Implement soft float add builtins

This commit is contained in:
Matt Ickstadt 2016-08-17 15:51:37 -05:00
parent 6f0d50ebea
commit ef16de3d37
4 changed files with 394 additions and 2 deletions

View File

@ -26,8 +26,8 @@ See [rust-lang/rust#35437][0].
## Progress
- [ ] adddf3.c
- [ ] addsf3.c
- [x] adddf3.c
- [x] addsf3.c
- [ ] arm/adddf3vfp.S
- [ ] arm/addsf3vfp.S
- [ ] arm/aeabi_dcmp.S

326
src/float/add.rs Normal file
View File

@ -0,0 +1,326 @@
use core::num::Wrapping;
use float::Float;
macro_rules! add {
($intrinsic:ident: $ty:ty) => {
/// Returns `a + b`
#[allow(unused_parens)]
#[cfg_attr(not(test), no_mangle)]
pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty {
let one = Wrapping(1 as <$ty as Float>::Int);
let zero = Wrapping(0 as <$ty as Float>::Int);
let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
let exponent_bits = bits - significand_bits - one;
let max_exponent = (one << exponent_bits.0 as usize) - one;
let implicit_bit = one << significand_bits.0 as usize;
let significand_mask = implicit_bit - one;
let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
let abs_mask = sign_bit - one;
let exponent_mask = abs_mask ^ significand_mask;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
let mut a_rep = Wrapping(a.repr());
let mut b_rep = Wrapping(b.repr());
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// Detect if a or b is zero, infinity, or NaN.
if a_abs - one >= inf_rep - one ||
b_abs - one >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return (<$ty as Float>::from_repr((a_abs | quiet_bit).0));
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return (<$ty as Float>::from_repr((b_abs | quiet_bit).0));
}
if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit.0 {
return (<$ty as Float>::from_repr(qnan_rep.0));
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}
// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
return b;
}
// zero + anything = anything
if a_abs.0 == 0 {
// but we need to get the sign right for zero + zero
if b_abs.0 == 0 {
return (<$ty as Float>::from_repr(a.repr() & b.repr()));
} else {
return b;
}
}
// anything + zero = anything
if b_abs.0 == 0 {
return a;
}
}
// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
let temp = a_rep;
a_rep = b_rep;
b_rep = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
// normalize any denormals, and adjust the exponent accordingly.
if a_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(a_significand.0);
a_exponent = Wrapping(exponent);
a_significand = Wrapping(significand);
}
if b_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(b_significand.0);
b_exponent = Wrapping(exponent);
b_significand = Wrapping(significand);
}
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
if align.0 != 0 {
if align < bits {
let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
}
if subtraction {
a_significand -= b_significand;
// If a == -b, return +zero.
if a_significand.0 == 0 {
return (<$ty as Float>::from_repr(0));
}
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift = a_significand.0.leading_zeros() as i32
- (implicit_bit << 3).0.leading_zeros() as i32;
a_significand <<= shift as usize;
a_exponent -= Wrapping(shift);
}
} else /* addition */ {
a_significand += b_significand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (a_significand & implicit_bit << 4).0 != 0 {
let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> 1 | Wrapping(sticky);
a_exponent += Wrapping(1);
}
}
// If we have overflowed the type, return +/- infinity:
if a_exponent >= Wrapping(max_exponent.0 as i32) {
return (<$ty>::from_repr((inf_rep | result_sign).0));
}
if a_exponent.0 <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
a_exponent = Wrapping(0);
}
// Low three bits are round, guard, and sticky.
let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;
// Insert the exponent and sign.
result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
result |= result_sign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 { result += one; }
if round_guard_sticky == 0x4 { result += result & one; }
return (<$ty>::from_repr(result.0));
}
}
}
add!(__addsf3: f32);
add!(__adddf3: f64);
// FIXME: Implement these using aliases
#[cfg(target_arch = "arm")]
#[cfg_attr(not(test), no_mangle)]
pub extern fn __aeabi_dadd(a: f64, b: f64) -> f64 {
__adddf3(a, b)
}
#[cfg(target_arch = "arm")]
#[cfg_attr(not(test), no_mangle)]
pub extern fn __aeabi_fadd(a: f32, b: f32) -> f32 {
__addsf3(a, b)
}
#[cfg(test)]
mod tests {
use core::{f32, f64};
use qc::{U32, U64};
use float::Float;
// NOTE The tests below have special handing for NaN values.
// Because NaN != NaN, the floating-point representations must be used
// Because there are many diffferent values of NaN, and the implementation
// doesn't care about calculating the 'correct' one, if both values are NaN
// the values are considered equivalent.
// TODO: Add F32/F64 to qc so that they print the right values (at the very least)
quickcheck! {
fn addsf3(a: U32, b: U32) -> bool {
let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0));
let x = super::__addsf3(a, b);
let y = a + b;
if !(x.is_nan() && y.is_nan()) {
x.repr() == y.repr()
} else {
true
}
}
fn adddf3(a: U64, b: U64) -> bool {
let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0));
let x = super::__adddf3(a, b);
let y = a + b;
if !(x.is_nan() && y.is_nan()) {
x.repr() == y.repr()
} else {
true
}
}
}
// More tests for special float values
#[test]
fn test_float_tiny_plus_tiny() {
let tiny = f32::from_repr(1);
let r = super::__addsf3(tiny, tiny);
assert_eq!(r, tiny + tiny);
}
#[test]
fn test_double_tiny_plus_tiny() {
let tiny = f64::from_repr(1);
let r = super::__adddf3(tiny, tiny);
assert_eq!(r, tiny + tiny);
}
#[test]
fn test_float_small_plus_small() {
let a = f32::from_repr(327);
let b = f32::from_repr(256);
let r = super::__addsf3(a, b);
assert_eq!(r, a + b);
}
#[test]
fn test_double_small_plus_small() {
let a = f64::from_repr(327);
let b = f64::from_repr(256);
let r = super::__adddf3(a, b);
assert_eq!(r, a + b);
}
#[test]
fn test_float_one_plus_one() {
let r = super::__addsf3(1f32, 1f32);
assert_eq!(r, 1f32 + 1f32);
}
#[test]
fn test_double_one_plus_one() {
let r = super::__adddf3(1f64, 1f64);
assert_eq!(r, 1f64 + 1f64);
}
#[test]
fn test_float_different_nan() {
let a = f32::from_repr(1);
let b = f32::from_repr(0b11111111100100010001001010101010);
let x = super::__addsf3(a, b);
let y = a + b;
if !(x.is_nan() && y.is_nan()) {
assert_eq!(x.repr(), y.repr());
}
}
#[test]
fn test_double_different_nan() {
let a = f64::from_repr(1);
let b = f64::from_repr(
0b1111111111110010001000100101010101001000101010000110100011101011);
let x = super::__adddf3(a, b);
let y = a + b;
if !(x.is_nan() && y.is_nan()) {
assert_eq!(x.repr(), y.repr());
}
}
#[test]
fn test_float_nan() {
let r = super::__addsf3(f32::NAN, 1.23);
assert_eq!(r.repr(), f32::NAN.repr());
}
#[test]
fn test_double_nan() {
let r = super::__adddf3(f64::NAN, 1.23);
assert_eq!(r.repr(), f64::NAN.repr());
}
#[test]
fn test_float_inf() {
let r = super::__addsf3(f32::INFINITY, -123.4);
assert_eq!(r, f32::INFINITY);
}
#[test]
fn test_double_inf() {
let r = super::__adddf3(f64::INFINITY, -123.4);
assert_eq!(r, f64::INFINITY);
}
}

65
src/float/mod.rs Normal file
View File

@ -0,0 +1,65 @@
use core::mem;
pub mod add;
/// Trait for some basic operations on floats
pub trait Float: Sized {
/// A uint of the same with as the float
type Int;
/// Returns the bitwidth of the float type
fn bits() -> u32;
/// Returns the bitwidth of the significand
fn significand_bits() -> u32;
/// Returns `self` transmuted to `Self::Int`
fn repr(self) -> Self::Int;
/// Returns a `Self::Int` transmuted back to `Self`
fn from_repr(a: Self::Int) -> Self;
/// Returns (normalized exponent, normalized significand)
fn normalize(significand: Self::Int) -> (i32, Self::Int);
}
impl Float for f32 {
type Int = u32;
fn bits() -> u32 {
32
}
fn significand_bits() -> u32 {
23
}
fn repr(self) -> Self::Int {
unsafe { mem::transmute(self) }
}
fn from_repr(a: Self::Int) -> Self {
unsafe { mem::transmute(a) }
}
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
let shift = significand.leading_zeros()
.wrapping_sub((1u32 << Self::significand_bits()).leading_zeros());
(1i32.wrapping_sub(shift as i32), significand << shift as Self::Int)
}
}
impl Float for f64 {
type Int = u64;
fn bits() -> u32 {
64
}
fn significand_bits() -> u32 {
52
}
fn repr(self) -> Self::Int {
unsafe { mem::transmute(self) }
}
fn from_repr(a: Self::Int) -> Self {
unsafe { mem::transmute(a) }
}
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
let shift = significand.leading_zeros()
.wrapping_sub((1u64 << Self::significand_bits()).leading_zeros());
(1i32.wrapping_sub(shift as i32), significand << shift as Self::Int)
}
}

View File

@ -21,6 +21,7 @@ extern crate core;
extern crate rlibc;
pub mod int;
pub mod float;
#[cfg(target_arch = "arm")]
pub mod arm;