use core::intrinsics; #[cfg(feature = "mem")] use mem::{memcpy, memmove, memset}; // NOTE This function and the ones below are implemented using assembly because they using a custom // calling convention which can't be implemented using a normal Rust function #[naked] #[cfg_attr(not(test), no_mangle)] pub unsafe fn __aeabi_uidivmod() { asm!("push {lr} sub sp, sp, #4 mov r2, sp bl __udivmodsi4 ldr r1, [sp] add sp, sp, #4 pop {pc}"); intrinsics::unreachable(); } #[naked] #[cfg_attr(not(test), no_mangle)] pub unsafe fn __aeabi_uldivmod() { asm!("push {r4, lr} sub sp, sp, #16 add r4, sp, #8 str r4, [sp] bl __udivmoddi4 ldr r2, [sp, #8] ldr r3, [sp, #12] add sp, sp, #16 pop {r4, pc}"); intrinsics::unreachable(); } #[naked] #[cfg_attr(not(test), no_mangle)] pub unsafe fn __aeabi_idivmod() { asm!("push {r0, r1, r4, lr} bl __divsi3 pop {r1, r2} muls r2, r2, r0 subs r1, r1, r2 pop {r4, pc}"); intrinsics::unreachable(); } #[naked] #[cfg_attr(not(test), no_mangle)] pub unsafe fn __aeabi_ldivmod() { asm!("push {r4, lr} sub sp, sp, #16 add r4, sp, #8 str r4, [sp] bl __divmoddi4 ldr r2, [sp, #8] ldr r3, [sp, #12] add sp, sp, #16 pop {r4, pc}"); intrinsics::unreachable(); } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_dadd(a: f64, b: f64) -> f64 { ::float::add::__adddf3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_fadd(a: f32, b: f32) -> f32 { ::float::add::__addsf3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_dsub(a: f64, b: f64) -> f64 { ::float::sub::__subdf3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_fsub(a: f32, b: f32) -> f32 { ::float::sub::__subsf3(a, b) } #[cfg(not(all(feature = "c", target_arch = "arm", not(target_os = "ios"), not(thumbv6m))))] #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_idiv(a: i32, b: i32) -> i32 { ::int::sdiv::__divsi3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_lasr(a: i64, b: u32) -> i64 { ::int::shift::__ashrdi3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_llsl(a: u64, b: u32) -> u64 { ::int::shift::__ashldi3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_llsr(a: u64, b: u32) -> u64 { ::int::shift::__lshrdi3(a, b) } #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_lmul(a: u64, b: u64) -> u64 { ::int::mul::__muldi3(a, b) } #[cfg(not(all(feature = "c", target_arch = "arm", not(target_os = "ios"), not(thumbv6m))))] #[cfg_attr(not(test), no_mangle)] pub extern "aapcs" fn __aeabi_uidiv(a: u32, b: u32) -> u32 { ::int::udiv::__udivsi3(a, b) } #[cfg(not(feature = "c"))] #[cfg_attr(not(test), no_mangle)] pub extern "C" fn __aeabi_ui2d(a: u32) -> f64 { ::float::conv::__floatunsidf(a) } // TODO: These aeabi_* functions should be defined as aliases #[cfg(not(feature = "mem"))] extern "C" { fn memcpy(dest: *mut u8, src: *const u8, n: usize) -> *mut u8; fn memmove(dest: *mut u8, src: *const u8, n: usize) -> *mut u8; fn memset(dest: *mut u8, c: i32, n: usize) -> *mut u8; } // FIXME: The `*4` and `*8` variants should be defined as aliases. #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memcpy(dest: *mut u8, src: *const u8, n: usize) { memcpy(dest, src, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memcpy4(dest: *mut u8, src: *const u8, n: usize) { memcpy(dest, src, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memcpy8(dest: *mut u8, src: *const u8, n: usize) { memcpy(dest, src, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memmove(dest: *mut u8, src: *const u8, n: usize) { memmove(dest, src, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memmove4(dest: *mut u8, src: *const u8, n: usize) { memmove(dest, src, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memmove8(dest: *mut u8, src: *const u8, n: usize) { memmove(dest, src, n); } // Note the different argument order #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memset(dest: *mut u8, n: usize, c: i32) { memset(dest, c, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memset4(dest: *mut u8, n: usize, c: i32) { memset(dest, c, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memset8(dest: *mut u8, n: usize, c: i32) { memset(dest, c, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memclr(dest: *mut u8, n: usize) { memset(dest, 0, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memclr4(dest: *mut u8, n: usize) { memset(dest, 0, n); } #[cfg_attr(not(test), no_mangle)] pub unsafe extern "aapcs" fn __aeabi_memclr8(dest: *mut u8, n: usize) { memset(dest, 0, n); } #[cfg(test)] mod tests { use quickcheck::TestResult; use qc::{U32, U64}; quickcheck!{ fn uldivmod(n: U64, d: U64) -> TestResult { let (n, d) = (n.0, d.0); if d == 0 { TestResult::discard() } else { let q: u64; let r: u64; unsafe { // The inline asm is a bit tricky here, LLVM will allocate // both r0 and r1 when we specify a 64-bit value for {r0}. asm!("bl __aeabi_uldivmod" : "={r0}" (q), "={r2}" (r) : "{r0}" (n), "{r2}" (d) : "r12", "lr", "flags"); } TestResult::from_bool(q == n / d && r == n % d) } } fn uidivmod(n: U32, d: U32) -> TestResult { let (n, d) = (n.0, d.0); if d == 0 { TestResult::discard() } else { let q: u32; let r: u32; unsafe { asm!("bl __aeabi_uidivmod" : "={r0}" (q), "={r1}" (r) : "{r0}" (n), "{r1}" (d) : "r2", "r3", "r12", "lr", "flags"); } TestResult::from_bool(q == n / d && r == n % d) } } fn ldivmod(n: U64, d: U64) -> TestResult { let (n, d) = (n.0 as i64, d.0 as i64); if d == 0 { TestResult::discard() } else { let q: i64; let r: i64; unsafe { // The inline asm is a bit tricky here, LLVM will allocate // both r0 and r1 when we specify a 64-bit value for {r0}. asm!("bl __aeabi_ldivmod" : "={r0}" (q), "={r2}" (r) : "{r0}" (n), "{r2}" (d) : "r12", "lr", "flags"); } TestResult::from_bool(q == n / d && r == n % d) } } fn idivmod(n: U32, d: U32) -> TestResult { let (n, d) = (n.0 as i32, d.0 as i32); if d == 0 || (n == i32::min_value() && d == -1) { TestResult::discard() } else { let q: i32; let r: i32; unsafe { asm!("bl __aeabi_idivmod" : "={r0}" (q), "={r1}" (r) : "{r0}" (n), "{r1}" (d) : "r2", "r3", "r12", "lr", "flags"); } TestResult::from_bool(q == n / d && r == n % d) } } } }