Here using `"C"` the compiler will use `"aapcs"` or `"aapcs-vfp"`
depending on target configuration.
Of course this translates in a call to `__aeabi_fdiv` / `__aeabi_fmul`
on non-HF targets.
On `eabi` targets with +vfpv2/vfpv3 LLVM generate:
vmov s0, r1
vmov s2, r0
vdiv.f32 s0, s2, s0
vmov r0, s0
bx lr
On `eabihf` targets with +vfpv3-d16/d32/f32 +fp-only-sp LLVM generate:
vdiv.f32 s0, s0, s1
bx lr
That's exactly what We need for [div/mul][s/d]f3vfp.S
E.g. take a look at the assembly output for:
pub fn comparesf2(a: f32, b: f32) -> bool { a > b }
pub fn comparedf2(a: f64, b: f64) -> bool { a > b }
which will include calls to __gtsf2 and __gtdf2.
This commit moves over most of the testing infrastructure to in-tree docker
images that are all dispatched to from Travis (no other test configuration).
This allows versioning modifications to the test infrastructure as well as the
code itself. Additionally separate docker images allows for easy modification of
one without worrying about tampering of others as well as easy addition of new
targets by simply adding a new `Dockerfile`.
Additionally this commit bundles the master version of the `compiler-rt` source
repository from `llvm-mirror/compiler-rt` to test against. The compiler-rt
library itself is compiled as a `cdylib` which is then dynamically located at
runtime and we look for symbols in. There's a few hoops here, but they currently
get the job done.
All tests now execute against both gcc_s and compiler-rt, and this
testing strategy is now all hidden behind a macro as well (refactoring
all existing tests along the way).