_field("stop", get_sliceindex_type(ctx).into());
|
||||
let step_defined = builder.add_field("step_defined", int8.into());
|
||||
let step = builder.add_field("step", get_sliceindex_type(ctx).into());
|
||||
|
||||
IrrtUserSliceStructFields {
|
||||
start_defined,
|
||||
start,
|
||||
stop_defined,
|
||||
stop,
|
||||
step_defined,
|
||||
step,
|
||||
whole_struct: builder.end(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn alloca_user_slice<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
user_slice: &UserSlice<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
// Derive the struct_type
|
||||
let fields = Self::fields(ctx.ctx);
|
||||
let struct_type = fields.whole_struct.get_struct_type(ctx.ctx);
|
||||
|
||||
// ...and then allocate for a real `UserSlice` in LLVM
|
||||
let user_slice_ptr = ctx.builder.build_alloca(struct_type, "user_slice").unwrap();
|
||||
|
||||
// i8 type to set start_defined, stop_defined, step_defined.
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
|
||||
// Now write to `user_slice_ptr`
|
||||
let help = |value_defined_field: StructField<'ctx>,
|
||||
value_field: StructField<'ctx>,
|
||||
value: Option<IntValue<'ctx>>| {
|
||||
match value {
|
||||
None => {
|
||||
value_defined_field.store(ctx, user_slice_ptr, llvm_i8.const_zero());
|
||||
value_field.store(
|
||||
ctx,
|
||||
user_slice_ptr,
|
||||
get_sliceindex_type(ctx.ctx).const_zero(),
|
||||
);
|
||||
}
|
||||
Some(value) => {
|
||||
debug_assert_eq!(get_sliceindex_type(ctx.ctx), value.get_type()); // Sanity check just in case there is a bug somewhere
|
||||
value_defined_field.store(ctx, user_slice_ptr, llvm_i8.const_int(1, false));
|
||||
value_field.store(ctx, user_slice_ptr, value);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
help(fields.start_defined, fields.start, user_slice.start);
|
||||
help(fields.stop_defined, fields.stop, user_slice.stop);
|
||||
help(fields.step_defined, fields.step, user_slice.step);
|
||||
|
||||
user_slice_ptr
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Move to classes.rs?
|
||||
/// A numpy slice. This corresponds to `NDSlice` defined in IRRT,
|
||||
/// but with more Rust sugar to help with implementing codegen.
|
||||
pub enum NDSlice<'ctx> {
|
||||
/// Index [`IntValue`] must be `int32_t`
|
||||
Index(IntValue<'ctx>),
|
||||
Slice(UserSlice<'ctx>),
|
||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools; *should* be very easy to implement
|
||||
}
|
||||
|
||||
// TODO: Empty struct
|
||||
pub struct IrrtNDSlice {}
|
||||
|
||||
pub struct IrrtNDSliceStructFields<'ctx> {
|
||||
pub whole_struct: StructFields<'ctx>,
|
||||
pub type_: StructField<'ctx>,
|
||||
pub slice: StructField<'ctx>,
|
||||
}
|
||||
|
||||
impl IrrtNDSlice {
|
||||
pub fn fields<'ctx>(ctx: &'ctx Context) -> IrrtNDSliceStructFields<'ctx> {
|
||||
let mut builder = StructFieldsBuilder::start("NDSlice");
|
||||
|
||||
// MUST match the corresponding struct defined in IRRT
|
||||
let type_ = builder.add_field("type", get_ndslicetype_constant_type(ctx).into());
|
||||
let slice = builder.add_field("slice", get_opaque_uint8_ptr_type(ctx).into());
|
||||
|
||||
IrrtNDSliceStructFields { type_, slice, whole_struct: builder.end() }
|
||||
}
|
||||
|
||||
pub fn alloca_ndslices<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndslices: &Vec<&NDSlice<'ctx>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let fields = Self::fields(ctx.ctx);
|
||||
|
||||
// Derive the number of slices
|
||||
let count = ndslices.len();
|
||||
let count_llvm = ctx.ctx.i32_type().const_int(count as u64, false);
|
||||
|
||||
// Allocate `count` number of ndslices, and ready to write
|
||||
let struct_type = fields.whole_struct.get_struct_type(ctx.ctx);
|
||||
let ndslices_ptr =
|
||||
ctx.builder.build_array_alloca(struct_type, count_llvm, "ndslices").unwrap();
|
||||
|
||||
for (ndslice_i, ndslice) in ndslices.iter().enumerate() {
|
||||
// Setup the values that will build a real `NDSlice` in LLVM
|
||||
// NOTE: (A INPUT_SLICE_TYPE_* constant value for `NDSlice::type`, the ptr for `NDArray::slice`)
|
||||
let (type_, slice_ptr): (u8, PointerValue<'ctx>) = match ndslice {
|
||||
NDSlice::Index(index) => {
|
||||
// Sanity check on `index.get_type()` just in case there is a bug somewhere
|
||||
debug_assert_eq!(get_sliceindex_type(ctx.ctx), index.get_type());
|
||||
|
||||
// Refer to the IRRT to see what should be set to `uint8_t* slice`.
|
||||
let slice_ptr = ctx
|
||||
.builder
|
||||
.build_alloca(get_sliceindex_type(ctx.ctx), "index_slice")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(slice_ptr, *index).unwrap();
|
||||
|
||||
let type_ = 0; // const NDSliceType INPUT_SLICE_TYPE_INDEX = 0;
|
||||
(type_, slice_ptr)
|
||||
}
|
||||
NDSlice::Slice(user_slice) => {
|
||||
// Allocate the user_slice
|
||||
let slice_ptr = IrrtUserSlice::alloca_user_slice(ctx, user_slice);
|
||||
|
||||
let type_ = 1; // const NDSliceType INPUT_SLICE_TYPE_SLICE = 1;
|
||||
(type_, slice_ptr)
|
||||
}
|
||||
};
|
||||
|
||||
// Get the pointer to the ndslice_i-th entry of `ndslices_llvm` and write to it.
|
||||
let gep_index = ctx.ctx.i32_type().const_int(ndslice_i as u64, false);
|
||||
let ndslice_entry_ptr = unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(ndslices_ptr, &[gep_index], "ndslice_entry")
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// Write `type_`
|
||||
let type_llvm = get_ndslicetype_constant_type(ctx.ctx).const_int(type_ as u64, false);
|
||||
fields.type_.store(ctx, ndslice_entry_ptr, type_llvm);
|
||||
|
||||
// Write `slice`
|
||||
// `slice_ptr` has to be casted to `uint8_t*` beforehand
|
||||
let slice_ptr = ctx
|
||||
.builder
|
||||
.build_pointer_cast(slice_ptr, get_opaque_uint8_ptr_type(ctx.ctx), "slices_casted")
|
||||
.unwrap();
|
||||
fields.slice.store(ctx, ndslice_entry_ptr, slice_ptr);
|
||||
}
|
||||
|
||||
ndslices_ptr
|
||||
}
|
||||
}
|
||||
|
||||
fn get_size_variant<'ctx>(ty: IntType<'ctx>) -> SizeVariant {
|
||||
match ty.get_bit_width() {
|
||||
32 => SizeVariant::Bits32,
|
||||
|
@ -966,18 +1172,18 @@ where
|
|||
}
|
||||
|
||||
pub fn get_irrt_ndarray_ptr_type<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ctx: &'ctx Context,
|
||||
size_type: IntType<'ctx>,
|
||||
) -> PointerType<'ctx> {
|
||||
let i8_type = ctx.ctx.i8_type();
|
||||
let i8_type = ctx.i8_type();
|
||||
|
||||
let ndarray_ty = NpArrayType { size_type, elem_type: i8_type.as_basic_type_enum() };
|
||||
let struct_ty = ndarray_ty.get_struct_type(ctx.ctx);
|
||||
let struct_ty = ndarray_ty.get_struct_type(ctx);
|
||||
struct_ty.ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
pub fn get_irrt_opaque_uint8_ptr_type<'ctx>(ctx: &CodeGenContext<'ctx, '_>) -> PointerType<'ctx> {
|
||||
ctx.ctx.i8_type().ptr_type(AddressSpace::default())
|
||||
pub fn get_opaque_uint8_ptr_type<'ctx>(ctx: &'ctx Context) -> PointerType<'ctx> {
|
||||
ctx.i8_type().ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_size<'ctx>(
|
||||
|
@ -987,7 +1193,7 @@ pub fn call_nac3_ndarray_size<'ctx>(
|
|||
// Get the IRRT function
|
||||
let size_type = ndarray.ty.size_type;
|
||||
let function = get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_size", || {
|
||||
size_type.fn_type(&[get_irrt_ndarray_ptr_type(ctx, size_type).into()], false)
|
||||
size_type.fn_type(&[get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into()], false)
|
||||
});
|
||||
|
||||
// Call the IRRT function
|
||||
|
@ -1014,8 +1220,8 @@ pub fn call_nac3_ndarray_fill_generic<'ctx>(
|
|||
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_fill_generic", || {
|
||||
ctx.ctx.void_type().fn_type(
|
||||
&[
|
||||
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
|
||||
get_irrt_opaque_uint8_ptr_type(ctx).into(), // uint8_t* pvalue
|
||||
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* ndarray
|
||||
get_opaque_uint8_ptr_type(ctx.ctx).into(), // uint8_t* pvalue
|
||||
],
|
||||
false,
|
||||
)
|
||||
|
@ -1026,7 +1232,8 @@ pub fn call_nac3_ndarray_fill_generic<'ctx>(
|
|||
ctx.builder.build_store(pvalue, fill_value).unwrap();
|
||||
|
||||
// Cast pvalue to `uint8_t*`
|
||||
let pvalue = ctx.builder.build_pointer_cast(pvalue, get_irrt_opaque_uint8_ptr_type(ctx), "").unwrap();
|
||||
let pvalue =
|
||||
ctx.builder.build_pointer_cast(pvalue, get_opaque_uint8_ptr_type(ctx.ctx), "").unwrap();
|
||||
|
||||
// Call the IRRT function
|
||||
ctx.builder
|
||||
|
@ -1041,22 +1248,25 @@ pub fn call_nac3_ndarray_fill_generic<'ctx>(
|
|||
.unwrap();
|
||||
}
|
||||
|
||||
|
||||
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
) {
|
||||
// Get the IRRT function
|
||||
let size_type = ndarray.ty.size_type;
|
||||
let function =
|
||||
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_set_strides_by_shape", || {
|
||||
let function = get_size_type_dependent_function(
|
||||
ctx,
|
||||
size_type,
|
||||
"__nac3_ndarray_set_strides_by_shape",
|
||||
|| {
|
||||
ctx.ctx.void_type().fn_type(
|
||||
&[
|
||||
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
|
||||
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* ndarray
|
||||
],
|
||||
false,
|
||||
)
|
||||
});
|
||||
},
|
||||
);
|
||||
|
||||
// Call the IRRT function
|
||||
ctx.builder
|
||||
|
@ -1069,3 +1279,132 @@ pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
|
|||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_deduce_ndims_after_slicing_raw<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size_type: IntType<'ctx>,
|
||||
ndims: IntValue<'ctx>,
|
||||
num_slices: IntValue<'ctx>,
|
||||
ndslices_ptr: PointerValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
// Get the IRRT function
|
||||
let function = get_size_type_dependent_function(
|
||||
ctx,
|
||||
size_type,
|
||||
"__nac3_ndarray_deduce_ndims_after_slicing",
|
||||
|| {
|
||||
size_type.fn_type(
|
||||
&[
|
||||
size_type.into(), // SizeT ndims
|
||||
size_type.into(), // SizeT num_slices
|
||||
IrrtNDSlice::fields(ctx.ctx)
|
||||
.whole_struct
|
||||
.get_struct_type(ctx.ctx)
|
||||
.ptr_type(AddressSpace::default())
|
||||
.into(), // NDSlice* slices
|
||||
],
|
||||
false,
|
||||
)
|
||||
},
|
||||
);
|
||||
|
||||
// Call the IRRT function
|
||||
ctx.builder
|
||||
.build_call(
|
||||
function,
|
||||
&[
|
||||
ndims.into(), // ndims
|
||||
num_slices.into(), // num_slices
|
||||
ndslices_ptr.into(), // slices
|
||||
],
|
||||
"ndims_after_slicing",
|
||||
)
|
||||
.unwrap()
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_int_value()
|
||||
}
|
||||
|
||||
// TODO: RENAME ME AND MY FRIENDS
|
||||
pub fn call_nac3_ndarray_subscript_raw<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
num_slices: IntValue<'ctx>,
|
||||
slices: PointerValue<'ctx>,
|
||||
dst_ndarray: NpArrayValue<'ctx>,
|
||||
) {
|
||||
// Get the IRRT function
|
||||
let size_type = ndarray.ty.size_type;
|
||||
let function =
|
||||
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_subscript", || {
|
||||
ctx.ctx.void_type().fn_type(
|
||||
&[
|
||||
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* ndarray
|
||||
size_type.into(), // SizeT num_slices
|
||||
IrrtNDSlice::fields(ctx.ctx)
|
||||
.whole_struct
|
||||
.get_struct_type(ctx.ctx)
|
||||
.ptr_type(AddressSpace::default())
|
||||
.into(), // NDSlice* slices
|
||||
get_irrt_ndarray_ptr_type(ctx.ctx, size_type).into(), // NDArray<SizeT>* dst_ndarray
|
||||
],
|
||||
false,
|
||||
)
|
||||
});
|
||||
|
||||
// Call the IRRT function
|
||||
ctx.builder
|
||||
.build_call(
|
||||
function,
|
||||
&[
|
||||
ndarray.ptr.into(), // ndarray
|
||||
num_slices.into(), // num_slices
|
||||
slices.into(), // slices
|
||||
dst_ndarray.ptr.into(), // dst_ndarray
|
||||
],
|
||||
"subndarray",
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_subscript_and_alloc_dst<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
ndslices: &Vec<&NDSlice<'ctx>>,
|
||||
) -> NpArrayValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
// First we will calculate the correct ndims of the dst_ndarray
|
||||
// Then allocate for dst_ndarray (A known `ndims` value is required for this)
|
||||
// Finally do call the IRRT function that actually does subscript
|
||||
|
||||
let size_type = ndarray.ty.size_type;
|
||||
|
||||
// Prepare the argument `ndims`
|
||||
let ndims = ndarray.load_ndims(ctx);
|
||||
|
||||
// Prepare the argument `num_slices` in LLVM - which conveniently is simply `ndslices.len()`
|
||||
let num_slices = size_type.const_int(ndslices.len() as u64, false);
|
||||
|
||||
// Prepare the argument `slices`
|
||||
let ndslices_ptr = IrrtNDSlice::alloca_ndslices(ctx, ndslices);
|
||||
|
||||
// Deduce the ndims
|
||||
let dst_ndims = call_nac3_ndarray_deduce_ndims_after_slicing_raw(
|
||||
ctx,
|
||||
ndarray.ty.size_type,
|
||||
ndims,
|
||||
num_slices,
|
||||
ndslices_ptr,
|
||||
);
|
||||
|
||||
// Allocate `dst_ndarray`
|
||||
let dst_ndarray =
|
||||
ndarray.ty.var_alloc(generator, ctx, dst_ndims, Some("subscript_dst_ndarray"));
|
||||
|
||||
call_nac3_ndarray_subscript_raw(ctx, ndarray, num_slices, ndslices_ptr, dst_ndarray);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
|
|
|
@ -37,7 +37,7 @@ use super::{
|
|||
classes::NpArrayValue,
|
||||
irrt::{
|
||||
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size, get_irrt_ndarray_ptr_type,
|
||||
get_irrt_opaque_uint8_ptr_type,
|
||||
get_opaque_uint8_ptr_type,
|
||||
},
|
||||
stmt::gen_return,
|
||||
};
|
||||
|
@ -2306,7 +2306,7 @@ where
|
|||
// We also have to cast `data_ptr` to `uint8_t*` because that is what `NDArray` has.
|
||||
let data_ptr = ctx
|
||||
.builder
|
||||
.build_pointer_cast(data_ptr, get_irrt_opaque_uint8_ptr_type(ctx), "data_casted")
|
||||
.build_pointer_cast(data_ptr, get_opaque_uint8_ptr_type(ctx.ctx), "data_casted")
|
||||
.unwrap();
|
||||
ndarray.store_data(ctx, data_ptr);
|
||||
|
||||
|
@ -2410,7 +2410,7 @@ pub fn gen_ndarray_zeros<'ctx>(
|
|||
let ndarray = call_ndarray_fill_impl(
|
||||
generator,
|
||||
context,
|
||||
float64_ty,
|
||||
float64_ty, // `elem_ty` is always `float64`
|
||||
shape,
|
||||
shape_ty,
|
||||
float64_llvm_type.const_zero().as_basic_value_enum(),
|
||||
|
@ -2442,11 +2442,11 @@ pub fn gen_ndarray_ones<'ctx>(
|
|||
let ndarray = call_ndarray_fill_impl(
|
||||
generator,
|
||||
context,
|
||||
float64_ty,
|
||||
float64_ty, // `elem_ty` is always `float64`
|
||||
shape,
|
||||
shape_ty,
|
||||
float64_llvm_type.const_float(1.0).as_basic_value_enum(),
|
||||
Some("np_zeros.result"),
|
||||
Some("np_ones.result"),
|
||||
)?;
|
||||
Ok(ndarray.ptr)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue