use core::mem; use core::num::Wrapping; use float::Float; macro_rules! add { ($intrinsic:ident: $ty:ty) => { /// Returns `a + b` #[allow(unused_parens)] #[cfg_attr(not(test), no_mangle)] pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty { let one = Wrapping(1 as <$ty as Float>::Int); let zero = Wrapping(0 as <$ty as Float>::Int); let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int); let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int); let exponent_bits = bits - significand_bits - one; let max_exponent = (one << exponent_bits.0 as usize) - one; let implicit_bit = one << significand_bits.0 as usize; let significand_mask = implicit_bit - one; let sign_bit = one << (significand_bits + exponent_bits).0 as usize; let abs_mask = sign_bit - one; let exponent_mask = abs_mask ^ significand_mask; let inf_rep = exponent_mask; let quiet_bit = implicit_bit >> 1; let qnan_rep = exponent_mask | quiet_bit; let mut a_rep = Wrapping(a.repr()); let mut b_rep = Wrapping(b.repr()); let a_abs = a_rep & abs_mask; let b_abs = b_rep & abs_mask; // Detect if a or b is zero, infinity, or NaN. if a_abs - one >= inf_rep - one || b_abs - one >= inf_rep - one { // NaN + anything = qNaN if a_abs > inf_rep { return (<$ty as Float>::from_repr((a_abs | quiet_bit).0)); } // anything + NaN = qNaN if b_abs > inf_rep { return (<$ty as Float>::from_repr((b_abs | quiet_bit).0)); } if a_abs == inf_rep { // +/-infinity + -/+infinity = qNaN if (a.repr() ^ b.repr()) == sign_bit.0 { return (<$ty as Float>::from_repr(qnan_rep.0)); } else { // +/-infinity + anything remaining = +/- infinity return a; } } // anything remaining + +/-infinity = +/-infinity if b_abs == inf_rep { return b; } // zero + anything = anything if a_abs.0 == 0 { // but we need to get the sign right for zero + zero if b_abs.0 == 0 { return (<$ty as Float>::from_repr(a.repr() & b.repr())); } else { return b; } } // anything + zero = anything if b_abs.0 == 0 { return a; } } // Swap a and b if necessary so that a has the larger absolute value. if b_abs > a_abs { mem::swap(&mut a_rep, &mut b_rep); } // Extract the exponent and significand from the (possibly swapped) a and b. let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32); let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32); let mut a_significand = a_rep & significand_mask; let mut b_significand = b_rep & significand_mask; // normalize any denormals, and adjust the exponent accordingly. if a_exponent.0 == 0 { let (exponent, significand) = <$ty>::normalize(a_significand.0); a_exponent = Wrapping(exponent); a_significand = Wrapping(significand); } if b_exponent.0 == 0 { let (exponent, significand) = <$ty>::normalize(b_significand.0); b_exponent = Wrapping(exponent); b_significand = Wrapping(significand); } // The sign of the result is the sign of the larger operand, a. If they // have opposite signs, we are performing a subtraction; otherwise addition. let result_sign = a_rep & sign_bit; let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero; // Shift the significands to give us round, guard and sticky, and or in the // implicit significand bit. (If we fell through from the denormal path it // was already set by normalize(), but setting it twice won't hurt // anything.) a_significand = (a_significand | implicit_bit) << 3; b_significand = (b_significand | implicit_bit) << 3; // Shift the significand of b by the difference in exponents, with a sticky // bottom bit to get rounding correct. let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int); if align.0 != 0 { if align < bits { let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int; b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky); } else { b_significand = one; // sticky; b is known to be non-zero. } } if subtraction { a_significand -= b_significand; // If a == -b, return +zero. if a_significand.0 == 0 { return (<$ty as Float>::from_repr(0)); } // If partial cancellation occured, we need to left-shift the result // and adjust the exponent: if a_significand < implicit_bit << 3 { let shift = a_significand.0.leading_zeros() as i32 - (implicit_bit << 3).0.leading_zeros() as i32; a_significand <<= shift as usize; a_exponent -= Wrapping(shift); } } else /* addition */ { a_significand += b_significand; // If the addition carried up, we need to right-shift the result and // adjust the exponent: if (a_significand & implicit_bit << 4).0 != 0 { let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int; a_significand = a_significand >> 1 | Wrapping(sticky); a_exponent += Wrapping(1); } } // If we have overflowed the type, return +/- infinity: if a_exponent >= Wrapping(max_exponent.0 as i32) { return (<$ty>::from_repr((inf_rep | result_sign).0)); } if a_exponent.0 <= 0 { // Result is denormal before rounding; the exponent is zero and we // need to shift the significand. let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int); let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int; a_significand = a_significand >> shift.0 as usize | Wrapping(sticky); a_exponent = Wrapping(0); } // Low three bits are round, guard, and sticky. let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32; // Shift the significand into place, and mask off the implicit bit. let mut result = a_significand >> 3 & significand_mask; // Insert the exponent and sign. result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize; result |= result_sign; // Final rounding. The result may overflow to infinity, but that is the // correct result in that case. if round_guard_sticky > 0x4 { result += one; } if round_guard_sticky == 0x4 { result += result & one; } return (<$ty>::from_repr(result.0)); } } } add!(__addsf3: f32); add!(__adddf3: f64); #[cfg(test)] mod tests { use core::{f32, f64}; use float::Float; use qc::{U32, U64}; // NOTE The tests below have special handing for NaN values. // Because NaN != NaN, the floating-point representations must be used // Because there are many diffferent values of NaN, and the implementation // doesn't care about calculating the 'correct' one, if both values are NaN // the values are considered equivalent. struct FRepr(F); impl PartialEq for FRepr { fn eq(&self, other: &FRepr) -> bool { // NOTE(cfg) for some reason, on hard float targets, our implementation doesn't // match the output of its gcc_s counterpart. Until we investigate further, we'll // just avoid testing against gcc_s on those targets. Do note that our // implementation matches the output of the FPU instruction on *hard* float targets // and matches its gcc_s counterpart on *soft* float targets. if cfg!(gnueabihf) { return true } self.0.eq_repr(other.0) } } // TODO: Add F32/F64 to qc so that they print the right values (at the very least) check! { fn __addsf3(f: extern fn(f32, f32) -> f32, a: U32, b: U32) -> Option > { let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0)); Some(FRepr(f(a, b))) } fn __adddf3(f: extern fn(f64, f64) -> f64, a: U64, b: U64) -> Option > { let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0)); Some(FRepr(f(a, b))) } } // More tests for special float values #[test] fn test_float_tiny_plus_tiny() { let tiny = f32::from_repr(1); let r = super::__addsf3(tiny, tiny); assert!(r.eq_repr(tiny + tiny)); } #[test] fn test_double_tiny_plus_tiny() { let tiny = f64::from_repr(1); let r = super::__adddf3(tiny, tiny); assert!(r.eq_repr(tiny + tiny)); } #[test] fn test_float_small_plus_small() { let a = f32::from_repr(327); let b = f32::from_repr(256); let r = super::__addsf3(a, b); assert!(r.eq_repr(a + b)); } #[test] fn test_double_small_plus_small() { let a = f64::from_repr(327); let b = f64::from_repr(256); let r = super::__adddf3(a, b); assert!(r.eq_repr(a + b)); } #[test] fn test_float_one_plus_one() { let r = super::__addsf3(1f32, 1f32); assert!(r.eq_repr(1f32 + 1f32)); } #[test] fn test_double_one_plus_one() { let r = super::__adddf3(1f64, 1f64); assert!(r.eq_repr(1f64 + 1f64)); } #[test] fn test_float_different_nan() { let a = f32::from_repr(1); let b = f32::from_repr(0b11111111100100010001001010101010); let x = super::__addsf3(a, b); let y = a + b; assert!(x.eq_repr(y)); } #[test] fn test_double_different_nan() { let a = f64::from_repr(1); let b = f64::from_repr(0b1111111111110010001000100101010101001000101010000110100011101011); let x = super::__adddf3(a, b); let y = a + b; assert!(x.eq_repr(y)); } #[test] fn test_float_nan() { let r = super::__addsf3(f32::NAN, 1.23); assert_eq!(r.repr(), f32::NAN.repr()); } #[test] fn test_double_nan() { let r = super::__adddf3(f64::NAN, 1.23); assert_eq!(r.repr(), f64::NAN.repr()); } #[test] fn test_float_inf() { let r = super::__addsf3(f32::INFINITY, -123.4); assert_eq!(r, f32::INFINITY); } #[test] fn test_double_inf() { let r = super::__adddf3(f64::INFINITY, -123.4); assert_eq!(r, f64::INFINITY); } }