refactor ethmac

This commit is contained in:
Sebastien Bourdeauducq 2017-08-06 02:18:33 +08:00
parent e8d6d84ac5
commit 8247c8f5a5
2 changed files with 243 additions and 246 deletions

View File

@ -3,6 +3,7 @@ use tm4c129x;
use core::slice; use core::slice;
use smoltcp::Error; use smoltcp::Error;
use smoltcp::wire::EthernetAddress;
use smoltcp::phy::{DeviceLimits, Device}; use smoltcp::phy::{DeviceLimits, Device};
const EPHY_BMCR: u8 = 0x00; // Ethernet PHY Basic Mode Control const EPHY_BMCR: u8 = 0x00; // Ethernet PHY Basic Mode Control
@ -38,28 +39,6 @@ const ETH_TX_BUFFER_SIZE: usize = 1536;
const ETH_RX_BUFFER_COUNT: usize = 3; const ETH_RX_BUFFER_COUNT: usize = 3;
const ETH_RX_BUFFER_SIZE: usize = 1536; const ETH_RX_BUFFER_SIZE: usize = 1536;
pub struct EmacData {
pub tx_desc_buf: [u32; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
pub rx_desc_buf: [u32; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
pub tx_cur_desc: usize,
pub rx_cur_desc: usize,
pub tx_counter: u32,
pub rx_counter: u32,
pub tx_pkt_buf: [u8; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
pub rx_pkt_buf: [u8; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
}
static mut EMAC_DATA: EmacData = EmacData {
tx_desc_buf: [0; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
rx_desc_buf: [0; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
tx_cur_desc: 0,
rx_cur_desc: 0,
tx_counter: 0,
rx_counter: 0,
tx_pkt_buf: [0; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
rx_pkt_buf: [0; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
};
fn delay(d: u32) { fn delay(d: u32) {
for _ in 0..d { for _ in 0..d {
unsafe { unsafe {
@ -105,7 +84,7 @@ fn phy_write(reg_addr: u8, reg_data: u16) {
w.data().bits(reg_data) w.data().bits(reg_data)
}); });
// Tell the MAC to write the given PHY register // Tell the MAC to write the given PHY register
emac0.miiaddr.write(|w| { emac0.miiaddr.write(|w| {
w.cr()._100_150() w.cr()._100_150()
.mii().bits(reg_addr & 0x1F) .mii().bits(reg_addr & 0x1F)
@ -127,193 +106,204 @@ fn phy_write_ext(reg_addr: u8, reg_data: u16) {
phy_write(EPHY_ADDAR, reg_data); phy_write(EPHY_ADDAR, reg_data);
} }
pub fn init(mac_addr: [u8; 6]) { pub struct EthernetDevice {
cortex_m::interrupt::free(|cs| { tx_desc_buf: [u32; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
let sysctl = tm4c129x::SYSCTL.borrow(cs); rx_desc_buf: [u32; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
let emac0 = tm4c129x::EMAC0.borrow(cs); tx_cur_desc: usize,
rx_cur_desc: usize,
tx_counter: u32,
rx_counter: u32,
tx_pkt_buf: [u8; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
rx_pkt_buf: [u8; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
}
sysctl.rcgcemac.modify(|_, w| w.r0().bit(true)); // Bring up MAC impl EthernetDevice {
sysctl.sremac.modify(|_, w| w.r0().bit(true)); // Activate MAC reset pub fn new(mac_addr: EthernetAddress) -> EthernetDevice {
delay(16); let mut device = EthernetDevice {
sysctl.sremac.modify(|_, w| w.r0().bit(false)); // Dectivate MAC reset tx_desc_buf: [0; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
rx_desc_buf: [0; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
sysctl.rcgcephy.modify(|_, w| w.r0().bit(true)); // Bring up PHY tx_cur_desc: 0,
sysctl.srephy.modify(|_, w| w.r0().bit(true)); // Activate PHY reset rx_cur_desc: 0,
delay(16); tx_counter: 0,
sysctl.srephy.modify(|_, w| w.r0().bit(false)); // Dectivate PHY reset rx_counter: 0,
tx_pkt_buf: [0; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
while !sysctl.premac.read().r0().bit() {} // Wait for the MAC to come out of reset rx_pkt_buf: [0; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
while !sysctl.prephy.read().r0().bit() {} // Wait for the PHY to come out of reset };
delay(10000);
emac0.dmabusmod.modify(|_, w| w.swr().bit(true)); // Reset MAC DMA
while emac0.dmabusmod.read().swr().bit() {} // Wait for the MAC DMA to come out of reset
delay(1000);
emac0.miiaddr.write(|w| w.cr()._100_150()); // Set the MII CSR clock speed.
// Checking PHY
if (phy_read(EPHY_ID1) != 0x2000) | (phy_read(EPHY_ID2) != 0xA221) {
panic!("PHY ID error!");
}
// Reset PHY transceiver
phy_write(EPHY_BMCR, 1); // Initiate MII reset
while 1 == (phy_read(EPHY_BMCR) & 1) {}; // Wait for the reset to be completed
// Configure PHY LEDs
phy_write_ext(EPHY_LEDCFG, 0x0008); // LED0 Link OK/Blink on TX/RX Activity
// Tell the PHY to start an auto-negotiation cycle
phy_write(EPHY_BMCR, 0b00010010_00000000); // ANEN and RESTARTAN
// Set the DMA operation mode
emac0.dmaopmode.write(|w|
w.rsf().bit(true) // Receive Store and Forward
.tsf().bit(true) // Transmit Store and Forward
.ttc()._64() // Transmit Threshold Control
.rtc()._64() // Receive Threshold Control
);
// Set the bus mode register.
emac0.dmabusmod.write(|w| unsafe {
w.atds().bit(true)
.aal().bit(true) // Address Aligned Beats
.usp().bit(true) // Use Separate Programmable Burst Length ???
.rpbl().bits(1) // RX DMA Programmable Burst Length
.pbl().bits(1) // Programmable Burst Length
.pr().bits(0) // Priority Ratio 1:1
});
// Disable all the MMC interrupts as these are enabled by default at reset.
emac0.mmcrxim.write(|w| unsafe { w.bits(0xFFFFFFFF)});
emac0.mmctxim.write(|w| unsafe { w.bits(0xFFFFFFFF)});
// Set MAC configuration options
emac0.cfg.write(|w|
w.dupm().bit(true) // MAC operates in full-duplex mode
.ipc().bit(true) // Checksum Offload Enable
.prelen()._7() // 7 bytes of preamble
.ifg()._96() // 96 bit times
.bl()._1024() // Back-Off Limit 1024
.ps().bit(true) // ?
);
// Set the maximum receive frame size
emac0.wdogto.write(|w| unsafe {
w.bits(0) // ??? no use watchdog
});
// Set the high 2 bytes of the MAC address
emac0.addr0h.write(|w| unsafe { w.addrhi().bits(mac_addr[4] as u16 | ((mac_addr[5] as u16) << 8)) });
// Set the low 4 bytes of the MAC address
emac0.addr0l.write(|w| unsafe {
w.addrlo().bits(mac_addr[0] as u32 | ((mac_addr[1] as u32) << 8) | ((mac_addr[2] as u32) << 16) | ((mac_addr[3] as u32) << 24))
});
// Set MAC filtering options (?)
emac0.framefltr.write(|w|
w.hpf().bit(true) // Hash or Perfect Filter
// .hmc().bit(true) // Hash Multicast ???
.pm().bit(true) // Pass All Multicast
);
// Initialize hash table
emac0.hashtbll.write(|w| unsafe { w.htl().bits(0)});
emac0.hashtblh.write(|w| unsafe { w.hth().bits(0)});
emac0.flowctl.write(|w| unsafe { w.bits(0)}); // Disable flow control ???
// Initialize TX DMA descriptors // Initialize TX DMA descriptors
for x in 0..ETH_TX_BUFFER_COUNT { for x in 0..ETH_TX_BUFFER_COUNT {
let p = x * ETH_DESC_U32_SIZE; let p = x * ETH_DESC_U32_SIZE;
let r = x * ETH_TX_BUFFER_SIZE; let r = x * ETH_TX_BUFFER_SIZE;
unsafe {
// Initialize transmit flags // Initialize transmit flags
EMAC_DATA.tx_desc_buf[p + 0] = 0; device.tx_desc_buf[p + 0] = 0;
// Initialize transmit buffer size // Initialize transmit buffer size
EMAC_DATA.tx_desc_buf[p + 1] = 0; device.tx_desc_buf[p + 1] = 0;
// Transmit buffer address // Transmit buffer address
EMAC_DATA.tx_desc_buf[p + 2] = (&EMAC_DATA.tx_pkt_buf[r] as *const u8) as u32; device.tx_desc_buf[p + 2] = (&device.tx_pkt_buf[r] as *const u8) as u32;
// Next descriptor address // Next descriptor address
if x != ETH_TX_BUFFER_COUNT - 1 { if x != ETH_TX_BUFFER_COUNT - 1 {
EMAC_DATA.tx_desc_buf[p + 3] = (&EMAC_DATA.tx_desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32; device.tx_desc_buf[p + 3] = (&device.tx_desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32;
} else { } else {
EMAC_DATA.tx_desc_buf[p + 3] = (&EMAC_DATA.tx_desc_buf[0] as *const u32) as u32; device.tx_desc_buf[p + 3] = (&device.tx_desc_buf[0] as *const u32) as u32;
}
// Reserved fields
EMAC_DATA.tx_desc_buf[p + 4] = 0;
EMAC_DATA.tx_desc_buf[p + 5] = 0;
// Transmit frame time stamp
EMAC_DATA.tx_desc_buf[p + 6] = 0;
EMAC_DATA.tx_desc_buf[p + 7] = 0;
} }
// Reserved fields
device.tx_desc_buf[p + 4] = 0;
device.tx_desc_buf[p + 5] = 0;
// Transmit frame time stamp
device.tx_desc_buf[p + 6] = 0;
device.tx_desc_buf[p + 7] = 0;
} }
// Initialize RX DMA descriptors // Initialize RX DMA descriptors
for x in 0..ETH_RX_BUFFER_COUNT { for x in 0..ETH_RX_BUFFER_COUNT {
let p = x * ETH_DESC_U32_SIZE; let p = x * ETH_DESC_U32_SIZE;
let r = x * ETH_RX_BUFFER_SIZE; let r = x * ETH_RX_BUFFER_SIZE;
unsafe {
// The descriptor is initially owned by the DMA // The descriptor is initially owned by the DMA
EMAC_DATA.rx_desc_buf[p + 0] = EMAC_RDES0_OWN; device.rx_desc_buf[p + 0] = EMAC_RDES0_OWN;
// Use chain structure rather than ring structure // Use chain structure rather than ring structure
EMAC_DATA.rx_desc_buf[p + 1] = EMAC_RDES1_RCH | ((ETH_RX_BUFFER_SIZE as u32) & EMAC_RDES1_RBS1); device.rx_desc_buf[p + 1] = EMAC_RDES1_RCH | ((ETH_RX_BUFFER_SIZE as u32) & EMAC_RDES1_RBS1);
// Receive buffer address // Receive buffer address
EMAC_DATA.rx_desc_buf[p + 2] = (&EMAC_DATA.rx_pkt_buf[r] as *const u8) as u32; device.rx_desc_buf[p + 2] = (&device.rx_pkt_buf[r] as *const u8) as u32;
// Next descriptor address // Next descriptor address
if x != ETH_RX_BUFFER_COUNT - 1 { if x != ETH_RX_BUFFER_COUNT - 1 {
EMAC_DATA.rx_desc_buf[p + 3] = (&EMAC_DATA.rx_desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32; device.rx_desc_buf[p + 3] = (&device.rx_desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32;
} else { } else {
EMAC_DATA.rx_desc_buf[p + 3] = (&EMAC_DATA.rx_desc_buf[0] as *const u32) as u32; device.rx_desc_buf[p + 3] = (&device.rx_desc_buf[0] as *const u32) as u32;
}
// Extended status
EMAC_DATA.rx_desc_buf[p + 4] = 0;
// Reserved field
EMAC_DATA.rx_desc_buf[p + 5] = 0;
// Transmit frame time stamp
EMAC_DATA.rx_desc_buf[p + 6] = 0;
EMAC_DATA.rx_desc_buf[p + 7] = 0;
} }
// Extended status
device.rx_desc_buf[p + 4] = 0;
// Reserved field
device.rx_desc_buf[p + 5] = 0;
// Transmit frame time stamp
device.rx_desc_buf[p + 6] = 0;
device.rx_desc_buf[p + 7] = 0;
} }
unsafe { cortex_m::interrupt::free(|cs| {
EMAC_DATA.tx_cur_desc = 0; let sysctl = tm4c129x::SYSCTL.borrow(cs);
EMAC_DATA.rx_cur_desc = 0; let emac0 = tm4c129x::EMAC0.borrow(cs);
sysctl.rcgcemac.modify(|_, w| w.r0().bit(true)); // Bring up MAC
sysctl.sremac.modify(|_, w| w.r0().bit(true)); // Activate MAC reset
delay(16);
sysctl.sremac.modify(|_, w| w.r0().bit(false)); // Dectivate MAC reset
sysctl.rcgcephy.modify(|_, w| w.r0().bit(true)); // Bring up PHY
sysctl.srephy.modify(|_, w| w.r0().bit(true)); // Activate PHY reset
delay(16);
sysctl.srephy.modify(|_, w| w.r0().bit(false)); // Dectivate PHY reset
while !sysctl.premac.read().r0().bit() {} // Wait for the MAC to come out of reset
while !sysctl.prephy.read().r0().bit() {} // Wait for the PHY to come out of reset
delay(10000);
emac0.dmabusmod.modify(|_, w| w.swr().bit(true)); // Reset MAC DMA
while emac0.dmabusmod.read().swr().bit() {} // Wait for the MAC DMA to come out of reset
delay(1000);
emac0.miiaddr.write(|w| w.cr()._100_150()); // Set the MII CSR clock speed.
// Checking PHY
if (phy_read(EPHY_ID1) != 0x2000) | (phy_read(EPHY_ID2) != 0xA221) {
panic!("PHY ID error!");
}
// Reset PHY transceiver
phy_write(EPHY_BMCR, 1); // Initiate MII reset
while (phy_read(EPHY_BMCR) & 1) == 1 {}; // Wait for the reset to be completed
// Configure PHY LEDs
phy_write_ext(EPHY_LEDCFG, 0x0008); // LED0 Link OK/Blink on TX/RX Activity
// Tell the PHY to start an auto-negotiation cycle
phy_write(EPHY_BMCR, 0b00010010_00000000); // ANEN and RESTARTAN
// Set the DMA operation mode
emac0.dmaopmode.write(|w|
w.rsf().bit(true) // Receive Store and Forward
.tsf().bit(true) // Transmit Store and Forward
.ttc()._64() // Transmit Threshold Control
.rtc()._64() // Receive Threshold Control
);
// Set the bus mode register.
emac0.dmabusmod.write(|w| unsafe {
w.atds().bit(true)
.aal().bit(true) // Address Aligned Beats
.usp().bit(true) // Use Separate Programmable Burst Length ???
.rpbl().bits(1) // RX DMA Programmable Burst Length
.pbl().bits(1) // Programmable Burst Length
.pr().bits(0) // Priority Ratio 1:1
});
// Disable all the MMC interrupts as these are enabled by default at reset.
emac0.mmcrxim.write(|w| unsafe { w.bits(0xFFFFFFFF)});
emac0.mmctxim.write(|w| unsafe { w.bits(0xFFFFFFFF)});
// Set MAC configuration options
emac0.cfg.write(|w|
w.dupm().bit(true) // MAC operates in full-duplex mode
.ipc().bit(true) // Checksum Offload Enable
.prelen()._7() // 7 bytes of preamble
.ifg()._96() // 96 bit times
.bl()._1024() // Back-Off Limit 1024
.ps().bit(true) // ?
);
// Set the maximum receive frame size
emac0.wdogto.write(|w| unsafe {
w.bits(0) // ??? no use watchdog
});
// Set the MAC address
let mac_addr = mac_addr.0;
emac0.addr0h.write(|w| unsafe { w.addrhi().bits(mac_addr[4] as u16 | ((mac_addr[5] as u16) << 8)) });
emac0.addr0l.write(|w| unsafe {
w.addrlo().bits(mac_addr[0] as u32 | ((mac_addr[1] as u32) << 8) | ((mac_addr[2] as u32) << 16) | ((mac_addr[3] as u32) << 24))
});
// Set MAC filtering options (?)
emac0.framefltr.write(|w|
w.hpf().bit(true) // Hash or Perfect Filter
//.hmc().bit(true) // Hash Multicast ???
.pm().bit(true) // Pass All Multicast
);
// Initialize hash table
emac0.hashtbll.write(|w| unsafe { w.htl().bits(0)});
emac0.hashtblh.write(|w| unsafe { w.hth().bits(0)});
emac0.flowctl.write(|w| unsafe { w.bits(0)}); // Disable flow control ???
emac0.txdladdr.write(|w| unsafe { w.bits((&device.tx_desc_buf[0] as *const u32) as u32)});
emac0.rxdladdr.write(|w| unsafe { w.bits((&device.rx_desc_buf[0] as *const u32) as u32)});
// Manage MAC transmission and reception
emac0.cfg.modify(|_, w|
w.re().bit(true) // Receiver Enable
.te().bit(true) // Transmiter Enable
);
// Manage DMA transmission and reception
emac0.dmaopmode.modify(|_, w|
w.sr().bit(true) // Start Receive
.st().bit(true) // Start Transmit
);
});
device
}
fn release_rx_buf(&mut self) {
self.rx_cur_desc += ETH_DESC_U32_SIZE;
if self.rx_cur_desc >= (ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE) {
self.rx_cur_desc = 0;
} }
self.rx_desc_buf[self.rx_cur_desc + 0] = EMAC_RDES0_OWN; // release descriptor
emac0.txdladdr.write(|w| unsafe { w.bits((&EMAC_DATA.tx_desc_buf[0] as *const u32) as u32)});
emac0.rxdladdr.write(|w| unsafe { w.bits((&EMAC_DATA.rx_desc_buf[0] as *const u32) as u32)});
// Manage MAC transmission and reception
emac0.cfg.modify(|_, w|
w.re().bit(true) // Receiver Enable
.te().bit(true) // Transmiter Enable
);
// Manage DMA transmission and reception
emac0.dmaopmode.modify(|_, w|
w.sr().bit(true) // Start Receive
.st().bit(true) // Start Transmit
);
println!("EMAC init done");
});
}
fn release_rx_buf() {
unsafe {
EMAC_DATA.rx_cur_desc += ETH_DESC_U32_SIZE;
if EMAC_DATA.rx_cur_desc >= (ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE) {
EMAC_DATA.rx_cur_desc = 0;
}
EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] = EMAC_RDES0_OWN; // release descriptor
} }
} }
pub struct EthernetDevice;
impl Device for EthernetDevice { impl Device for EthernetDevice {
type RxBuffer = RxBuffer; type RxBuffer = RxBuffer;
type TxBuffer = TxBuffer; type TxBuffer = TxBuffer;
@ -326,92 +316,100 @@ impl Device for EthernetDevice {
} }
fn receive(&mut self, _timestamp: u64) -> Result<Self::RxBuffer, Error> { fn receive(&mut self, _timestamp: u64) -> Result<Self::RxBuffer, Error> {
unsafe { if (self.rx_desc_buf[self.rx_cur_desc + 0] & EMAC_RDES0_OWN) == 0 {
if (EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] & EMAC_RDES0_OWN) == 0 { // check for the whole packet in the buffer and no any error
// check for the whole packet in the buffer and no any error if (EMAC_RDES0_FS | EMAC_RDES0_LS) == self.rx_desc_buf[self.rx_cur_desc + 0] & (EMAC_RDES0_FS | EMAC_RDES0_LS | EMAC_RDES0_ES) {
if (EMAC_RDES0_FS | EMAC_RDES0_LS) == EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] & (EMAC_RDES0_FS | EMAC_RDES0_LS | EMAC_RDES0_ES) { // Retrieve the length of the frame
// Retrieve the length of the frame let mut n = (self.rx_desc_buf[self.rx_cur_desc + 0] & EMAC_RDES0_FL) >> 16;
let mut n = (EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] & EMAC_RDES0_FL) >> 16; // Limit the number of data to read
// Limit the number of data to read if n > ETH_RX_BUFFER_SIZE as u32 { n = ETH_RX_BUFFER_SIZE as u32; }
if n > ETH_RX_BUFFER_SIZE as u32 { n = ETH_RX_BUFFER_SIZE as u32; } let sl = unsafe {
Ok(RxBuffer(slice::from_raw_parts(EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 2] as * mut u8, slice::from_raw_parts(self.rx_desc_buf[self.rx_cur_desc + 2] as * mut u8,
n as usize))) n as usize)
} else { };
// Ignore invalid frame Ok(RxBuffer(sl, self))
release_rx_buf();
Err(Error::Exhausted)
}
} else { } else {
Err(Error::Exhausted) // currently no buffers to process // Ignore invalid frame
self.release_rx_buf();
Err(Error::Exhausted)
} }
} else {
Err(Error::Exhausted) // currently no buffers to process
} }
} }
fn transmit(&mut self, _timestamp: u64, length: usize) -> Result<Self::TxBuffer, Error> { fn transmit(&mut self, _timestamp: u64, length: usize) -> Result<Self::TxBuffer, Error> {
unsafe { // Check if the TX DMA buffer released
// Check if the TX DMA buffer released if (self.tx_desc_buf[self.tx_cur_desc + 0] & EMAC_TDES0_OWN) == 0 {
if (EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 0] & EMAC_TDES0_OWN) == 0 { // Write the number of bytes to send
// Write the number of bytes to send self.tx_desc_buf[self.tx_cur_desc + 1] = length as u32 & EMAC_TDES1_TBS1;
EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 1] = length as u32 & EMAC_TDES1_TBS1;
Ok(TxBuffer(slice::from_raw_parts_mut(EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 2] as * mut u8, let sl = unsafe {
ETH_TX_BUFFER_SIZE))) slice::from_raw_parts_mut(self.tx_desc_buf[self.tx_cur_desc + 2] as * mut u8,
} else { ETH_TX_BUFFER_SIZE)
// to do if need: Instruct the DMA to poll the receive descriptor list };
Err(Error::Exhausted) Ok(TxBuffer(sl, self))
} } else {
// to do if need: Instruct the DMA to poll the receive descriptor list
Err(Error::Exhausted)
} }
} }
} }
pub struct RxBuffer(&'static [u8]); pub struct RxBuffer(*const [u8], *mut EthernetDevice);
impl AsRef<[u8]> for RxBuffer { impl AsRef<[u8]> for RxBuffer {
fn as_ref(&self) -> &[u8] { self.0 } fn as_ref(&self) -> &[u8] {
unsafe { &*self.0 }
}
} }
impl Drop for RxBuffer { impl Drop for RxBuffer {
fn drop(&mut self) { fn drop(&mut self) {
release_rx_buf(); let mut device = unsafe { &mut *self.1 };
device.release_rx_buf();
unsafe { EMAC_DATA.rx_counter += 1 }; // Increment RX statistics device.rx_counter += 1;
} }
} }
pub struct TxBuffer(&'static mut [u8]); pub struct TxBuffer(*mut [u8], *mut EthernetDevice);
impl AsRef<[u8]> for TxBuffer { impl AsRef<[u8]> for TxBuffer {
fn as_ref(&self) -> &[u8] { self.0 } fn as_ref(&self) -> &[u8] {
unsafe { &*self.0 }
}
} }
impl AsMut<[u8]> for TxBuffer { impl AsMut<[u8]> for TxBuffer {
fn as_mut(&mut self) -> &mut [u8] { self.0 } fn as_mut(&mut self) -> &mut [u8] {
unsafe { &mut *self.0 }
}
} }
impl Drop for TxBuffer { impl Drop for TxBuffer {
fn drop(&mut self) { fn drop(&mut self) {
unsafe { let mut device = unsafe { &mut *self.1 };
// Use chain structure rather than ring structure
// Set LS and FS flags as the data fits in a single buffer and give the ownership of the descriptor to the DMA
EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 0] = EMAC_TDES0_LS | EMAC_TDES0_FS | EMAC_TDES0_TCH;
EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 0] |= EMAC_TDES0_OWN; // Set ownersip for DMA here
cortex_m::interrupt::free(|cs| { // Use chain structure rather than ring structure
let emac0 = tm4c129x::EMAC0.borrow(cs); // Set LS and FS flags as the data fits in a single buffer and give the ownership of the descriptor to the DMA
// Clear TU flag to resume processing device.tx_desc_buf[device.tx_cur_desc + 0] = EMAC_TDES0_LS | EMAC_TDES0_FS | EMAC_TDES0_TCH;
emac0.dmaris.write(|w| w.tu().bit(true)); device.tx_desc_buf[device.tx_cur_desc + 0] |= EMAC_TDES0_OWN; // Set ownership for DMA here
// Instruct the DMA to poll the transmit descriptor list
emac0.txpolld.write(|w| w.tpd().bits(0));
});
// Calculate next DMA descriptor offset cortex_m::interrupt::free(|cs| {
let mut tx_next_desc = EMAC_DATA.tx_cur_desc + ETH_DESC_U32_SIZE; let emac0 = tm4c129x::EMAC0.borrow(cs);
if tx_next_desc >= (ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE) { // Clear TU flag to resume processing
tx_next_desc = 0; emac0.dmaris.write(|w| w.tu().bit(true));
} // Instruct the DMA to poll the transmit descriptor list
EMAC_DATA.tx_cur_desc = tx_next_desc; unsafe { emac0.txpolld.write(|w| w.tpd().bits(0)); }
});
EMAC_DATA.tx_counter += 1; // Calculate next DMA descriptor offset
let mut tx_next_desc = device.tx_cur_desc + ETH_DESC_U32_SIZE;
if tx_next_desc >= (ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE) {
tx_next_desc = 0;
} }
device.tx_cur_desc = tx_next_desc;
device.tx_counter += 1;
} }
} }

View File

@ -166,8 +166,7 @@ fn main_with_fpu() {
println!("MAC {} IP {}", hardware_addr, protocol_addrs[0]); println!("MAC {} IP {}", hardware_addr, protocol_addrs[0]);
let mut arp_cache_entries: [_; 8] = Default::default(); let mut arp_cache_entries: [_; 8] = Default::default();
let mut arp_cache = SliceArpCache::new(&mut arp_cache_entries[..]); let mut arp_cache = SliceArpCache::new(&mut arp_cache_entries[..]);
ethmac::init(hardware_addr.0); let mut device = ethmac::EthernetDevice::new(hardware_addr);
let mut device = ethmac::EthernetDevice;
let mut iface = EthernetInterface::new( let mut iface = EthernetInterface::new(
&mut device, &mut arp_cache as &mut ArpCache, &mut device, &mut arp_cache as &mut ArpCache,
hardware_addr, &mut protocol_addrs[..]); hardware_addr, &mut protocol_addrs[..]);