core/model: introduce Model<'ctx> abstraction

This commit is contained in:
lyken 2024-07-17 12:16:41 +08:00
parent 37a022e156
commit 06b64ea888
10 changed files with 825 additions and 0 deletions

View File

@ -41,6 +41,7 @@ pub mod extern_fns;
mod generator; mod generator;
pub mod irrt; pub mod irrt;
pub mod llvm_intrinsics; pub mod llvm_intrinsics;
pub mod model;
pub mod numpy; pub mod numpy;
pub mod stmt; pub mod stmt;

View File

@ -0,0 +1,92 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicTypeEnum},
values::{AnyValue, AnyValueEnum, BasicValueEnum},
};
use crate::codegen::CodeGenContext;
use super::{slice::ArraySlice, Int, Pointer};
/// A value that belongs to/produced by a [`Model<'ctx>`]
pub trait ModelValue<'ctx>: Clone + Copy {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx>;
}
// Should have been within [`Model<'ctx>`],
// but rust object safety requirements made it necessary to
// split this interface out
pub trait CanCheckLLVMType<'ctx> {
/// Check if `scrutinee` matches the same LLVM type of this [`Model<'ctx>`].
///
/// If they don't not match, a human-readable error message is returned.
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String>;
}
/// A [`Model`] is a type-safe concrete representation of a complex LLVM type.
pub trait Model<'ctx>: Clone + Copy + CanCheckLLVMType<'ctx> + Sized {
/// The values that inhabit this [`Model<'ctx>`].
///
/// ...that is the type of wrapper that wraps the LLVM values that inhabit [`Model<'ctx>::get_llvm_type()`].
type Value: ModelValue<'ctx>;
/// Get the [`BasicTypeEnum<'ctx>`] this [`Model<'ctx>`] is representing.
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>;
/// Cast an [`AnyValueEnum<'ctx>`] into [`Self::Value`].
///
/// Panics if `value` cannot pass [`CanCheckLLVMType::check_llvm_type()`].
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value;
/// Check if [`Self::Value`] has the correct type described by this [`Model<'ctx>`]
///
/// For example:
/// ```ignore
/// let ctx: &CodeGenContext<'ctx, '_>;
/// let my_i32 = IntModel(ctx.ctx.i32_type());
/// let my_i64 = IntModel(ctx.ctx.i64_type());
/// let value1 = my_i32.constant(3);
/// let value2 = my_i64.constant(3);
/// // Both value1 and value2 have type `IntModel<'ctx>`!
/// // There is no type constraints to tell which value has what int type.
/// my_i32.check(value1); // ok
/// my_i64.check(value2); // ok
///
/// my_i32.check(value2); // PANIC
/// my_i64.check(value1); // PANIC
/// ```
fn check(&self, ctx: &'ctx Context, value: Self::Value) {
self.review(ctx, value.get_llvm_value().as_any_value_enum());
}
/// Build an instruction to allocate a value of [`Model::get_llvm_type`].
fn alloca(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Pointer<'ctx, Self> {
Pointer {
element: *self,
value: ctx.builder.build_alloca(self.get_llvm_type(ctx.ctx), name).unwrap(),
}
}
/// Build an instruction to allocate an array of [`Model::get_llvm_type`].
fn array_alloca(
&self,
ctx: &CodeGenContext<'ctx, '_>,
count: Int<'ctx>,
name: &str,
) -> ArraySlice<'ctx, Self> {
ArraySlice {
num_elements: count,
pointer: Pointer {
element: *self,
value: ctx
.builder
.build_array_alloca(self.get_llvm_type(ctx.ctx), count.0, name)
.unwrap(),
},
}
}
}

View File

@ -0,0 +1,159 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, IntValue},
};
use crate::codegen::CodeGenContext;
use super::{
core::*,
int_util::{check_int_llvm_type, review_int_llvm_value},
Int, IntModel,
};
/// A marker trait to mark singleton struct that describes a particular fixed integer type.
/// See [`Bool`], [`Byte`], [`Int32`], etc.
///
/// The [`Default`] trait is to enable auto-derivations for utilities like
/// [`FieldBuilder::add_field_auto`]
pub trait IsFixedInt: Clone + Copy + Default {
fn get_int_type(ctx: &Context) -> IntType<'_>;
fn get_bit_width() -> u32; // This is required, instead of only relying on get_int_type
fn constant<'ctx>(&self, ctx: &'ctx Context, value: u64) -> FixedInt<'ctx, Self> {
FixedInt { int: *self, value: Self::get_int_type(ctx).const_int(value, false) }
}
}
// Some pre-defined fixed integers
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
pub type BoolModel = FixedIntModel<Bool>;
impl IsFixedInt for Bool {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.bool_type()
}
fn get_bit_width() -> u32 {
1
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
pub type ByteModel = FixedIntModel<Byte>;
impl IsFixedInt for Byte {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i8_type()
}
fn get_bit_width() -> u32 {
8
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
pub type Int32Model = FixedIntModel<Int32>;
impl IsFixedInt for Int32 {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i32_type()
}
fn get_bit_width() -> u32 {
32
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
pub type Int64Model = FixedIntModel<Int64>;
impl IsFixedInt for Int64 {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i64_type()
}
fn get_bit_width() -> u32 {
64
}
}
/// A model representing a compile-time known [`IntType<'ctx>`].
///
/// Also see [`IntModel`], which is less constrained than [`FixedIntModel`],
/// but enables one to handle [`IntType<'ctx>`] that could be dynamic
#[derive(Debug, Clone, Copy, Default)]
pub struct FixedIntModel<T>(pub T);
// FixedIntModel's implementation
impl<'ctx, T: IsFixedInt> CanCheckLLVMType<'ctx> for FixedIntModel<T> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
check_int_llvm_type(scrutinee, T::get_int_type(ctx))
}
}
impl<'ctx, T: IsFixedInt> Model<'ctx> for FixedIntModel<T> {
type Value = FixedInt<'ctx, T>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
T::get_int_type(ctx).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let value = review_int_llvm_value(value, T::get_int_type(ctx)).unwrap();
FixedInt { int: self.0, value }
}
}
impl<T: IsFixedInt> FixedIntModel<T> {
pub fn to_int_model(self, ctx: &Context) -> IntModel<'_> {
IntModel(T::get_int_type(ctx))
}
}
/// An inhabitant of [`FixedIntModel<'ctx>`]
#[derive(Debug, Clone, Copy)]
pub struct FixedInt<'ctx, T: IsFixedInt> {
pub int: T,
pub value: IntValue<'ctx>,
}
// FixedInt's Implementation
impl<'ctx, T: IsFixedInt> ModelValue<'ctx> for FixedInt<'ctx, T> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, T: IsFixedInt> FixedInt<'ctx, T> {
pub fn to_int(self) -> Int<'ctx> {
Int(self.value)
}
pub fn signed_cast_to_fixed<R: IsFixedInt>(
self,
ctx: &CodeGenContext<'ctx, '_>,
target_fixed_int: R,
name: &str,
) -> FixedInt<'ctx, R> {
FixedInt {
int: target_fixed_int,
value: ctx
.builder
.build_int_s_extend_or_bit_cast(self.value, R::get_int_type(ctx.ctx), name)
.unwrap(),
}
}
}

View File

@ -0,0 +1,97 @@
use inkwell::{
context::Context,
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, IntValue},
};
use crate::codegen::CodeGenContext;
use super::{core::*, int_util::check_int_llvm_type, FixedInt, IsFixedInt};
/// A model representing an [`IntType<'ctx>`].
///
/// Also see [`FixedIntModel`], which is more constrained than [`IntModel`]
/// but provides more type-safe mechanisms and even auto-derivation of [`BasicTypeEnum<'ctx>`]
/// for creating LLVM structures.
#[derive(Debug, Clone, Copy)]
pub struct IntModel<'ctx>(pub IntType<'ctx>);
impl<'ctx> CanCheckLLVMType<'ctx> for IntModel<'ctx> {
fn check_llvm_type(
&self,
_ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
check_int_llvm_type(scrutinee, self.0)
}
}
impl<'ctx> Model<'ctx> for IntModel<'ctx> {
type Value = Int<'ctx>;
fn get_llvm_type(&self, _ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let int = value.into_int_value();
self.check_llvm_type(ctx, int.get_type().as_any_type_enum()).unwrap();
Int(int)
}
}
impl<'ctx> IntModel<'ctx> {
/// Create a constant value that inhabits this [`IntModel<'ctx>`].
#[must_use]
pub fn constant(&self, value: u64) -> Int<'ctx> {
Int(self.0.const_int(value, false))
}
/// Check if `other` is fully compatible with this [`IntModel<'ctx>`].
///
/// This simply checks if the underlying [`IntType<'ctx>`] has
/// the same number of bits.
#[must_use]
pub fn same_as(&self, other: IntModel<'ctx>) -> bool {
// TODO: or `self.0 == other.0` would also work?
self.0.get_bit_width() == other.0.get_bit_width()
}
}
/// An inhabitant of an [`IntModel<'ctx>`]
#[derive(Debug, Clone, Copy)]
pub struct Int<'ctx>(pub IntValue<'ctx>);
impl<'ctx> ModelValue<'ctx> for Int<'ctx> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.0.as_basic_value_enum()
}
}
impl<'ctx> Int<'ctx> {
#[must_use]
pub fn signed_cast_to_int(
self,
ctx: &CodeGenContext<'ctx, '_>,
target_int: IntModel<'ctx>,
name: &str,
) -> Int<'ctx> {
Int(ctx.builder.build_int_s_extend_or_bit_cast(self.0, target_int.0, name).unwrap())
}
#[must_use]
pub fn signed_cast_to_fixed<T: IsFixedInt>(
self,
ctx: &CodeGenContext<'ctx, '_>,
target_fixed: T,
name: &str,
) -> FixedInt<'ctx, T> {
FixedInt {
int: target_fixed,
value: ctx
.builder
.build_int_s_extend_or_bit_cast(self.0, T::get_int_type(ctx.ctx), name)
.unwrap(),
}
}
}

View File

@ -0,0 +1,39 @@
use inkwell::{
types::{AnyType, AnyTypeEnum, IntType},
values::{AnyValueEnum, IntValue},
};
/// Helper function to check if `scrutinee` is the same as `expected_int_type`
pub fn check_int_llvm_type<'ctx>(
scrutinee: AnyTypeEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<(), String> {
// Check if llvm_type is int type
let AnyTypeEnum::IntType(scrutinee) = scrutinee else {
return Err(format!("Expecting an int type but got {scrutinee:?}"));
};
// Check bit width
if scrutinee.get_bit_width() != expected_int_type.get_bit_width() {
return Err(format!(
"Expecting an int type of {}-bit(s) but got int type {}-bit(s)",
expected_int_type.get_bit_width(),
scrutinee.get_bit_width()
));
}
Ok(())
}
/// Helper function to cast `scrutinee` is into an [`IntValue<'ctx>`].
/// The LLVM type of `scrutinee` will be checked with [`check_int_llvm_type`].
pub fn review_int_llvm_value<'ctx>(
value: AnyValueEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<IntValue<'ctx>, String> {
// Check if value is of int type, error if that is anything else
check_int_llvm_type(value.get_type().as_any_type_enum(), expected_int_type)?;
// Ok, it is must be an int
Ok(value.into_int_value())
}

View File

@ -0,0 +1,16 @@
pub mod core;
pub mod fixed_int;
pub mod int;
mod int_util;
pub mod opaque;
pub mod pointer;
pub mod slice;
pub mod structure;
pub use core::*;
pub use fixed_int::*;
pub use int::*;
pub use opaque::*;
pub use pointer::*;
pub use slice::*;
pub use structure::*;

View File

@ -0,0 +1,46 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicTypeEnum},
values::{AnyValueEnum, BasicValueEnum},
};
use super::*;
#[derive(Debug, Clone, Copy)]
pub struct OpaqueModel<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> CanCheckLLVMType<'ctx> for OpaqueModel<'ctx> {
fn check_llvm_type(
&self,
_ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
match BasicTypeEnum::try_from(scrutinee) {
Ok(_) => Ok(()),
Err(_err) => Err(format!("Expecting a BasicTypeEnum, but got {scrutinee:?}")),
}
}
}
impl<'ctx> Model<'ctx> for OpaqueModel<'ctx> {
type Value = Opaque<'ctx>;
fn get_llvm_type(&self, _ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
self.check_llvm_type(ctx, value.get_type()).unwrap();
let value = BasicValueEnum::try_from(value).unwrap(); // Must work
Opaque(value)
}
}
#[derive(Debug, Clone, Copy)]
pub struct Opaque<'ctx>(pub BasicValueEnum<'ctx>);
impl<'ctx> ModelValue<'ctx> for Opaque<'ctx> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.0
}
}

View File

@ -0,0 +1,83 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum},
values::{AnyValue, AnyValueEnum, BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use super::{core::*, OpaqueModel};
/// A [`Model<'ctx>`] representing an LLVM [`PointerType<'ctx>`]
/// with *full* information on the element u
///
/// [`self.0`] contains [`Model<'ctx>`] that represents the
/// LLVM type of element of the [`PointerType<'ctx>`] is pointing at
/// (like `PointerType<'ctx>::get_element_type()`, but abstracted as a [`Model<'ctx>`]).
#[derive(Debug, Clone, Copy, Default)]
pub struct PointerModel<E>(pub E);
impl<'ctx, E: Model<'ctx>> CanCheckLLVMType<'ctx> for PointerModel<E> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// Check if scrutinee is even a PointerValue
let AnyTypeEnum::PointerType(scrutinee) = scrutinee else {
return Err(format!("Expecting a pointer value, but got {scrutinee:?}"));
};
// Check the type of what the pointer is pointing at
// TODO: This will be deprecated by inkwell > llvm14 because `get_element_type()` will be gone
self.0.check_llvm_type(ctx, scrutinee.get_element_type())?; // TODO: Include backtrace?
Ok(())
}
}
impl<'ctx, E: Model<'ctx>> Model<'ctx> for PointerModel<E> {
type Value = Pointer<'ctx, E>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.get_llvm_type(ctx).ptr_type(AddressSpace::default()).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
self.check_llvm_type(ctx, value.get_type()).unwrap();
// TODO: Check get_element_type(). For inkwell LLVM 14 at least...
Pointer { element: self.0, value: value.into_pointer_value() }
}
}
/// An inhabitant of [`PointerModel<E>`]
#[derive(Debug, Clone, Copy)]
pub struct Pointer<'ctx, E: Model<'ctx>> {
pub element: E,
pub value: PointerValue<'ctx>,
}
impl<'ctx, E: Model<'ctx>> ModelValue<'ctx> for Pointer<'ctx, E> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, E: Model<'ctx>> Pointer<'ctx, E> {
/// Build an instruction to store a value into this pointer
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, val: E::Value) {
ctx.builder.build_store(self.value, val.get_llvm_value()).unwrap();
}
/// Build an instruction to load a value from this pointer
pub fn load(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> E::Value {
let val = ctx.builder.build_load(self.value, name).unwrap();
self.element.review(ctx.ctx, val.as_any_value_enum())
}
pub fn to_opaque(self, ctx: &'ctx Context) -> Pointer<'ctx, OpaqueModel<'ctx>> {
Pointer { element: OpaqueModel(self.element.get_llvm_type(ctx)), value: self.value }
}
}

View File

@ -0,0 +1,73 @@
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::{Int, Model, Pointer};
pub struct ArraySlice<'ctx, E: Model<'ctx>> {
pub num_elements: Int<'ctx>,
pub pointer: Pointer<'ctx, E>,
}
impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
pub fn ix_unchecked(
&self,
ctx: &CodeGenContext<'ctx, '_>,
idx: Int<'ctx>,
name: &str,
) -> Pointer<'ctx, E> {
let element_addr =
unsafe { ctx.builder.build_in_bounds_gep(self.pointer.value, &[idx.0], name).unwrap() };
Pointer { value: element_addr, element: self.pointer.element }
}
pub fn ix<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
idx: Int<'ctx>,
name: &str,
) -> Pointer<'ctx, E> {
let int_type = self.num_elements.0.get_type(); // NOTE: Weird get_type(), see comment under `trait Ixed`
assert_eq!(int_type.get_bit_width(), idx.0.get_type().get_bit_width()); // Might as well check bit width to catch bugs
// TODO: SGE or UGE? or make it defined by the implementee?
// Check `0 <= index`
let lower_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLE,
int_type.const_zero(),
idx.0,
"lower_bounded",
)
.unwrap();
// Check `index < num_elements`
let upper_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLT,
idx.0,
self.num_elements.0,
"upper_bounded",
)
.unwrap();
// Compute `0 <= index && index < num_elements`
let bounded = ctx.builder.build_and(lower_bounded, upper_bounded, "bounded").unwrap();
// Assert `bounded`
ctx.make_assert(
generator,
bounded,
"0:IndexError",
"nac3core LLVM codegen attempting to access out of bounds array index {0}. Must satisfy 0 <= index < {2}",
[ Some(idx.0), Some(self.num_elements.0), None],
ctx.current_loc
);
// ...and finally do indexing
self.ix_unchecked(ctx, idx, name)
}
}

View File

@ -0,0 +1,219 @@
use inkwell::{
context::Context,
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, StructType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, StructValue},
};
use itertools::{izip, Itertools};
use crate::codegen::CodeGenContext;
use super::{core::CanCheckLLVMType, Model, ModelValue, Pointer};
#[derive(Debug, Clone, Copy)]
pub struct Field<E> {
pub gep_index: u64,
pub name: &'static str,
pub element: E,
}
struct FieldLLVM<'ctx> {
gep_index: u64,
name: &'ctx str,
llvm_type: BasicTypeEnum<'ctx>,
// Only CanCheckLLVMType is needed, dont use `Model<'ctx>`
llvm_type_model: Box<dyn CanCheckLLVMType<'ctx> + 'ctx>,
}
pub struct FieldBuilder<'ctx> {
pub ctx: &'ctx Context,
gep_index_counter: u64,
struct_name: &'ctx str,
fields: Vec<FieldLLVM<'ctx>>,
}
impl<'ctx> FieldBuilder<'ctx> {
#[must_use]
pub fn new(ctx: &'ctx Context, struct_name: &'ctx str) -> Self {
FieldBuilder { ctx, gep_index_counter: 0, struct_name, fields: Vec::new() }
}
fn next_gep_index(&mut self) -> u64 {
let index = self.gep_index_counter;
self.gep_index_counter += 1;
index
}
pub fn add_field<E: Model<'ctx> + 'ctx>(&mut self, name: &'static str, element: E) -> Field<E> {
let gep_index = self.next_gep_index();
self.fields.push(FieldLLVM {
gep_index,
name,
llvm_type: element.get_llvm_type(self.ctx),
llvm_type_model: Box::new(element),
});
Field { gep_index, name, element }
}
pub fn add_field_auto<E: Model<'ctx> + Default + 'ctx>(
&mut self,
name: &'static str,
) -> Field<E> {
self.add_field(name, E::default())
}
}
/// A marker trait to mark singleton struct that describes a particular LLVM structure.
pub trait IsStruct<'ctx>: Clone + Copy {
/// The type of the Rust `struct` that holds all the fields of this LLVM struct.
type Fields;
/// A cosmetic name for this struct.
/// TODO: Currently unused. To be used in error reporting.
fn struct_name(&self) -> &'static str;
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields;
fn get_fields(&self, ctx: &'ctx Context) -> Self::Fields {
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder)
}
/// Get the LLVM struct type this [`IsStruct<'ctx>`] is representing.
fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder); // Self::Fields is discarded
let field_types = builder.fields.iter().map(|f| f.llvm_type).collect_vec();
ctx.struct_type(&field_types, false)
}
/// Check if `scrutinee` matches the [`StructType<'ctx>`] this [`IsStruct<'ctx>`] is representing.
fn check_struct_type(
&self,
ctx: &'ctx Context,
scrutinee: StructType<'ctx>,
) -> Result<(), String> {
// Details about scrutinee
let scrutinee_field_types = scrutinee.get_field_types();
// Details about the defined specifications of this struct
// We will access them through builder
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder);
// Check # of fields
if builder.fields.len() != scrutinee_field_types.len() {
return Err(format!(
"Expecting struct to have {} field(s), but scrutinee has {} field(s)",
builder.fields.len(),
scrutinee_field_types.len()
));
}
// Check the types of each field
// TODO: Traceback?
for (f, scrutinee_field_type) in izip!(builder.fields, scrutinee_field_types) {
f.llvm_type_model.check_llvm_type(ctx, scrutinee_field_type.as_any_type_enum())?;
}
Ok(())
}
}
/// A [`Model<'ctx>`] that represents an LLVM struct.
///
/// `self.0` contains a [`IsStruct<'ctx>`] that gives the details of the LLVM struct.
#[derive(Debug, Clone, Copy, Default)]
pub struct StructModel<S>(pub S);
impl<'ctx, S: IsStruct<'ctx>> CanCheckLLVMType<'ctx> for StructModel<S> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// Check if scrutinee is even a struct type
let AnyTypeEnum::StructType(scrutinee) = scrutinee else {
return Err(format!("Expecting a struct type, but got {scrutinee:?}"));
};
// Ok. now check the struct type *thoroughly*
self.0.check_struct_type(ctx, scrutinee)
}
}
impl<'ctx, S: IsStruct<'ctx>> Model<'ctx> for StructModel<S> {
type Value = Struct<'ctx, S>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.get_struct_type(ctx).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
// Check that `value` is not some bogus values or an incorrect StructValue
self.check_llvm_type(ctx, value.get_type()).unwrap();
Struct { structure: self.0, value: value.into_struct_value() }
}
}
#[derive(Debug, Clone, Copy)]
pub struct Struct<'ctx, S> {
pub structure: S,
pub value: StructValue<'ctx>,
}
impl<'ctx, S: IsStruct<'ctx>> ModelValue<'ctx> for Struct<'ctx, S> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, S: IsStruct<'ctx>> Pointer<'ctx, StructModel<S>> {
/// Build an instruction that does `getelementptr` on an LLVM structure referenced by this pointer.
///
/// This provides a nice syntax to chain up `getelementptr` in an intuitive and type-safe way:
///
/// ```ignore
/// let ctx: &CodeGenContext<'ctx, '_>;
/// let ndarray: Pointer<'ctx, StructModel<NpArray<'ctx>>>;
/// ndarray.gep(ctx, |f| f.ndims).store();
/// ```
///
/// You might even write chains `gep`, i.e.,
/// ```ignore
/// my_struct
/// .gep(ctx, |f| f.thing1)
/// .gep(ctx, |f| f.value)
/// .store(ctx, my_value) // Equivalent to `my_struct.thing1.value = my_value`
/// ```
pub fn gep<E, GetFieldFn>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetFieldFn,
) -> Pointer<'ctx, E>
where
E: Model<'ctx>,
GetFieldFn: FnOnce(S::Fields) -> Field<E>,
{
let fields = self.element.0.get_fields(ctx.ctx);
let field = get_field(fields);
let llvm_i32 = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to *just* use i32 for GEP like that
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
Pointer { element: field.element, value: ptr }
}
}