Compare commits

...

10 Commits

10 changed files with 326 additions and 259 deletions

View File

@ -5,8 +5,4 @@ rustflags = [
]
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)

View File

@ -13,6 +13,7 @@ use stm32f4xx_hal::{
watchdog::IndependentWatchdog,
};
use uom::si::electric_current::milliampere;
use uom::si::{electric_current::ampere, f64::ElectricCurrent};
#[cfg(not(feature = "semihosting"))]
@ -65,6 +66,7 @@ pub fn bootup(
laser.ld_open();
laser.set_ld_drive_current_limit(ElectricCurrent::new::<ampere>(0.2));
laser.ld_set_i(ElectricCurrent::new::<ampere>(0.15));
laser.set_pd_i_limit(ElectricCurrent::new::<milliampere>(2.5));
laser.power_up();
let tec_driver = MAX1968::new(max1968_phy, perif.ADC1);
@ -76,6 +78,8 @@ pub fn bootup(
thermostat.calibrate_dac_value();
thermostat.set_i(ElectricCurrent::new::<ampere>(1.0));
laser.set_pd_mon_calibrated_vdda(thermostat.get_calibrated_vdda());
let flash_store = flash_store::store(perif.FLASH);
let mut wd = IndependentWatchdog::new(perif.IWDG);

View File

@ -1,6 +1,6 @@
use crate::laser_diode::ld_ctrl::{self, LdCtrlPhy};
use crate::laser_diode::max5719;
use crate::laser_diode::analog_wdg::LdAnalogWdgPhy;
use crate::laser_diode::ld_pwr_exc_protector::LdPwrExcProtectorPhy;
use crate::thermostat::ad5680;
use crate::thermostat::max1968::{self, MAX1968PinSet, MAX1968Phy, PWM_FREQ_KHZ};
use crate::thermostat::ad7172;
@ -40,7 +40,7 @@ pub fn setup(
LdCtrlPhy<ld_ctrl::Channel0>,
ad7172::AdcPhy,
MAX1968Phy<max1968::Channel0>,
LdAnalogWdgPhy
LdPwrExcProtectorPhy
) {
let gpioa = gpioa.split();
let gpiob = gpiob.split();
@ -84,7 +84,7 @@ pub fn setup(
current_source_short_pin: gpioa.pa4.into_push_pull_output(),
};
let pd_mon_phy = LdAnalogWdgPhy {
let pd_mon_phy = LdPwrExcProtectorPhy {
_pd_mon_ch0: gpioa.pa3.into_analog(),
pwr_en_ch0: gpiod.pd9.into_push_pull_output(),
};

View File

@ -1,208 +0,0 @@
// stm32f4xx_hal does not provide config and driver for analog watchdog yet
use stm32f4xx_hal::{
pac::{ADC2, NVIC},
gpio::{Analog, Output, PushPull, gpioa::PA3, gpiod::PD9},
interrupt,
};
use uom::si::electric_potential::millivolt;
use uom::si::f64::ElectricPotential;
// 12 bit Resolution
const MAX_SAMPLE: u16 = 4095;
pub type LdPwrEnPinType = PD9<Output<PushPull>>;
pub type PdMonAdcPinType = PA3<Analog>;
static mut ANALOG_WDG: Option<LdAnalogWdg> = None;
pub struct LdAnalogWdgPhy {
// To make sure PA3 is configured to Analog mode
pub _pd_mon_ch0: PdMonAdcPinType,
pub pwr_en_ch0: LdPwrEnPinType,
}
#[derive(Clone)]
pub struct AlarmStatus {
alarm: bool,
val: u16,
}
pub struct LdAnalogWdg {
pac: ADC2,
phy: LdAnalogWdgPhy,
alarm_status: AlarmStatus,
//Calibrated VDDA in millivolt from Adc<ADC1>.calibrate()
calibrated_vdda: u32,
}
impl LdAnalogWdg {
/// ADC interrupt is disabled and continuous conversion is started by default
pub fn setup(pac: ADC2, phy: LdAnalogWdgPhy){
unsafe { ANALOG_WDG = Some(LdAnalogWdg{
pac: pac,
phy: phy,
alarm_status: AlarmStatus {
alarm: false,
val: 0x0000,
},
calibrated_vdda: 3300,
});
}
unsafe {
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.pac.cr1.write(|w| w
// 12 Bit Resolution
.res().twelve_bit()
// Enable Analog Watchdog on Single Regular Channel
.awden().enabled()
.awdsgl().single_channel()
.jawden().disabled()
// Disable Analog Watchdog Interrupt
.awdie().disabled()
// Select Analog Watchdog Channel 3 (PA3) on ADC2
.awdch().bits(0x03)
);
wdg.pac.cr2.write(|w| w
// Continous Conversion mode
.cont().set_bit()
// Enable ADC
.adon().set_bit()
// Start ADC Conversion
.swstart().set_bit()
);
// Set Sampling Time for Channel 3 to 480 Cycle
wdg.pac.smpr2.write(|w| w
.smp3().cycles480()
);
// Set the high threshold to be max value initially
wdg.pac.htr.write(|w| w.bits(0xFFFF_FFFF));
// Set the high threshold to be min value initially
wdg.pac.ltr.write(|w| w.bits(0x0000_0000));
// Set the Conversion Sequence to only have Channel 3 (PA3)
wdg.pac.sqr3.write(|w| w
.sq1().bits(0x03)
);
}
}
}
fn get() -> Option<&'static mut Self> {
unsafe { ANALOG_WDG.as_mut() }
}
/// This fn accepts the calibrated vdda value from Adc<ADC1>.calibrate()
pub fn set_calibrated_vdda(val: u32) {
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.calibrated_vdda = val;
}
}
pub fn get_pd_v() -> ElectricPotential {
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
let sample = wdg.pac.dr.read().data().bits();
return ElectricPotential::new::<millivolt>(((u32::from(sample) * wdg.calibrated_vdda) / u32::from(MAX_SAMPLE)) as f64)
}
ElectricPotential::new::<millivolt>(0.0)
}
fn set_alarm(){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.alarm_status = AlarmStatus {
alarm: true,
val: wdg.pac.dr.read().data().bits(),
};
}
}
pub fn get_alarm_status() -> AlarmStatus {
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
return wdg.alarm_status.clone()
}
AlarmStatus {
alarm: false,
val: 0x0000,
}
}
pub fn clear_alarm_status(){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.alarm_status = AlarmStatus {
alarm: false,
val: 0x0000,
};
}
}
/// Set ADC Watchdog Higher threshold register
/// Interrupt is triggered when ADC value is ABOVE the value set
pub fn set_htr(htr: u32){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.pac.htr.write(|w| unsafe {w.bits(htr)});
}
}
/// Set ADC Watchdog Lower threshold register
/// Interrupt is triggered when ADC value is BELOW the value set
#[allow(unused)]
pub fn set_ltr(ltr:u32){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.pac.ltr.write(|w| unsafe {w.bits(ltr)});
}
}
pub fn enable_watchdog_interrupt(){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.pac.cr1.modify(|_, w| w
.awdie().set_bit()
);
}
}
pub fn disable_watchdog_interrupt(){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.pac.cr1.modify(|_, w| w
.awdie().clear_bit()
);
}
}
fn clear_interrupt_bit(){
unsafe{
NVIC::unmask(interrupt::ADC);
}
}
pub fn is_pwr_engaged() -> bool{
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
return wdg.phy.pwr_en_ch0.is_set_high()
}
false
}
pub fn pwr_engage(){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.phy.pwr_en_ch0.set_high()
}
}
pub fn pwr_disengage(){
if let Some(ref mut wdg ) = LdAnalogWdg::get() {
wdg.phy.pwr_en_ch0.set_low()
}
}
}
#[interrupt]
fn ADC(){
cortex_m::interrupt::free(|_| {
LdAnalogWdg::set_alarm();
LdAnalogWdg::pwr_disengage();
// Disable interrupt to avoid getting stuck in infinite interrupt loop
LdAnalogWdg::disable_watchdog_interrupt();
LdAnalogWdg::clear_interrupt_bit();
}
)
}

View File

@ -1,22 +1,24 @@
use miniconf::Miniconf;
use stm32f4xx_hal::pac::ADC2;
use uom::si::electric_current::ampere;
use crate::laser_diode::ld_ctrl::LdCtrl;
use crate::laser_diode::analog_wdg::{LdAnalogWdg, self};
use core::{marker::PhantomData, f64::NAN};
use crate::laser_diode::ld_pwr_exc_protector::{LdPwrExcProtector, self};
use crate::laser_diode::pd_responsitivity;
use core::marker::PhantomData;
use crate::device::sys_timer::sleep;
use uom::si::{
electric_current::milliampere,
f64::{ElectricPotential, ElectricCurrent, Power},
};
use num_traits::Float;
use uom::{si::{ISQ, SI, Quantity}, typenum::*};
use uom::{si::{ISQ, SI, Quantity, ratio::ratio}, typenum::*};
// Volt / Ampere
pub type TransimpedanceUnit = Quantity<ISQ<P2, P1, N3, N2, Z0, Z0, Z0>, SI<f64>, f64>;
// Ampere / Volt
type TransconductanceUnit = Quantity<ISQ<N2, N1, P3, P2, Z0, Z0, Z0>, SI<f64>, f64>;
// Watt / Ampere
pub type IToPowerUnit = Quantity<ISQ<P2, P1, N3, N1, Z0, Z0, Z0>, SI<f64>, f64>;
impl Settings{
pub const DAC_OUT_V_MAX: ElectricPotential = ElectricPotential {
@ -37,13 +39,22 @@ impl Settings{
units: PhantomData,
value: 10.0 / 0.75,
};
const LD_CURRENT_STEP_SIZE: ElectricCurrent = ElectricCurrent {
dimension: PhantomData,
units: PhantomData,
value: 0.0001,
};
const LD_CURRENT_TIME_STEP_MS: u32 = 1;
}
#[derive(Clone, Debug, Miniconf)]
pub struct Settings {
ld_drive_current: ElectricCurrent,
ld_drive_current_limit: ElectricCurrent,
pd_i_to_out_pwr: IToPowerUnit,
#[miniconf(defer)]
pd_responsitivity: pd_responsitivity::Parameters,
}
impl Default for Settings {
@ -51,7 +62,7 @@ impl Default for Settings {
Self {
ld_drive_current: ElectricCurrent::new::<milliampere>(0.0),
ld_drive_current_limit: ElectricCurrent::new::<milliampere>(0.0),
pd_i_to_out_pwr: IToPowerUnit {dimension: PhantomData, units: PhantomData, value: NAN}
pd_responsitivity: pd_responsitivity::Parameters::default(),
}
}
}
@ -62,8 +73,8 @@ pub struct LdDrive{
}
impl LdDrive{
pub fn new(current_source: LdCtrl, pins_adc: ADC2, phy: analog_wdg::LdAnalogWdgPhy)-> Self {
LdAnalogWdg::setup(pins_adc, phy);
pub fn new(current_source: LdCtrl, pins_adc: ADC2, phy: ld_pwr_exc_protector::LdPwrExcProtectorPhy)-> Self {
LdPwrExcProtector::setup(pins_adc, phy);
LdDrive {
ctrl: current_source,
@ -72,7 +83,7 @@ impl LdDrive{
}
pub fn setup(&mut self) {
LdAnalogWdg::pwr_disengage();
LdPwrExcProtector::pwr_off();
self.ld_set_i(ElectricCurrent::new::<milliampere>(0.0));
self.ld_short();
}
@ -93,48 +104,74 @@ impl LdDrive{
self.ctrl.ld_short_disable();
}
pub fn power_up(&mut self){
LdAnalogWdg::pwr_engage();
pub fn power_up(&mut self){
let _ = self.ctrl.set_i(ElectricCurrent::new::<milliampere>(0.0), Settings::LD_DRIVE_TRANSIMPEDANCE, Settings::DAC_OUT_V_MAX);
LdPwrExcProtector::pwr_on_and_arm_protection();
// Wait for LD Power Supply to start up before driving current to laser diode
sleep(30);
self.ld_set_i(self.settings.ld_drive_current);
}
pub fn power_down(&mut self){
LdAnalogWdg::pwr_disengage();
LdPwrExcProtector::pwr_off();
}
pub fn get_pd_i(&mut self) -> ElectricCurrent {
LdAnalogWdg::get_pd_v() * Settings::PD_MON_TRANSCONDUCTANCE
LdPwrExcProtector::get_status().v * Settings::PD_MON_TRANSCONDUCTANCE
}
// Ramping up or down laser diode current according to preset current step size and time step.
pub fn ld_set_i(&mut self, i: ElectricCurrent) -> ElectricCurrent {
let ld_i_set = i.min(self.settings.ld_drive_current_limit);
let ld_i_set = self.ctrl.set_i(ld_i_set, Settings::LD_DRIVE_TRANSIMPEDANCE, Settings::DAC_OUT_V_MAX);
self.settings.ld_drive_current = ld_i_set;
ld_i_set
let mut prev_i_set = self.settings.ld_drive_current;
let final_i_set = i.min(self.settings.ld_drive_current_limit).max(ElectricCurrent::new::<ampere>(0.0));
let num_of_step = ((final_i_set - prev_i_set)/Settings::LD_CURRENT_STEP_SIZE).get::<ratio>().floor() as i32;
let current_step = if num_of_step.is_positive() {
Settings::LD_CURRENT_STEP_SIZE
} else {
-Settings::LD_CURRENT_STEP_SIZE
};
for _ in (0..num_of_step.abs()).rev() {
prev_i_set = prev_i_set + current_step;
let _ = self.ctrl.set_i(prev_i_set, Settings::LD_DRIVE_TRANSIMPEDANCE, Settings::DAC_OUT_V_MAX);
sleep(Settings::LD_CURRENT_TIME_STEP_MS);
}
let prev_i_set = self.ctrl.set_i(final_i_set, Settings::LD_DRIVE_TRANSIMPEDANCE, Settings::DAC_OUT_V_MAX);
self.settings.ld_drive_current = prev_i_set;
prev_i_set
}
// Set the calibrated VDDA value obtained from ADC1 calibration
pub fn set_pd_mon_calibrated_vdda(val_cal: u32) {
LdAnalogWdg::set_calibrated_vdda(val_cal)
pub fn set_pd_mon_calibrated_vdda(&mut self, val_cal: u32) {
LdPwrExcProtector::set_calibrated_vdda(val_cal)
}
pub fn pd_mon_status() -> analog_wdg::AlarmStatus {
LdAnalogWdg::get_alarm_status()
pub fn pd_mon_status(&mut self) -> ld_pwr_exc_protector::Status {
LdPwrExcProtector::get_status()
}
pub fn pd_mon_clear_alarm(&mut self) {
LdAnalogWdg::clear_alarm_status();
LdPwrExcProtector::clear_alarm_status();
}
pub fn pd_mon_engage(){
LdAnalogWdg::enable_watchdog_interrupt()
pub fn set_pd_responsitivity(&mut self, responsitivity: pd_responsitivity::ResponsitivityUnit){
self.settings.pd_responsitivity.responsitivity = responsitivity;
}
pub fn pd_mon_disengage(){
LdAnalogWdg::disable_watchdog_interrupt()
pub fn set_pd_dark_current(&mut self, i_dark: ElectricCurrent){
self.settings.pd_responsitivity.i_dark = i_dark;
}
pub fn set_ld_power_limit(pwr_limit: Power){
// LdAnalogWdg::set_htr(convert pwr_limit to raw adc code)
unimplemented!()
pub fn set_ld_power_limit(&mut self, pwr_limit: Power){
LdPwrExcProtector::set_trigger_threshold_v(self.settings.pd_responsitivity
.get_ld_i_from_ld_pwr(pwr_limit) / Settings::PD_MON_TRANSCONDUCTANCE
);
}
}
pub fn set_pd_i_limit(&mut self, i: ElectricCurrent){
LdPwrExcProtector::set_trigger_threshold_v(i / Settings::PD_MON_TRANSCONDUCTANCE);
}
}

View File

@ -0,0 +1,237 @@
use stm32f4xx_hal::pac;
use stm32f4xx_hal::rcc::Enable;
use stm32f4xx_hal::{
pac::{ADC2, NVIC},
gpio::{Analog, Output, PushPull, gpioa::PA3, gpiod::PD9},
interrupt,
};
use uom::si::{
electric_potential::millivolt,
f64::ElectricPotential,
ratio::ratio
};
// 12 bit Resolution
const MAX_SAMPLE: u16 = 4095;
pub type LdPwrEnPinType = PD9<Output<PushPull>>;
pub type PdMonAdcPinType = PA3<Analog>;
const PD_MON_ADC_CH_ID: u8 = 0x03;
static mut LD_PWR_EXC_PROTECTOR: Option<LdPwrExcProtector> = None;
pub struct LdPwrExcProtectorPhy {
// To make sure Pd Mon Pin is configured to Analog mode
pub _pd_mon_ch0: PdMonAdcPinType,
pub pwr_en_ch0: LdPwrEnPinType,
}
#[derive(Clone)]
pub struct Status {
pub pwr_excursion: bool,
pub v_tripped: ElectricPotential,
pub pwr_engaged: bool,
pub v: ElectricPotential,
}
impl Default for Status {
fn default() -> Self {
Status {
pwr_excursion: false,
v_tripped: ElectricPotential::new::<millivolt>(0.0),
pwr_engaged: false,
v: ElectricPotential::new::<millivolt>(0.0),
}
}
}
pub struct LdPwrExcProtector {
pac: ADC2,
phy: LdPwrExcProtectorPhy,
alarm_status: Status,
calibrated_vdda: u32,
}
impl LdPwrExcProtector {
/// ADC Analog Watchdog is configured to guard a single regular Adc channel on Pd Mon Pin.
/// ADC is configured to start continuous conversion without using DMA immediately.
/// Interrupt is disabled by default.
pub fn setup(pac_adc: ADC2, mut phy: LdPwrExcProtectorPhy){
unsafe {
// All ADCs share the same reset interface.
// NOTE(unsafe) this reference will only be used for atomic writes with no side effects.
let rcc = &(*pac::RCC::ptr());
// Enable the ADC2 Clock
pac::ADC2::enable(rcc);
// Enable ADC Interrupt
NVIC::unmask(interrupt::ADC);
}
pac_adc.cr1.reset();
pac_adc.cr2.reset();
pac_adc.sqr1.reset();
pac_adc.sqr2.reset();
pac_adc.sqr3.reset();
pac_adc.cr1.write(|w| w
// 12 Bit Resolution
.res().twelve_bit()
// Set Analog Watchdog to guard Single Regular Channel
.awden().enabled()
.awdsgl().single_channel()
.jawden().disabled()
// Disable Analog Watchdog Interrupt
.awdie().disabled()
// Set Analog Watchdog to monitor Pd Mon Pin
.awdch().variant(PD_MON_ADC_CH_ID)
);
pac_adc.cr2.write(|w| w
// Continous Conversion Mode
.cont().set_bit()
// Power up ADC
.adon().set_bit()
// Set data alignment to the right
.align().right()
// End of conversion selection: Each Sequence
.eocs().each_sequence()
.exten().disabled()
.extsel().tim1cc1()
);
// Set the Conversion Sequence to include Pd Mon Pin
pac_adc.sqr3.write(|w| w
.sq1().variant(PD_MON_ADC_CH_ID)
);
// Set all sampling channels to have fastest sampling interval
pac_adc.smpr1.reset();
pac_adc.smpr2.reset();
// Set the higher threshold to be max value initially
pac_adc.htr.write(|w| w.ht().variant(MAX_SAMPLE));
// Set the lower threshold to be min value initially
pac_adc.ltr.write(|w| w.lt().variant(0));
// SWStart should only be set when ADON = 1. Otherwise no conversion is launched.
pac_adc.cr2.modify(|_, w| w
.swstart().set_bit()
);
phy.pwr_en_ch0.set_low();
unsafe {
LD_PWR_EXC_PROTECTOR = Some(
LdPwrExcProtector {
pac: pac_adc,
phy: phy,
alarm_status: Status::default(),
calibrated_vdda: 3300,
}
);
}
}
fn get() -> Option<&'static mut Self> {
unsafe { LD_PWR_EXC_PROTECTOR.as_mut() }
}
fn convert_sample_to_volt(sample :u16) -> ElectricPotential {
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
return ElectricPotential::new::<millivolt>(((u32::from(sample) * wdg.calibrated_vdda) / u32::from(MAX_SAMPLE)) as f64)
}
ElectricPotential::new::<millivolt>(0.0)
}
pub fn set_trigger_threshold_v(htr: ElectricPotential){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
let code: u32 = ((htr / (ElectricPotential::new::<millivolt>(wdg.calibrated_vdda as f64))).get::<ratio>() * (MAX_SAMPLE as f64)) as u32;
wdg.pac.htr.write(|w| unsafe {w.bits(code)});
}
}
pub fn set_calibrated_vdda(val: u32) {
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.calibrated_vdda = val;
}
}
pub fn get_status() -> Status {
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.alarm_status.v = LdPwrExcProtector::convert_sample_to_volt(wdg.pac.dr.read().data().bits());
return wdg.alarm_status.clone()
}
Status::default()
}
pub fn pwr_on_and_arm_protection(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.alarm_status = Status::default();
LdPwrExcProtector::pwr_on();
// Interrupt should be enabled after power on to tackle the following edge case:
// Pd_Mon pin voltage has already exceed threshold before LD Power is on.
LdPwrExcProtector::enable_watchdog_interrupt();
}
}
pub fn clear_alarm_status(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.alarm_status.pwr_excursion = false;
wdg.alarm_status.v_tripped = ElectricPotential::new::<millivolt>(0.0);
}
}
fn enable_watchdog_interrupt(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.pac.cr1.modify(|_, w| w
.awdie().set_bit()
);
}
}
fn disable_watchdog_interrupt(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.pac.cr1.modify(|_, w| w
.awdie().clear_bit()
);
}
}
fn clear_interrupt_bit(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.pac.sr.modify(|_, w| w
.awd().clear_bit()
);
}
}
fn pwr_on(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.alarm_status.pwr_engaged = true;
wdg.phy.pwr_en_ch0.set_high()
}
}
pub fn pwr_off(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
wdg.alarm_status.pwr_engaged = false;
wdg.phy.pwr_en_ch0.set_low()
}
}
fn pwr_excursion_handler(){
if let Some(ref mut wdg ) = LdPwrExcProtector::get() {
let sample = wdg.pac.dr.read().data().bits();
LdPwrExcProtector::pwr_off();
wdg.alarm_status.pwr_excursion = true;
wdg.alarm_status.v_tripped = LdPwrExcProtector::convert_sample_to_volt(sample);
}
}
}
#[interrupt]
fn ADC(){
cortex_m::interrupt::free(|_| {
LdPwrExcProtector::pwr_excursion_handler();
// Disable interrupt to avoid getting stuck in infinite loop
LdPwrExcProtector::disable_watchdog_interrupt();
LdPwrExcProtector::clear_interrupt_bit();
}
)
}

View File

@ -1,5 +1,5 @@
pub mod ld_ctrl;
pub mod max5719;
pub mod laser_diode;
pub mod pd_mon;
pub mod analog_wdg;
pub mod pd_responsitivity;
pub mod ld_pwr_exc_protector;

View File

@ -12,19 +12,22 @@ use miniconf::Miniconf;
// Ampere / Watt
pub type ResponsitivityUnit = Quantity<ISQ<N2, N1, P3, P1, Z0, Z0, Z0>, SI<f64>, f64>;
/// Steinhart-Hart equation Photodiode
#[derive(Clone, Debug, PartialEq, Miniconf)]
pub struct Parameters {
/// Responsitivity
pub responsitivity: ResponsitivityUnit,
pub i_dark: ElectricCurrent,
}
impl Parameters {
pub fn get_ld_output_power(&self, i: ElectricCurrent) -> Power {
pub fn get_ld_pwr_from_ld_i(&self, i: ElectricCurrent) -> Power {
let ld_power = (i - self.i_dark) / self.responsitivity;
ld_power
}
pub fn get_ld_i_from_ld_pwr(&self, pwr: Power) -> ElectricCurrent {
let ld_i = pwr * self.responsitivity + self.i_dark;
ld_i
}
}
impl Default for Parameters {

View File

@ -80,7 +80,10 @@ fn main() -> ! {
info!("curr_vref: {:?}", volt_fmt.with(thermostat.get_vref()));
info!("curr_tec_i: {:?}", amp_fmt.with(thermostat.get_tec_i()));
info!("curr_tec_v: {:?}", volt_fmt.with(thermostat.get_tec_v()));
info!("pd_mon_v: {:?}", volt_fmt.with(laser.pd_mon_status().v));
info!("power_excursion: {:?}", laser.pd_mon_status().pwr_excursion);
sys_timer::sleep(10);
sys_timer::sleep(500);
}
}

View File

@ -113,18 +113,13 @@ impl<C: ChannelPins> MAX1968Phy<C> {
impl MAX1968 {
pub fn new(phy_ch0: MAX1968Phy<Channel0>, adc1: ADC1) -> Self {
// Set ADC to a slowest sampling interval for more accurate calibration
let config = AdcConfig::default()
.clock(config::Clock::Pclk2_div_8)
.default_sample_time(config::SampleTime::Cycles_480);
let mut pins_adc = Adc::adc1(adc1, true, config);
// Do not set reset RCCs as it causes other ADCs' clock to be disabled
let mut pins_adc = Adc::adc1(adc1, false, config);
pins_adc.calibrate();
let config = AdcConfig::default()
.clock(config::Clock::Pclk2_div_8)
.default_sample_time(config::SampleTime::Cycles_480);
pins_adc.apply_config(config);
MAX1968 {
phy: phy_ch0,
pins_adc: pins_adc,