use std::env; fn main() { println!("cargo:rerun-if-changed=build.rs"); let target = env::var("TARGET").unwrap(); // Emscripten's runtime includes all the builtins if target.contains("emscripten") { return; } // OpenBSD provides compiler_rt by default, use it instead of rebuilding it from source if target.contains("openbsd") { println!("cargo:rustc-link-search=native=/usr/lib"); println!("cargo:rustc-link-lib=compiler_rt"); return; } // Forcibly enable memory intrinsics on wasm32 & SGX as we don't have a libc to // provide them. if target.contains("wasm32") || target.contains("sgx") { println!("cargo:rustc-cfg=feature=\"mem\""); } // NOTE we are going to assume that llvm-target, what determines our codegen option, matches the // target triple. This is usually correct for our built-in targets but can break in presence of // custom targets, which can have arbitrary names. let llvm_target = target.split('-').collect::>(); // Build missing intrinsics from compiler-rt C source code. If we're // mangling names though we assume that we're also in test mode so we don't // build anything and we rely on the upstream implementation of compiler-rt // functions if !cfg!(feature = "mangled-names") && cfg!(feature = "c") { // no C compiler for wasm if !target.contains("wasm32") { #[cfg(feature = "c")] c::compile(&llvm_target); println!("cargo:rustc-cfg=use_c"); } } // To compile intrinsics.rs for thumb targets, where there is no libc if llvm_target[0].starts_with("thumb") { println!("cargo:rustc-cfg=thumb") } // compiler-rt `cfg`s away some intrinsics for thumbv6m because that target doesn't have full // THUMBv2 support. We have to cfg our code accordingly. if llvm_target[0] == "thumbv6m" { println!("cargo:rustc-cfg=thumbv6m") } // Only emit the ARM Linux atomic emulation on pre-ARMv6 architectures. if llvm_target[0] == "armv4t" || llvm_target[0] == "armv5te" { println!("cargo:rustc-cfg=kernel_user_helpers") } } #[cfg(feature = "c")] mod c { extern crate cc; use std::collections::BTreeMap; use std::env; use std::path::Path; struct Sources { // SYMBOL -> PATH TO SOURCE map: BTreeMap<&'static str, &'static str>, } impl Sources { fn new() -> Sources { Sources { map: BTreeMap::new() } } fn extend(&mut self, sources: &[&'static str]) { // NOTE Some intrinsics have both a generic implementation (e.g. // `floatdidf.c`) and an arch optimized implementation // (`x86_64/floatdidf.c`). In those cases, we keep the arch optimized // implementation and discard the generic implementation. If we don't // and keep both implementations, the linker will yell at us about // duplicate symbols! for &src in sources { let symbol = Path::new(src).file_stem().unwrap().to_str().unwrap(); if src.contains("/") { // Arch-optimized implementation (preferred) self.map.insert(symbol, src); } else { // Generic implementation if !self.map.contains_key(symbol) { self.map.insert(symbol, src); } } } } fn remove(&mut self, symbols: &[&str]) { for symbol in symbols { self.map.remove(*symbol).unwrap(); } } } /// Compile intrinsics from the compiler-rt C source code pub fn compile(llvm_target: &[&str]) { let target_arch = env::var("CARGO_CFG_TARGET_ARCH").unwrap(); let target_env = env::var("CARGO_CFG_TARGET_ENV").unwrap(); let target_os = env::var("CARGO_CFG_TARGET_OS").unwrap(); let target_vendor = env::var("CARGO_CFG_TARGET_VENDOR").unwrap(); let cfg = &mut cc::Build::new(); cfg.warnings(false); if target_env == "msvc" { // Don't pull in extra libraries on MSVC cfg.flag("/Zl"); // Emulate C99 and C++11's __func__ for MSVC prior to 2013 CTP cfg.define("__func__", Some("__FUNCTION__")); } else { // Turn off various features of gcc and such, mostly copying // compiler-rt's build system already cfg.flag("-fno-builtin"); cfg.flag("-fvisibility=hidden"); cfg.flag("-ffreestanding"); // Avoid the following warning appearing once **per file**: // clang: warning: optimization flag '-fomit-frame-pointer' is not supported for target 'armv7' [-Wignored-optimization-argument] // // Note that compiler-rt's build system also checks // // `check_cxx_compiler_flag(-fomit-frame-pointer COMPILER_RT_HAS_FOMIT_FRAME_POINTER_FLAG)` // // in https://github.com/rust-lang/compiler-rt/blob/c8fbcb3/cmake/config-ix.cmake#L19. cfg.flag_if_supported("-fomit-frame-pointer"); cfg.define("VISIBILITY_HIDDEN", None); } let mut sources = Sources::new(); sources.extend( &[ "absvdi2.c", "absvsi2.c", "addvdi3.c", "addvsi3.c", "apple_versioning.c", "clzdi2.c", "clzsi2.c", "cmpdi2.c", "ctzdi2.c", "ctzsi2.c", "divdc3.c", "divsc3.c", "divxc3.c", "extendhfsf2.c", "int_util.c", "muldc3.c", "mulsc3.c", "mulvdi3.c", "mulvsi3.c", "mulxc3.c", "negdf2.c", "negdi2.c", "negsf2.c", "negvdi2.c", "negvsi2.c", "paritydi2.c", "paritysi2.c", "popcountdi2.c", "popcountsi2.c", "powixf2.c", "subvdi3.c", "subvsi3.c", "truncdfhf2.c", "truncdfsf2.c", "truncsfhf2.c", "ucmpdi2.c", ], ); // When compiling in rustbuild (the rust-lang/rust repo) this library // also needs to satisfy intrinsics that jemalloc or C in general may // need, so include a few more that aren't typically needed by // LLVM/Rust. if cfg!(feature = "rustbuild") { sources.extend(&[ "ffsdi2.c", ]); } // On iOS and 32-bit OSX these are all just empty intrinsics, no need to // include them. if target_os != "ios" && (target_vendor != "apple" || target_arch != "x86") { sources.extend( &[ "absvti2.c", "addvti3.c", "clzti2.c", "cmpti2.c", "ctzti2.c", "ffsti2.c", "mulvti3.c", "negti2.c", "negvti2.c", "parityti2.c", "popcountti2.c", "subvti3.c", "ucmpti2.c", ], ); } if target_vendor == "apple" { sources.extend( &[ "atomic_flag_clear.c", "atomic_flag_clear_explicit.c", "atomic_flag_test_and_set.c", "atomic_flag_test_and_set_explicit.c", "atomic_signal_fence.c", "atomic_thread_fence.c", ], ); } if target_env == "msvc" { if target_arch == "x86_64" { sources.extend( &[ "x86_64/floatdisf.c", "x86_64/floatdixf.c", ], ); } } else { // None of these seem to be used on x86_64 windows, and they've all // got the wrong ABI anyway, so we want to avoid them. if target_os != "windows" { if target_arch == "x86_64" { sources.extend( &[ "x86_64/floatdisf.c", "x86_64/floatdixf.c", "x86_64/floatundidf.S", "x86_64/floatundisf.S", "x86_64/floatundixf.S", ], ); } } if target_arch == "x86" { sources.extend( &[ "i386/ashldi3.S", "i386/ashrdi3.S", "i386/divdi3.S", "i386/floatdidf.S", "i386/floatdisf.S", "i386/floatdixf.S", "i386/floatundidf.S", "i386/floatundisf.S", "i386/floatundixf.S", "i386/lshrdi3.S", "i386/moddi3.S", "i386/muldi3.S", "i386/udivdi3.S", "i386/umoddi3.S", ], ); } } if target_arch == "arm" && target_os != "ios" && target_env != "msvc" { sources.extend( &[ "arm/aeabi_div0.c", "arm/aeabi_drsub.c", "arm/aeabi_frsub.c", "arm/bswapdi2.S", "arm/bswapsi2.S", "arm/clzdi2.S", "arm/clzsi2.S", "arm/divmodsi4.S", "arm/modsi3.S", "arm/switch16.S", "arm/switch32.S", "arm/switch8.S", "arm/switchu8.S", "arm/sync_synchronize.S", "arm/udivmodsi4.S", "arm/umodsi3.S", // Exclude these two files for now even though we haven't // translated their implementation into Rust yet (#173). // They appear... buggy? The `udivsi3` implementation was // the one that seemed buggy, but the `divsi3` file // references a symbol from `udivsi3` so we compile them // both with the Rust versions. // // Note that if these are added back they should be removed // from thumbv6m below. // // "arm/divsi3.S", // "arm/udivsi3.S", ], ); // First of all aeabi_cdcmp and aeabi_cfcmp are never called by LLVM. // Second are little-endian only, so build fail on big-endian targets. // Temporally workaround: exclude these files for big-endian targets. if !llvm_target[0].starts_with("thumbeb") && !llvm_target[0].starts_with("armeb") { sources.extend( &[ "arm/aeabi_cdcmp.S", "arm/aeabi_cdcmpeq_check_nan.c", "arm/aeabi_cfcmp.S", "arm/aeabi_cfcmpeq_check_nan.c", ], ); } } if llvm_target[0] == "armv7" { sources.extend( &[ "arm/sync_fetch_and_add_4.S", "arm/sync_fetch_and_add_8.S", "arm/sync_fetch_and_and_4.S", "arm/sync_fetch_and_and_8.S", "arm/sync_fetch_and_max_4.S", "arm/sync_fetch_and_max_8.S", "arm/sync_fetch_and_min_4.S", "arm/sync_fetch_and_min_8.S", "arm/sync_fetch_and_nand_4.S", "arm/sync_fetch_and_nand_8.S", "arm/sync_fetch_and_or_4.S", "arm/sync_fetch_and_or_8.S", "arm/sync_fetch_and_sub_4.S", "arm/sync_fetch_and_sub_8.S", "arm/sync_fetch_and_umax_4.S", "arm/sync_fetch_and_umax_8.S", "arm/sync_fetch_and_umin_4.S", "arm/sync_fetch_and_umin_8.S", "arm/sync_fetch_and_xor_4.S", "arm/sync_fetch_and_xor_8.S", ], ); } if llvm_target.last().unwrap().ends_with("eabihf") { if !llvm_target[0].starts_with("thumbv7em") { sources.extend( &[ "arm/fixdfsivfp.S", "arm/fixsfsivfp.S", "arm/fixunsdfsivfp.S", "arm/fixunssfsivfp.S", "arm/floatsidfvfp.S", "arm/floatsisfvfp.S", "arm/floatunssidfvfp.S", "arm/floatunssisfvfp.S", "arm/restore_vfp_d8_d15_regs.S", "arm/save_vfp_d8_d15_regs.S", ], ); } sources.extend(&["arm/negdf2vfp.S", "arm/negsf2vfp.S"]); } if target_arch == "aarch64" { sources.extend( &[ "comparetf2.c", "extenddftf2.c", "extendsftf2.c", "fixtfdi.c", "fixtfsi.c", "fixtfti.c", "fixunstfdi.c", "fixunstfsi.c", "fixunstfti.c", "floatditf.c", "floatsitf.c", "floatunditf.c", "floatunsitf.c", "trunctfdf2.c", "trunctfsf2.c", ], ); if target_os != "windows" { sources.extend(&["multc3.c"]); } } // Remove the assembly implementations that won't compile for the target if llvm_target[0] == "thumbv6m" { sources.remove( &[ "clzdi2", "clzsi2", "divmodsi4", "modsi3", "switch16", "switch32", "switch8", "switchu8", "udivmodsi4", "umodsi3", ], ); // But use some generic implementations where possible sources.extend(&["clzdi2.c", "clzsi2.c"]) } if llvm_target[0] == "thumbv7m" || llvm_target[0] == "thumbv7em" { sources.remove(&["aeabi_cdcmp", "aeabi_cfcmp"]); } // When compiling in rustbuild (the rust-lang/rust repo) this build // script runs from a directory other than this root directory. let root = if cfg!(feature = "rustbuild") { Path::new("../../libcompiler_builtins") } else { Path::new(".") }; let src_dir = root.join("compiler-rt/lib/builtins"); for src in sources.map.values() { let src = src_dir.join(src); cfg.file(&src); println!("cargo:rerun-if-changed={}", src.display()); } cfg.compile("libcompiler-rt.a"); } }