This commit is contained in:
David Mak 2024-11-12 17:00:45 +08:00
parent 7d82cd0714
commit 0c4aae2eea
5 changed files with 258 additions and 169 deletions

View File

@ -721,7 +721,9 @@ fn format_rpc_ret<'ctx>(
);
}
ndarray.create_data(generator, ctx, llvm_elem_ty, num_elements);
unsafe {
ndarray.create_data(generator, ctx);
}
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =

View File

@ -32,7 +32,7 @@ use super::{
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
gen_var,
},
types::{ListType, ProxyType},
types::{ListType, NDArrayType, ProxyType},
values::{
ArrayLikeIndexer, ArrayLikeValue, ListValue, NDArrayValue, ProxyValue, RangeValue,
TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
@ -41,11 +41,7 @@ use super::{
};
use crate::{
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId, TopLevelDef,
},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
typecheck::{
magic_methods::{Binop, BinopVariant, HasOpInfo},
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
@ -2595,14 +2591,6 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
_ => 1,
};
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
None,
);
let ndarray_ty =
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
@ -2797,26 +2785,16 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
let num_dims = v.load_ndims(ctx);
let num_dims = ctx
.builder
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
.unwrap();
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
// elements over
let subscripted_ndarray =
generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
let ndarray = NDArrayValue::from_pointer_value(
subscripted_ndarray,
llvm_ndarray_data_t,
None,
llvm_usize,
None,
);
let num_dims = v.load_ndims(ctx);
ndarray.store_ndims(
ctx,
generator,
ctx.builder
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
.unwrap(),
);
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_ndarray_data_t)
.construct_uninitialized(generator, ctx, num_dims, None);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
@ -2856,9 +2834,10 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
);
let ndarray_num_elems = ctx
.builder
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
.build_int_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
.unwrap();
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
unsafe { ndarray.create_data(generator, ctx) };
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
call_memcpy_generic(

View File

@ -40,25 +40,6 @@ use crate::{
},
};
/// Creates an uninitialized `NDArray` instance.
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray_t = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty)
.as_base_type()
.get_element_type()
.into_struct_type();
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, None, llvm_usize, None))
}
/// Creates an `NDArray` instance from a dynamic shape.
///
/// * `elem_ty` - The element type of the `NDArray`.
@ -84,6 +65,7 @@ where
) -> Result<IntValue<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
// Assert that all dimensions are non-negative
let shape_len = shape_len_fn(generator, ctx, shape)?;
@ -123,10 +105,10 @@ where
llvm_usize.const_int(1, false),
)?;
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
let num_dims = shape_len_fn(generator, ctx, shape)?;
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty)
.construct_uninitialized(generator, ctx, num_dims, None);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
@ -154,7 +136,7 @@ where
llvm_usize.const_int(1, false),
)?;
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
unsafe { ndarray.create_data(generator, ctx) };
Ok(ndarray)
}
@ -194,32 +176,11 @@ pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_dtype)
.construct_dyn_shape(generator, ctx, shape, None);
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
unsafe { ndarray.create_data(generator, ctx) };
Ok(ndarray)
}
/// Initializes the `data` field of [`NDArrayValue`] based on the `ndims` and `dim_sz` fields.
fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
ndarray: NDArrayValue<'ctx>,
) -> NDArrayValue<'ctx> {
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
assert!(llvm_ndarray_data_t.is_sized());
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.shape().as_slice_value(ctx, generator),
(None, None),
);
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
ndarray
}
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -1262,85 +1223,89 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = if slices.is_empty() {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&this,
|_, ctx, shape| Ok(shape.load_ndims(ctx)),
|generator, ctx, shape, idx| unsafe {
Ok(shape.shape().get_typed_unchecked(ctx, generator, &idx, None))
},
)?
} else {
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
ndarray.store_ndims(ctx, generator, this.load_ndims(ctx));
let ndarray =
if slices.is_empty() {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&this,
|_, ctx, shape| Ok(shape.load_ndims(ctx)),
|generator, ctx, shape, idx| unsafe {
Ok(shape.shape().get_typed_unchecked(ctx, generator, &idx, None))
},
)?
} else {
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty)
.construct_uninitialized(generator, ctx, this.load_ndims(ctx), None);
let ndims = this.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndims);
let ndims = this.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndims);
// Populate the first slices.len() dimensions by computing the size of each dim slice
for (i, (start, stop, step)) in slices.iter().enumerate() {
// HACK: workaround calculate_len_for_slice_range requiring exclusive stop
let stop = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(
IntPredicate::SLT,
*step,
llvm_i32.const_zero(),
"is_neg",
)
.unwrap(),
ctx.builder
.build_int_sub(*stop, llvm_i32.const_int(1, true), "e_min_one")
.unwrap(),
ctx.builder
.build_int_add(*stop, llvm_i32.const_int(1, true), "e_add_one")
.unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// Populate the first slices.len() dimensions by computing the size of each dim slice
for (i, (start, stop, step)) in slices.iter().enumerate() {
// HACK: workaround calculate_len_for_slice_range requiring exclusive stop
let stop = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(
IntPredicate::SLT,
*step,
llvm_i32.const_zero(),
"is_neg",
)
.unwrap(),
ctx.builder
.build_int_sub(*stop, llvm_i32.const_int(1, true), "e_min_one")
.unwrap(),
ctx.builder
.build_int_add(*stop, llvm_i32.const_int(1, true), "e_add_one")
.unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let slice_len = calculate_len_for_slice_range(generator, ctx, *start, stop, *step);
let slice_len =
ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap();
let slice_len = calculate_len_for_slice_range(generator, ctx, *start, stop, *step);
let slice_len =
ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap();
unsafe {
ndarray.shape().set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
slice_len,
);
}
}
// Populate the rest by directly copying the dim size from the source array
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_int(slices.len() as u64, false),
(this.load_ndims(ctx), false),
|generator, ctx, _, idx| {
unsafe {
let dim_sz = this.shape().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.shape().set_typed_unchecked(ctx, generator, &idx, dim_sz);
ndarray.shape().set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
slice_len,
);
}
}
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
// Populate the rest by directly copying the dim size from the source array
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_int(slices.len() as u64, false),
(this.load_ndims(ctx), false),
|generator, ctx, _, idx| {
unsafe {
let dim_sz = this.shape().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.shape().set_typed_unchecked(ctx, generator, &idx, dim_sz);
}
ndarray_init_data(generator, ctx, elem_ty, ndarray)
};
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
unsafe { ndarray.create_data(generator, ctx) };
ndarray
};
ndarray_sliced_copyto_impl(
generator,

View File

@ -190,22 +190,20 @@ impl<'ctx> NDArrayType<'ctx> {
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: u64,
// ndims: u64,
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.new_value(generator, ctx, name);
let itemsize = ctx
.builder
.build_int_z_extend_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
.unwrap();
let itemsize =
ctx.builder.build_int_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "").unwrap();
ndarray.store_itemsize(ctx, generator, itemsize);
let ndims_val = self.llvm_usize.const_int(ndims, false);
ndarray.store_ndims(ctx, generator, ndims_val);
ndarray.store_ndims(ctx, generator, ndims);
ndarray.create_shape(ctx, self.llvm_usize, ndims_val);
ndarray.create_strides(ctx, self.llvm_usize, ndims_val);
ndarray.create_shape(ctx, self.llvm_usize, ndims);
ndarray.create_strides(ctx, self.llvm_usize, ndims);
ndarray
}
@ -221,7 +219,14 @@ impl<'ctx> NDArrayType<'ctx> {
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, shape.len() as u64, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray = self.construct_uninitialized(
generator,
ctx,
llvm_usize.const_int(shape.len() as u64, false),
name,
);
// Write shape
let ndarray_shape = ndarray.shape();
@ -251,7 +256,14 @@ impl<'ctx> NDArrayType<'ctx> {
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, shape.len() as u64, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray = self.construct_uninitialized(
generator,
ctx,
llvm_usize.const_int(shape.len() as u64, false),
name,
);
// Write shape
let ndarray_shape = ndarray.shape();

View File

@ -10,7 +10,7 @@ use super::{
};
use crate::codegen::{
irrt,
llvm_intrinsics::call_int_umin,
llvm_intrinsics::{call_int_umin, call_memcpy_generic_array},
stmt::gen_for_callback_incrementing,
type_aligned_alloca,
types::{structure::StructField, NDArrayType},
@ -179,19 +179,23 @@ impl<'ctx> NDArrayValue<'ctx> {
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
pub fn create_data<G: CodeGenerator + ?Sized>(
///
/// The data buffer will be allocated on the stack, and is considered to be owned by this ndarray instance.
///
/// # Safety
///
/// The caller must ensure that `shape` and `itemsize` of this ndarray instance is initialized.
pub unsafe fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
) {
let itemsize =
ctx.builder.build_int_cast(elem_ty.size_of().unwrap(), size.get_type(), "").unwrap();
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
let nbytes = self.nbytes(generator, ctx);
let data = type_aligned_alloca(generator, ctx, elem_ty, nbytes, None);
let data = type_aligned_alloca(generator, ctx, self.dtype, nbytes, None);
self.store_data(ctx, data);
self.set_strides_contiguous(generator, ctx);
}
/// Returns a proxy object to the field storing the data of this `NDArray`.
@ -199,6 +203,133 @@ impl<'ctx> NDArrayValue<'ctx> {
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
NDArrayDataProxy(self)
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: PointerValue<'ctx>,
) {
let num_items = self.load_ndims(ctx);
call_memcpy_generic_array(
ctx,
self.shape().base_ptr(ctx, generator),
shape,
num_items,
ctx.ctx.bool_type().const_zero(),
);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.shape().base_ptr(ctx, generator);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: PointerValue<'ctx>,
) {
let num_items = self.load_ndims(ctx);
call_memcpy_generic_array(
ctx,
self.strides().base_ptr(ctx, generator),
strides,
num_items,
ctx.ctx.bool_type().const_zero(),
);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.strides().base_ptr(ctx, generator);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_size(generator, ctx, *self)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_nbytes(generator, ctx, *self)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_len(generator, ctx, *self)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_is_c_contiguous(generator, ctx, *self)
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
irrt::ndarray::call_nac3_ndarray_set_strides_by_shape(generator, ctx, *self);
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayValue<'ctx>,
) {
assert_eq!(self.dtype, src.dtype, "self and src dtype should match");
irrt::ndarray::call_nac3_ndarray_copy_data(generator, ctx, src, *self);
}
}
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {