humpback-dds/examples/ethernet.rs

509 lines
14 KiB
Rust

#![no_main]
#![no_std]
// extern crate cortex_m_rt as rt;
use core::sync::atomic::{AtomicU32, Ordering};
//#[macro_use]
//extern crate log;
// extern crate cortex_m;
use panic_semihosting as _;
use cortex_m;
use cortex_m::asm::nop;
use cortex_m_rt::{
entry,
exception,
};
use cortex_m_semihosting::hprintln;
extern crate smoltcp;
// Ethernet crate for STM32H7 has been merged into HAL in the latest commit
extern crate stm32h7_ethernet as ethernet;
use stm32h7xx_hal::gpio::Speed;
use stm32h7xx_hal::hal::digital::v2::{
OutputPin,
InputPin,
};
use stm32h7xx_hal::rcc::CoreClocks;
use stm32h7xx_hal::{pac, prelude::*, spi, stm32, stm32::interrupt};
use Speed::*;
use libm::round;
/*
#[cfg(feature = "itm")]
use cortex_m_log::log::{trick_init, Logger};
#[cfg(feature = "itm")]
use cortex_m_log::{
destination::Itm, printer::itm::InterruptSync as InterruptSyncItm,
};
*/
use core::{
str,
fmt::Write
};
use core::mem::uninitialized;
// Exception: no phy::wait
//use smoltcp::phy::wait as phy_wait;
use smoltcp::wire::{EthernetAddress, IpAddress, IpCidr, Ipv4Address};
use smoltcp::iface::{NeighborCache, EthernetInterfaceBuilder, Routes};
use smoltcp::socket::SocketSet;
use smoltcp::socket::{SocketHandle, TcpSocket, TcpSocketBuffer};
use smoltcp::time::{Duration, Instant};
// Use embedded-nal to access smoltcp
use embedded_nal::TcpStack;
use firmware;
use firmware::{
attenuator::Attenuator,
config_register::{
ConfigRegister,
CFGMask,
StatusMask,
},
dds::{
DDS,
DDSCFRMask,
},
cpld::{
CPLD,
},
scpi::{ HelloWorldCommand, SwitchOnCommand },
Urukul,
};
use scpi::prelude::*;
use scpi::ieee488::commands::*;
use scpi::scpi::commands::*;
use scpi::{
ieee488_cls,
ieee488_ese,
ieee488_esr,
ieee488_idn,
ieee488_opc,
ieee488_rst,
ieee488_sre,
ieee488_stb,
ieee488_tst,
ieee488_wai,
nquery,
//Helpers
qonly,
scpi_crate_version,
scpi_status,
scpi_system,
scpi_tree,
};
/// Configure SYSTICK for 1ms timebase
fn systick_init(syst: &mut stm32::SYST, clocks: CoreClocks) {
let c_ck_mhz = clocks.c_ck().0 / 1_000_000;
let syst_calib = 0x3E8;
syst.set_clock_source(cortex_m::peripheral::syst::SystClkSource::Core);
syst.set_reload((syst_calib * c_ck_mhz) - 1);
syst.enable_interrupt();
syst.enable_counter();
}
/// ======================================================================
/// Entry point
/// ======================================================================
/// TIME is an atomic u32 that counts milliseconds. Although not used
/// here, it is very useful to have for network protocols
static TIME: AtomicU32 = AtomicU32::new(0);
/// Locally administered MAC address
const MAC_ADDRESS: [u8; 6] = [0x02, 0x00, 0x11, 0x22, 0x33, 0x44];
/// Ethernet descriptor rings are a global singleton
#[link_section = ".sram3.eth"]
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
// Theoratical maximum number of socket that can be handled
const SOCKET_COUNT: usize = 2;
// Give buffer sizes of transmitting and receiving TCP packets
const BUFFER_SIZE: usize = 2048;
// the program entry point
#[entry]
fn main() -> ! {
let mut cp = cortex_m::Peripherals::take().unwrap();
let dp = pac::Peripherals::take().unwrap();
// Initialise power...
let pwr = dp.PWR.constrain();
let vos = pwr.freeze();
// Initialise SRAM3
dp.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
// Initialise clocks...
let rcc = dp.RCC.constrain();
let ccdr = rcc
.sys_ck(200.mhz())
.hclk(200.mhz())
.pll1_r_ck(100.mhz()) // for TRACECK
.pll1_q_ck(48.mhz()) // for SPI
.freeze(vos, &dp.SYSCFG);
// Get the delay provider.
let delay = cp.SYST.delay(ccdr.clocks);
// Initialise system...
cp.SCB.invalidate_icache();
cp.SCB.enable_icache();
// TODO: ETH DMA coherence issues
// cp.SCB.enable_dcache(&mut cp.CPUID);
cp.DWT.enable_cycle_counter();
// Initialise IO...
let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD);
let gpioe = dp.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = dp.GPIOF.split(ccdr.peripheral.GPIOF);
let gpiog = dp.GPIOG.split(ccdr.peripheral.GPIOG);
// let mut link_led = gpiob.pb0.into_push_pull_output(); // LED1, green
// let mut status_led = gpioe.pe1.into_push_pull_output(); // LD2, yellow
// let mut listen_led = gpiob.pb14.into_push_pull_output(); // LD3, red
// link_led.set_low().ok();
// status_led.set_low().ok();
// listen_led.set_low().ok();
// Setup CDONE for checking
let fpga_cdone = gpiod.pd15.into_pull_up_input();
match fpga_cdone.is_high() {
Ok(true) => hprintln!("FPGA is ready."),
Ok(_) => hprintln!("FPGA is in reset state."),
Err(_) => hprintln!("Error: Cannot read C_DONE"),
}.unwrap();
// Setup Urukul
/*
* Using SPI1, AF5
* SCLK -> PA5
* MOSI -> PB5
* MISO -> PA6
* CS -> 0: PB12, 1: PA15, 2: PC7
*/
let sclk = gpioa.pa5.into_alternate_af5();
let mosi = gpiob.pb5.into_alternate_af5();
let miso = gpioa.pa6.into_alternate_af5();
let (cs0, cs1, cs2) = (
gpiob.pb12.into_push_pull_output(),
gpioa.pa15.into_push_pull_output(),
gpioc.pc7.into_push_pull_output(),
);
/*
* I/O_Update -> PB15
*/
let io_update = gpiob.pb15.into_push_pull_output();
let spi = dp.SPI1.spi(
(sclk, miso, mosi),
spi::MODE_0,
3.mhz(),
ccdr.peripheral.SPI1,
&ccdr.clocks,
);
let switch = CPLD::new(spi, (cs0, cs1, cs2), io_update);
let parts = switch.split();
let mut urukul = Urukul::new(
parts.spi1, parts.spi2, parts.spi3, parts.spi4, parts.spi5, parts.spi6, parts.spi7,
[25_000_000, 25_000_000, 25_000_000, 25_000_000]
);
// Setup ethernet pins
setup_ethernet_pins(
gpioa.pa1, gpioa.pa2, gpioc.pc1, gpioa.pa7, gpioc.pc4,
gpioc.pc5, gpiog.pg11, gpiog.pg13, gpiob.pb13
);
// Initialise ethernet...
assert_eq!(ccdr.clocks.hclk().0, 200_000_000); // HCLK 200MHz
assert_eq!(ccdr.clocks.pclk1().0, 100_000_000); // PCLK 100MHz
assert_eq!(ccdr.clocks.pclk2().0, 100_000_000); // PCLK 100MHz
assert_eq!(ccdr.clocks.pclk4().0, 100_000_000); // PCLK 100MHz
let mac_addr = smoltcp::wire::EthernetAddress::from_bytes(&MAC_ADDRESS);
let (_eth_dma, mut eth_mac) = unsafe {
ethernet::ethernet_init(
dp.ETHERNET_MAC,
dp.ETHERNET_MTL,
dp.ETHERNET_DMA,
&mut DES_RING,
mac_addr.clone(),
)
};
unsafe {
ethernet::enable_interrupt();
cp.NVIC.set_priority(stm32::Interrupt::ETH, 196); // Mid prio
cortex_m::peripheral::NVIC::unmask(stm32::Interrupt::ETH);
}
// ----------------------------------------------------------
// Begin periodic tasks
systick_init(&mut delay.free(), ccdr.clocks);
unsafe {
cp.SCB.shpr[15 - 4].write(128);
} // systick exception priority
// ----------------------------------------------------------
// Main application loop
// Setup addresses, maybe not MAC?
// MAC is set up in prior
let local_addr = IpAddress::v4(192, 168, 1, 200);
let mut ip_addrs = [IpCidr::new(local_addr, 24)];
// let neighbor_cache = NeighborCache::new(BTreeMap::new());
let mut neighbor_storage = [None; 16];
let neighbor_cache = NeighborCache::new(&mut neighbor_storage[..]);
// Routes
let default_v4_gw = Ipv4Address::new(192, 168, 1, 1);
let mut routes_storage = [None; 8];
let mut routes = Routes::new(&mut routes_storage[..]);
routes.add_default_ipv4_route(default_v4_gw).unwrap();
// Device? _eth_dma, as it implements phy::device
let mut iface = EthernetInterfaceBuilder::new(_eth_dma)
.ethernet_addr(mac_addr)
.neighbor_cache(neighbor_cache)
.ip_addrs(&mut ip_addrs[..])
.routes(routes)
.finalize();
// SCPI configs
// TODO: String for *idn? mandated command
// SCPI tree
let tree = scpi_tree![
// Create default IEEE488 mandated commands
ieee488_cls!(),
ieee488_ese!(),
ieee488_esr!(),
// ieee488_idn!(b"manufacturer", b"model", b"serial", "0.1.2".as_bytes()),
ieee488_opc!(),
ieee488_rst!(),
ieee488_sre!(),
ieee488_stb!(),
ieee488_tst!(),
ieee488_wai!(),
// Create default SCPI mandated STATus subsystem
scpi_status!(),
// Create default SCPI mandated SYSTem subsystem
scpi_system!(),
//
scpi_crate_version!(),
//Test
Node {
name: b"ABORt",
handler: None,
optional: false,
sub: &[],
},
Node {
name: b"INITiate",
handler: None,
optional: false,
sub: &[
Node {
name: b"IMMediate",
handler: None,
optional: true,
sub: &[],
}
],
},
Node {
name: b"EXAMple",
optional: true,
handler: None,
sub: &[
Node {
name: b"HELLO",
optional: false,
handler: None,
sub: &[
Node {
name: b"WORLD",
optional: true,
handler: Some(&HelloWorldCommand {}),
sub: &[],
}
],
},
],
},
Node {
name: b"SWitch",
optional: false,
handler: Some(&SwitchOnCommand {}),
sub: &[],
}
];
// Device was declared in prior
let mut errors = ArrayErrorQueue::<[Error; 10]>::new();
let mut context = Context::new(&mut urukul, &mut errors, tree);
//Response bytebuffer
let mut buf = ArrayVecFormatter::<[u8; 256]>::new();
// SCPI configs END
// TCP socket buffers
let mut rx_storage = [0; BUFFER_SIZE];
let mut tx_storage = [0; BUFFER_SIZE];
// Setup TCP sockets
let tcp1_rx_buffer = TcpSocketBuffer::new(&mut rx_storage[..]);
let tcp1_tx_buffer = TcpSocketBuffer::new(&mut tx_storage[..]);
let mut tcp1_socket = TcpSocket::new(tcp1_rx_buffer, tcp1_tx_buffer);
// Setup a silent socket
let mut silent_rx_storage = [0; BUFFER_SIZE];
let mut silent_tx_storage = [0; BUFFER_SIZE];
let silent_rx_buffer = TcpSocketBuffer::new(&mut silent_rx_storage[..]);
let silent_tx_buffer = TcpSocketBuffer::new(&mut silent_tx_storage[..]);
let mut silent_socket = TcpSocket::new(silent_rx_buffer, silent_tx_buffer);
// Socket storage
let mut sockets_storage = [ None, None ];
let mut sockets = SocketSet::new(&mut sockets_storage[..]);
let tcp1_handle = sockets.add(tcp1_socket);
let silent_handle = sockets.add(silent_socket);
let mut handles: [SocketHandle; SOCKET_COUNT] = unsafe {
uninitialized()
};
let mut eth_up = false;
// Record activeness of silent socket, init as false
let mut silent_socket_active = false;
loop {
let _time = TIME.load(Ordering::Relaxed);
let eth_last = eth_up;
match iface.poll(&mut sockets, Instant::from_millis(_time as i64)) {
Ok(_) => {
eth_up = true;
},
Err(e) => {
eth_up = false;
},
};
// Float rounding test socket (:6969)
{
let mut socket = sockets.get::<TcpSocket>(tcp1_handle);
if !socket.is_open() {
socket.listen(6969).unwrap();
socket.set_timeout(Some(Duration::from_millis(5000)));
}
if socket.can_recv() {
let data = socket.recv(|buffer| {
(buffer.len(), buffer)
}).unwrap();
hprintln!("{:?}", data).unwrap();
let result = lexical_core::parse_partial::<f64>(data).unwrap();
writeln!(socket, "{}", round(result.0 * 2.0));
}
}
// SCPI interaction socket (:7000)
{
let mut socket = sockets.get::<TcpSocket>(silent_handle);
if !socket.is_open() {
socket.listen(7000).unwrap();
socket.set_timeout(Some(Duration::from_millis(1000000)));
}
if socket.can_recv() {
let mut data = socket.recv(|buffer| {
(buffer.len(), buffer)
}).unwrap();
if str::from_utf8(data).unwrap().trim() == "quit" {
socket.close();
socket.abort();
continue;
}
let result = context.run(data, &mut buf);
if let Err(err) = result {
writeln!(socket, "{}", str::from_utf8(err.get_message()).unwrap());
} else {
write!(socket, "{}", str::from_utf8(buf.as_slice()).unwrap());
}
}
}
}
}
use stm32h7xx_hal::gpio::{
gpioa::{PA1, PA2, PA7},
gpiob::{PB13},
gpioc::{PC1, PC4, PC5},
gpiog::{PG11, PG13},
Speed::VeryHigh,
};
/*
* Migrated ethernet setup pins
*/
pub fn setup_ethernet_pins<REF_CLK, MDIO, MDC, CRS_DV, RXD0, RXD1, TX_EN, TXD0, TXD1>(
pa1: PA1<REF_CLK>, pa2: PA2<MDIO>, pc1: PC1<MDC>, pa7: PA7<CRS_DV>, pc4: PC4<RXD0>,
pc5: PC5<RXD1>, pg11: PG11<TX_EN>, pg13: PG13<TXD0>, pb13: PB13<TXD1>
) {
pa1.into_alternate_af11().set_speed(VeryHigh);
pa2.into_alternate_af11().set_speed(VeryHigh);
pc1.into_alternate_af11().set_speed(VeryHigh);
pa7.into_alternate_af11().set_speed(VeryHigh);
pc4.into_alternate_af11().set_speed(VeryHigh);
pc5.into_alternate_af11().set_speed(VeryHigh);
pg11.into_alternate_af11().set_speed(VeryHigh);
pg13.into_alternate_af11().set_speed(VeryHigh);
pb13.into_alternate_af11().set_speed(VeryHigh);
}
#[interrupt]
fn ETH() {
unsafe { ethernet::interrupt_handler() }
}
#[exception]
fn SysTick() {
TIME.fetch_add(1, Ordering::Relaxed);
}
#[exception]
fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! {
panic!("HardFault at {:#?}", ef);
}
#[exception]
fn DefaultHandler(irqn: i16) {
panic!("Unhandled exception (IRQn = {})", irqn);
}