humpback-dds/src/main.rs

257 lines
5.8 KiB
Rust

#![no_main]
#![no_std]
use panic_semihosting as _;
use stm32h7xx_hal::hal::digital::v2::{
InputPin,
OutputPin,
};
use stm32h7xx_hal::{pac, prelude::*, spi};
use cortex_m;
use cortex_m::asm::nop;
use cortex_m_rt::entry;
use cortex_m_semihosting::hprintln;
use core::ptr;
use nb::block;
use firmware;
use firmware::{
CPLD,
attenuator::Attenuator,
config_register::{
ConfigRegister,
CFGMask,
StatusMask,
},
dds::DDS,
};
#[entry]
fn main() -> ! {
let cp = cortex_m::Peripherals::take().unwrap();
let dp = pac::Peripherals::take().unwrap();
let pwr = dp.PWR.constrain();
let vos = pwr.freeze();
let rcc = dp.RCC.constrain();
let ccdr = rcc
.sys_ck(400.mhz())
.pll1_q_ck(48.mhz())
.freeze(vos, &dp.SYSCFG);
let mut delay = cp.SYST.delay(ccdr.clocks);
let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD);
let gpioe = dp.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = dp.GPIOF.split(ccdr.peripheral.GPIOF);
// Setup CDONE for checking
let fpga_cdone = gpiod.pd15.into_pull_up_input();
match fpga_cdone.is_high() {
Ok(true) => hprintln!("FPGA is ready."),
Ok(_) => hprintln!("FPGA is in reset state."),
Err(_) => hprintln!("Error: Cannot read C_DONE"),
}.unwrap();
/*
* Using SPI1, AF5
* SCLK -> PA5
* MOSI -> PB5
* MISO -> PA6
* CS -> 0: PB12, 1: PA15, 2: PC7
*/
let sclk = gpioa.pa5.into_alternate_af5();
let mosi = gpiob.pb5.into_alternate_af5();
let miso = gpioa.pa6.into_alternate_af5();
let (cs0, cs1, cs2) = (
gpiob.pb12.into_push_pull_output(),
gpioa.pa15.into_push_pull_output(),
gpioc.pc7.into_push_pull_output(),
);
/*
* I/O_Update -> PB13
*/
// TODO: Incoporate io_update into DDS
let mut io_update = gpiob.pb15.into_push_pull_output();
let spi = dp.SPI1.spi(
(sclk, miso, mosi),
spi::MODE_0,
3.mhz(),
ccdr.peripheral.SPI1,
&ccdr.clocks,
);
let mut switch = CPLD::new(spi, (cs0, cs1, cs2), io_update);
let parts = switch.split();
let mut config = ConfigRegister::new(parts.spi1);
let mut att = Attenuator::new(parts.spi2);
let mut dds0 = DDS::new(parts.spi4);
// Reset all DDS, set CLK_SEL to 0
config.set_configurations(&mut [
(CFGMask::RST, 1),
(CFGMask::IO_RST, 1),
(CFGMask::IO_UPDATE, 0)
]).unwrap();
config.set_configurations(&mut [
(CFGMask::IO_RST, 0),
(CFGMask::RST, 0),
(CFGMask::RF_SW, 1)
]).unwrap();
dds0.write_register(0x00, &mut[
0x00, 0x00, 0x00, 0x02
]).unwrap();
// io_update.set_high().unwrap();
// io_update.set_low().unwrap();
// switch.issue_io_update();
dds0.write_register(0x02, &mut[
0x01F, 0x3F, 0xC0, 0x00
]).unwrap();
// io_update.set_high().unwrap();
// io_update.set_low().unwrap();
// switch.issue_io_update();
hprintln!("{:#X?}", dds0.read_register(0x00, &mut[
0x00, 0x00, 0x00, 0x00
]).unwrap()).unwrap();
// Calculate FTW
let f_out = 10_000_000;
let f_sclk = 100_000_000;
let resolution :u64 = 1 << 32;
let ftw = (resolution * f_out / f_sclk) as u32;
hprintln!("{}", ftw);
// Read single-tone profile 0
let mut profile :[u8; 8] = [0; 8];
dds0.read_register(0x0E, &mut profile).unwrap();
// Overwrite FTW on profile
profile[4] = ((ftw >> 24) & 0xFF) as u8;
profile[5] = ((ftw >> 16) & 0xFF) as u8;
profile[6] = ((ftw >> 8 ) & 0xFF) as u8;
profile[7] = ((ftw >> 0 ) & 0xFF) as u8;
dds0.write_register(0x0E, &mut profile).unwrap();
// io_update.set_high().unwrap();
// io_update.set_low().unwrap();
// switch.issue_io_update();
hprintln!("{:#X?}", dds0.read_register(0x0E, &mut profile).unwrap()).unwrap();
/*
cs0.set_low().unwrap();
cs1.set_low().unwrap();
cs2.set_low().unwrap();
io_update.set_low().unwrap();
let mut dummy :[u8;1] = [0];
spi.transfer(&mut dummy);
// Master reset DDS_0 through CPLD, with LED at 3
cs0.set_high().unwrap();
spi.transfer(&mut [
0x08, 0x00, 0x03
]).unwrap();
cs0.set_low().unwrap();
// Perform I/O Reset through CPLD, with LED at 4
cs0.set_high().unwrap();
spi.transfer(&mut [
0x10, 0x00, 0x04
]).unwrap();
cs0.set_low().unwrap();
// Release reset, control I/O Update through EEM
// Relay clock signal from internal OSC (CLK_SEL = 0)
// Enable Switch 0
cs0.set_high().unwrap();
spi.transfer(&mut [
0x00, 0x00, 0x01
]).unwrap();
cs0.set_low().unwrap();
cs0.set_low().unwrap();
cs1.set_low().unwrap();
cs2.set_high().unwrap();
// Configure SDIO to be input only, enable 3-wires communication
spi.transfer(&mut [
0x00, 0x00, 0x00, 0x00, 0x02
]).unwrap();
// IO Update after every SPI transfer
io_update.set_high().unwrap();
delay.delay_ms(1_u16);
io_update.set_low().unwrap();
// Bypass PLL, bypass divisor
spi.transfer(&mut [
0x02, 0x1F, 0x3F, 0xC0, 0x00
]).unwrap();
io_update.set_high().unwrap();
delay.delay_ms(1_u16);
io_update.set_low().unwrap();
hprintln!("{:#X?}", spi.transfer(&mut [
0x82, 0x00, 0x00, 0x00, 0x00
]).unwrap()).unwrap();
let f_out = 10_000_000.0;
let f_sclk = 100_000_000.0;
let resolution :u64 = 1 << 32;
let ftw = ((resolution as f32) * f_out / f_sclk) as u32;
hprintln!("{:#X}", ftw);
// Read profile 0
let mut profile_arr_0 :[u8; 9] = [0; 9];
profile_arr_0[0] = 0x8E;
hprintln!("{:#X?}", spi.transfer(&mut profile_arr_0).unwrap()).unwrap();
// Write FTW to profile 0
profile_arr_0[0] = 0x0E;
profile_arr_0[5] = ((ftw >> 24) & 0xFF) as u8;
profile_arr_0[6] = ((ftw >> 16) & 0xFF) as u8;
profile_arr_0[7] = ((ftw >> 8 ) & 0xFF) as u8;
profile_arr_0[8] = ((ftw >> 0 ) & 0xFF) as u8;
hprintln!("{:#X?}", profile_arr_0).unwrap();
spi.transfer(&mut profile_arr_0).unwrap();
// Update after write
io_update.set_high().unwrap();
delay.delay_ms(1_u16);
io_update.set_low().unwrap();
// Read profile again, new value should be present
profile_arr_0[0] = 0x8E;
hprintln!("{:#X?}", spi.transfer(&mut profile_arr_0).unwrap()).unwrap();
*/
loop {}
}