kirdy/src/thermostat/thermostat.rs

170 lines
6.5 KiB
Rust
Raw Normal View History

use core::marker::PhantomData;
use crate::sys_timer;
use crate::thermostat::ad5680;
use crate::thermostat::max1968::{MAX1968, AdcReadTarget, PwmPinsEnum};
use log::info;
use uom::si::{
electric_current::ampere,
electric_potential::{millivolt, volt},
electrical_resistance::ohm,
f64::{ElectricCurrent, ElectricPotential, ElectricalResistance},
ratio::ratio,
};
pub const R_SENSE: ElectricalResistance = ElectricalResistance {
dimension: PhantomData,
units: PhantomData,
value: 0.05,
};
// Rev 0_2: DAC Chip connects 3V3 reference voltage and thus provide 0-3.3V output range
// TODO: Rev 0_3: DAC Chip connects 3V3 reference voltage,
// which is then passed through a resistor divider to provide 0-3V output range
pub const DAC_OUT_V_MAX: f64 = 3.3;
pub const TEC_VSEC_BIAS_V: ElectricPotential = ElectricPotential {
dimension: PhantomData,
units: PhantomData,
value: 1.65,
};
// Kirdy Design Specs:
// MaxV = 5.0V
// MAX Current = +- 1.0A
const MAX_V_DUTY_TO_CURRENT_RATE: ElectricPotential = ElectricPotential {
dimension: PhantomData,
units: PhantomData,
value: 4.0 * 3.3,
};
pub const MAX_V_MAX: ElectricPotential = ElectricPotential {
dimension: PhantomData,
units: PhantomData,
value: 5.0,
};
const MAX_V_DUTY_MAX: f64 = MAX_V_MAX.value / MAX_V_DUTY_TO_CURRENT_RATE.value;
const MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE: ElectricCurrent = ElectricCurrent {
dimension: PhantomData,
units: PhantomData,
value: 1.0 / (10.0 * R_SENSE.value / 3.3),
};
pub const MAX_I_POS_CURRENT: ElectricCurrent = ElectricCurrent {
dimension: PhantomData,
units: PhantomData,
value: 1.0,
};
pub const MAX_I_NEG_CURRENT: ElectricCurrent = ElectricCurrent {
dimension: PhantomData,
units: PhantomData,
value: 1.0,
};
// .get::<ratio>() is not implemented for const
const MAX_I_POS_DUTY_MAX: f64 = MAX_I_POS_CURRENT.value / MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE.value;
const MAX_I_NEG_DUTY_MAX: f64 = MAX_I_NEG_CURRENT.value / MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE.value;
pub struct Thermostat {
max1968: MAX1968,
// TADC
}
impl Thermostat{
pub fn new (max1968: MAX1968) -> Self {
Thermostat{
max1968
}
}
pub fn setup(&mut self) {
self.power_down();
self.calibrate_dac_value();
self.set_i(ElectricCurrent::new::<ampere>(0.0));
self.set_max_v(ElectricPotential::new::<volt>(5.0));
self.set_max_i_pos(ElectricCurrent::new::<ampere>(1.0));
self.set_max_i_neg(ElectricCurrent::new::<ampere>(1.0));
self.max1968.power_up();
}
pub fn power_up(&mut self){
self.max1968.power_up();
}
pub fn power_down(&mut self){
self.max1968.power_down();
}
pub fn set_i(&mut self, i_tec: ElectricCurrent) -> ElectricCurrent {
let voltage = i_tec * 10.0 * R_SENSE + self.max1968.phy.center_pt;
let voltage = self.max1968.set_dac(voltage);
let i_tec = (voltage - self.max1968.phy.center_pt) / (10.0 * R_SENSE);
i_tec
}
pub fn set_max_v(&mut self, max_v: ElectricPotential) -> ElectricPotential {
let duty = (max_v / MAX_V_DUTY_TO_CURRENT_RATE).get::<ratio>();
let duty = self.max1968.set_pwm(PwmPinsEnum::MaxV, duty, MAX_V_DUTY_MAX);
duty * MAX_V_DUTY_TO_CURRENT_RATE
}
pub fn set_max_i_pos(&mut self, max_i_pos: ElectricCurrent) -> ElectricCurrent {
let duty = (max_i_pos / MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE).get::<ratio>();
let duty = self.max1968.set_pwm(PwmPinsEnum::MaxPosI, duty, MAX_I_POS_DUTY_MAX);
duty * MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE
}
pub fn set_max_i_neg(&mut self, max_i_neg: ElectricCurrent) -> ElectricCurrent {
let duty = (max_i_neg / MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE).get::<ratio>();
let duty = self.max1968.set_pwm(PwmPinsEnum::MaxNegI, duty, MAX_I_NEG_DUTY_MAX);
duty * MAX_I_POS_NEG_DUTY_TO_CURRENT_RATE
}
/// Calibrates the DAC output to match vref of the MAX driver to reduce zero-current offset of the MAX driver output.
///
/// The thermostat DAC applies a control voltage signal to the CTLI pin of MAX driver chip to control its output current.
/// The CTLI input signal is centered around VREF of the MAX chip. Applying VREF to CTLI sets the output current to 0.
///
/// This calibration routine measures the VREF voltage and the DAC output with the STM32 ADC, and uses a breadth-first
/// search to find the DAC setting that will produce a DAC output voltage closest to VREF. This DAC output voltage will
/// be stored and used in subsequent i_set routines to bias the current control signal to the measured VREF, reducing
/// the offset error of the current control signal.
///
/// The input offset of the STM32 ADC is eliminated by using the same ADC for the measurements, and by only using the
/// difference in VREF and DAC output for the calibration.
///
/// This routine should be called only once after boot, repeated reading of the vref signal and changing of the stored
/// VREF measurement can introduce significant noise at the current output, degrading the stabilily performance of the
/// thermostat.
pub fn calibrate_dac_value(&mut self) {
let samples = 50;
let mut target_voltage = ElectricPotential::new::<volt>(0.0);
for _ in 0..samples {
target_voltage = target_voltage + self.max1968.adc_read(AdcReadTarget::VREF, 1);
}
target_voltage = target_voltage / samples as f64;
let mut start_value = 1;
let mut best_error = ElectricPotential::new::<volt>(100.0);
for step in (0..18).rev() {
info!("Step: {} Calibrating", step);
let mut prev_value = start_value;
for value in (start_value..=ad5680::MAX_VALUE).step_by(1 << step) {
//info!("Calibrating");
self.max1968.phy.dac.set(value).unwrap();
sys_timer::sleep(5);
let dac_feedback = self.max1968.adc_read(AdcReadTarget::DacVfb, 64);
let error = target_voltage - dac_feedback;
if error < ElectricPotential::new::<volt>(0.0) {
break;
} else if error < best_error {
best_error = error;
start_value = prev_value;
let vref = (value as f64 / ad5680::MAX_VALUE as f64) * ElectricPotential::new::<volt>(DAC_OUT_V_MAX);
self.max1968.set_center_point(vref);
}
prev_value = value;
}
}
}
}