390 lines
18 KiB
Rust
390 lines
18 KiB
Rust
|
use std::{convert::TryInto, iter::once};
|
||
|
|
||
|
use crate::top_level::{CodeGenContext, TopLevelDef};
|
||
|
use crate::typecheck::typedef::{Type, TypeEnum};
|
||
|
use inkwell::{types::BasicType, values::BasicValueEnum};
|
||
|
use itertools::{chain, izip, zip, Itertools};
|
||
|
use rustpython_parser::ast::{self, Boolop, Constant, Expr, ExprKind, Operator};
|
||
|
|
||
|
impl<'ctx> CodeGenContext<'ctx> {
|
||
|
fn get_attr_index(&mut self, ty: Type, attr: &str) -> usize {
|
||
|
let obj_id = match &*self.unifier.get_ty(ty) {
|
||
|
TypeEnum::TObj { obj_id, .. } => *obj_id,
|
||
|
// we cannot have other types, virtual type should be handled by function calls
|
||
|
_ => unreachable!(),
|
||
|
};
|
||
|
let def = &self.top_level.definitions.read()[obj_id];
|
||
|
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
|
||
|
fields.iter().find_position(|x| x.0 == attr).unwrap().0
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
index
|
||
|
}
|
||
|
|
||
|
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
|
||
|
match value {
|
||
|
Constant::Bool(v) => {
|
||
|
assert!(self.unifier.unioned(ty, self.top_level.primitives.bool));
|
||
|
let ty = self.ctx.bool_type();
|
||
|
ty.const_int(if *v { 1 } else { 0 }, false).into()
|
||
|
}
|
||
|
Constant::Int(v) => {
|
||
|
let ty = if self.unifier.unioned(ty, self.top_level.primitives.int32) {
|
||
|
self.ctx.i32_type()
|
||
|
} else if self.unifier.unioned(ty, self.top_level.primitives.int64) {
|
||
|
self.ctx.i64_type()
|
||
|
} else {
|
||
|
unreachable!();
|
||
|
};
|
||
|
ty.const_int(v.try_into().unwrap(), false).into()
|
||
|
}
|
||
|
Constant::Float(v) => {
|
||
|
assert!(self.unifier.unioned(ty, self.top_level.primitives.float));
|
||
|
let ty = self.ctx.f64_type();
|
||
|
ty.const_float(*v).into()
|
||
|
}
|
||
|
Constant::Tuple(v) => {
|
||
|
let ty = self.unifier.get_ty(ty);
|
||
|
let types =
|
||
|
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
|
||
|
let values = zip(types.into_iter(), v.iter())
|
||
|
.map(|(ty, v)| self.gen_const(v, ty))
|
||
|
.collect_vec();
|
||
|
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
|
||
|
let ty = self.ctx.struct_type(&types, false);
|
||
|
ty.const_named_struct(&values).into()
|
||
|
}
|
||
|
_ => unimplemented!(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn gen_int_ops(
|
||
|
&mut self,
|
||
|
op: &Operator,
|
||
|
lhs: BasicValueEnum<'ctx>,
|
||
|
rhs: BasicValueEnum<'ctx>,
|
||
|
) -> BasicValueEnum<'ctx> {
|
||
|
let (lhs, rhs) =
|
||
|
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
|
||
|
(lhs, rhs)
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
match op {
|
||
|
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
|
||
|
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
|
||
|
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
|
||
|
Operator::Div => {
|
||
|
let float = self.ctx.f64_type();
|
||
|
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
|
||
|
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
|
||
|
self.builder.build_float_div(left, right, "fdiv").into()
|
||
|
}
|
||
|
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
|
||
|
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
|
||
|
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
|
||
|
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
|
||
|
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
|
||
|
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
|
||
|
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
|
||
|
// special implementation?
|
||
|
Operator::Pow => unimplemented!(),
|
||
|
Operator::MatMult => unreachable!(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn gen_float_ops(
|
||
|
&mut self,
|
||
|
op: &Operator,
|
||
|
lhs: BasicValueEnum<'ctx>,
|
||
|
rhs: BasicValueEnum<'ctx>,
|
||
|
) -> BasicValueEnum<'ctx> {
|
||
|
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
|
||
|
(lhs, rhs)
|
||
|
{
|
||
|
(lhs, rhs)
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
match op {
|
||
|
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
|
||
|
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
|
||
|
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
|
||
|
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
|
||
|
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
|
||
|
Operator::FloorDiv => {
|
||
|
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
|
||
|
let floor_intrinsic =
|
||
|
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
|
||
|
let float = self.ctx.f64_type();
|
||
|
let fn_type = float.fn_type(&[float.into()], false);
|
||
|
self.module.add_function("llvm.floor.f64", fn_type, None)
|
||
|
});
|
||
|
self.builder
|
||
|
.build_call(floor_intrinsic, &[div.into()], "floor")
|
||
|
.try_as_basic_value()
|
||
|
.left()
|
||
|
.unwrap()
|
||
|
}
|
||
|
// special implementation?
|
||
|
_ => unimplemented!(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub fn gen_expr(&mut self, expr: &Expr<Option<Type>>) -> BasicValueEnum<'ctx> {
|
||
|
let zero = self.ctx.i32_type().const_int(0, false);
|
||
|
let primitives = &self.top_level.primitives;
|
||
|
match &expr.node {
|
||
|
ExprKind::Constant { value, .. } => {
|
||
|
let ty = expr.custom.clone().unwrap();
|
||
|
self.gen_const(value, ty)
|
||
|
}
|
||
|
ExprKind::Name { id, .. } => {
|
||
|
let ptr = self.var_assignment.get(id).unwrap();
|
||
|
self.builder.build_load(*ptr, "load")
|
||
|
}
|
||
|
ExprKind::List { elts, .. } => {
|
||
|
// this shall be optimized later for constant primitive lists...
|
||
|
let elements = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
|
||
|
let ty = if elements.is_empty() {
|
||
|
self.ctx.i32_type().into()
|
||
|
} else {
|
||
|
elements[0].get_type()
|
||
|
};
|
||
|
// this length includes the leading length element
|
||
|
let arr_ty = self.ctx.struct_type(
|
||
|
&[self.ctx.i32_type().into(), ty.array_type(elements.len() as u32).into()],
|
||
|
false,
|
||
|
);
|
||
|
let arr_ptr = self.builder.build_alloca(arr_ty, "tmparr");
|
||
|
unsafe {
|
||
|
let len_ptr = arr_ptr
|
||
|
.const_in_bounds_gep(&[zero, self.ctx.i32_type().const_int(0u64, false)]);
|
||
|
self.builder.build_store(
|
||
|
len_ptr,
|
||
|
self.ctx.i32_type().const_int(elements.len() as u64, false),
|
||
|
);
|
||
|
let arr_offset = self.ctx.i32_type().const_int(1, false);
|
||
|
for (i, v) in elements.iter().enumerate() {
|
||
|
let ptr = self.builder.build_in_bounds_gep(
|
||
|
arr_ptr,
|
||
|
&[zero, arr_offset, self.ctx.i32_type().const_int(i as u64, false)],
|
||
|
"arr_element",
|
||
|
);
|
||
|
self.builder.build_store(ptr, *v);
|
||
|
}
|
||
|
}
|
||
|
arr_ptr.into()
|
||
|
}
|
||
|
ExprKind::Tuple { elts, .. } => {
|
||
|
let element_val = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
|
||
|
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
|
||
|
let tuple_ty = self.ctx.struct_type(&element_ty, false);
|
||
|
let tuple_ptr = self.builder.build_alloca(tuple_ty, "tuple");
|
||
|
for (i, v) in element_val.into_iter().enumerate() {
|
||
|
unsafe {
|
||
|
let ptr = tuple_ptr.const_in_bounds_gep(&[
|
||
|
zero,
|
||
|
self.ctx.i32_type().const_int(i as u64, false),
|
||
|
]);
|
||
|
self.builder.build_store(ptr, v);
|
||
|
}
|
||
|
}
|
||
|
tuple_ptr.into()
|
||
|
}
|
||
|
ExprKind::Attribute { value, attr, .. } => {
|
||
|
// note that we would handle class methods directly in calls
|
||
|
let index = self.get_attr_index(value.custom.unwrap(), attr);
|
||
|
let val = self.gen_expr(value);
|
||
|
let ptr = if let BasicValueEnum::PointerValue(v) = val {
|
||
|
v
|
||
|
} else {
|
||
|
unreachable!();
|
||
|
};
|
||
|
unsafe {
|
||
|
let ptr = ptr.const_in_bounds_gep(&[
|
||
|
zero,
|
||
|
self.ctx.i32_type().const_int(index as u64, false),
|
||
|
]);
|
||
|
self.builder.build_load(ptr, "field")
|
||
|
}
|
||
|
}
|
||
|
ExprKind::BoolOp { op, values } => {
|
||
|
// requires conditional branches for short-circuiting...
|
||
|
let left = if let BasicValueEnum::IntValue(left) = self.gen_expr(&values[0]) {
|
||
|
left
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||
|
let a_bb = self.ctx.append_basic_block(current, "a");
|
||
|
let b_bb = self.ctx.append_basic_block(current, "b");
|
||
|
let cont_bb = self.ctx.append_basic_block(current, "cont");
|
||
|
self.builder.build_conditional_branch(left, a_bb, b_bb);
|
||
|
let (a, b) = match op {
|
||
|
Boolop::Or => {
|
||
|
self.builder.position_at_end(a_bb);
|
||
|
let a = self.ctx.bool_type().const_int(1, false);
|
||
|
self.builder.build_unconditional_branch(cont_bb);
|
||
|
self.builder.position_at_end(b_bb);
|
||
|
let b = if let BasicValueEnum::IntValue(b) = self.gen_expr(&values[1]) {
|
||
|
b
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
self.builder.build_unconditional_branch(cont_bb);
|
||
|
(a, b)
|
||
|
}
|
||
|
Boolop::And => {
|
||
|
self.builder.position_at_end(a_bb);
|
||
|
let a = if let BasicValueEnum::IntValue(a) = self.gen_expr(&values[1]) {
|
||
|
a
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
self.builder.build_unconditional_branch(cont_bb);
|
||
|
self.builder.position_at_end(b_bb);
|
||
|
let b = self.ctx.bool_type().const_int(0, false);
|
||
|
self.builder.build_unconditional_branch(cont_bb);
|
||
|
(a, b)
|
||
|
}
|
||
|
};
|
||
|
self.builder.position_at_end(cont_bb);
|
||
|
let phi = self.builder.build_phi(self.ctx.bool_type(), "phi");
|
||
|
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
|
||
|
phi.as_basic_value()
|
||
|
}
|
||
|
ExprKind::BinOp { op, left, right } => {
|
||
|
let ty1 = self.unifier.get_representative(left.custom.unwrap());
|
||
|
let ty2 = self.unifier.get_representative(left.custom.unwrap());
|
||
|
let left = self.gen_expr(left);
|
||
|
let right = self.gen_expr(right);
|
||
|
|
||
|
// we can directly compare the types, because we've got their representatives
|
||
|
// which would be unchanged until further unification, which we would never do
|
||
|
// when doing code generation for function instances
|
||
|
if ty1 != ty2 {
|
||
|
unimplemented!()
|
||
|
} else if [primitives.int32, primitives.int64].contains(&ty1) {
|
||
|
self.gen_int_ops(op, left, right)
|
||
|
} else if primitives.float == ty1 {
|
||
|
self.gen_float_ops(op, left, right)
|
||
|
} else {
|
||
|
unimplemented!()
|
||
|
}
|
||
|
}
|
||
|
ExprKind::UnaryOp { op, operand } => {
|
||
|
let ty = self.unifier.get_representative(operand.custom.unwrap());
|
||
|
let val = self.gen_expr(operand);
|
||
|
if ty == primitives.bool {
|
||
|
let val =
|
||
|
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
|
||
|
match op {
|
||
|
ast::Unaryop::Invert | ast::Unaryop::Not => {
|
||
|
self.builder.build_not(val, "not").into()
|
||
|
}
|
||
|
_ => val.into(),
|
||
|
}
|
||
|
} else if [primitives.int32, primitives.int64].contains(&ty) {
|
||
|
let val =
|
||
|
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
|
||
|
match op {
|
||
|
ast::Unaryop::USub => self.builder.build_int_neg(val, "neg").into(),
|
||
|
ast::Unaryop::Invert => self.builder.build_not(val, "not").into(),
|
||
|
ast::Unaryop::Not => self
|
||
|
.builder
|
||
|
.build_int_compare(
|
||
|
inkwell::IntPredicate::EQ,
|
||
|
val,
|
||
|
val.get_type().const_zero(),
|
||
|
"not",
|
||
|
)
|
||
|
.into(),
|
||
|
_ => val.into(),
|
||
|
}
|
||
|
} else if ty == primitives.float {
|
||
|
let val = if let BasicValueEnum::FloatValue(val) = val {
|
||
|
val
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
match op {
|
||
|
ast::Unaryop::USub => self.builder.build_float_neg(val, "neg").into(),
|
||
|
ast::Unaryop::Not => self
|
||
|
.builder
|
||
|
.build_float_compare(
|
||
|
inkwell::FloatPredicate::OEQ,
|
||
|
val,
|
||
|
val.get_type().const_zero(),
|
||
|
"not",
|
||
|
)
|
||
|
.into(),
|
||
|
_ => val.into(),
|
||
|
}
|
||
|
} else {
|
||
|
unimplemented!()
|
||
|
}
|
||
|
}
|
||
|
ExprKind::Compare { left, ops, comparators } => {
|
||
|
izip!(
|
||
|
chain(once(left.as_ref()), comparators.iter()),
|
||
|
comparators.iter(),
|
||
|
ops.iter(),
|
||
|
)
|
||
|
.fold(None, |prev, (lhs, rhs, op)| {
|
||
|
let ty = lhs.custom.unwrap();
|
||
|
let current = if [primitives.int32, primitives.int64, primitives.bool]
|
||
|
.contains(&ty)
|
||
|
{
|
||
|
let (lhs, rhs) =
|
||
|
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) =
|
||
|
(self.gen_expr(lhs), self.gen_expr(rhs))
|
||
|
{
|
||
|
(lhs, rhs)
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
let op = match op {
|
||
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
|
||
|
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
|
||
|
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
|
||
|
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
|
||
|
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
|
||
|
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
|
||
|
_ => unreachable!(),
|
||
|
};
|
||
|
self.builder.build_int_compare(op, lhs, rhs, "cmp")
|
||
|
} else if ty == primitives.float {
|
||
|
let (lhs, rhs) = if let (
|
||
|
BasicValueEnum::FloatValue(lhs),
|
||
|
BasicValueEnum::FloatValue(rhs),
|
||
|
) = (self.gen_expr(lhs), self.gen_expr(rhs))
|
||
|
{
|
||
|
(lhs, rhs)
|
||
|
} else {
|
||
|
unreachable!()
|
||
|
};
|
||
|
let op = match op {
|
||
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
|
||
|
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
|
||
|
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
|
||
|
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
|
||
|
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
|
||
|
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
|
||
|
_ => unreachable!(),
|
||
|
};
|
||
|
self.builder.build_float_compare(op, lhs, rhs, "cmp")
|
||
|
} else {
|
||
|
unimplemented!()
|
||
|
};
|
||
|
prev.map(|v| self.builder.build_and(v, current, "cmp")).or(Some(current))
|
||
|
})
|
||
|
.unwrap()
|
||
|
.into() // as there should be at least 1 element, it should never be none
|
||
|
}
|
||
|
_ => unimplemented!(),
|
||
|
}
|
||
|
}
|
||
|
}
|