diff --git a/src/float/add.rs b/src/float/add.rs index 5024a72..1b1ac3f 100644 --- a/src/float/add.rs +++ b/src/float/add.rs @@ -3,192 +3,190 @@ use core::num::Wrapping; use float::Float; +/// Returns `a + b` macro_rules! add { - ($abi:tt, $intrinsic:ident: $ty:ty) => { - /// Returns `a + b` - #[allow(unused_parens)] - #[cfg_attr(not(test), no_mangle)] - pub extern $abi fn $intrinsic(a: $ty, b: $ty) -> $ty { - let one = Wrapping(1 as <$ty as Float>::Int); - let zero = Wrapping(0 as <$ty as Float>::Int); + ($a:expr, $b:expr, $ty:ty) => ({ + let a = $a; + let b = $b; + let one = Wrapping(1 as <$ty as Float>::Int); + let zero = Wrapping(0 as <$ty as Float>::Int); - let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int); - let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int); - let exponent_bits = bits - significand_bits - one; - let max_exponent = (one << exponent_bits.0 as usize) - one; + let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int); + let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int); + let exponent_bits = bits - significand_bits - one; + let max_exponent = (one << exponent_bits.0 as usize) - one; - let implicit_bit = one << significand_bits.0 as usize; - let significand_mask = implicit_bit - one; - let sign_bit = one << (significand_bits + exponent_bits).0 as usize; - let abs_mask = sign_bit - one; - let exponent_mask = abs_mask ^ significand_mask; - let inf_rep = exponent_mask; - let quiet_bit = implicit_bit >> 1; - let qnan_rep = exponent_mask | quiet_bit; + let implicit_bit = one << significand_bits.0 as usize; + let significand_mask = implicit_bit - one; + let sign_bit = one << (significand_bits + exponent_bits).0 as usize; + let abs_mask = sign_bit - one; + let exponent_mask = abs_mask ^ significand_mask; + let inf_rep = exponent_mask; + let quiet_bit = implicit_bit >> 1; + let qnan_rep = exponent_mask | quiet_bit; - let mut a_rep = Wrapping(a.repr()); - let mut b_rep = Wrapping(b.repr()); - let a_abs = a_rep & abs_mask; - let b_abs = b_rep & abs_mask; + let mut a_rep = Wrapping(a.repr()); + let mut b_rep = Wrapping(b.repr()); + let a_abs = a_rep & abs_mask; + let b_abs = b_rep & abs_mask; - // Detect if a or b is zero, infinity, or NaN. - if a_abs - one >= inf_rep - one || - b_abs - one >= inf_rep - one { - // NaN + anything = qNaN - if a_abs > inf_rep { - return (<$ty as Float>::from_repr((a_abs | quiet_bit).0)); - } - // anything + NaN = qNaN - if b_abs > inf_rep { - return (<$ty as Float>::from_repr((b_abs | quiet_bit).0)); + // Detect if a or b is zero, infinity, or NaN. + if a_abs - one >= inf_rep - one || + b_abs - one >= inf_rep - one { + // NaN + anything = qNaN + if a_abs > inf_rep { + return <$ty as Float>::from_repr((a_abs | quiet_bit).0); + } + // anything + NaN = qNaN + if b_abs > inf_rep { + return <$ty as Float>::from_repr((b_abs | quiet_bit).0); + } + + if a_abs == inf_rep { + // +/-infinity + -/+infinity = qNaN + if (a.repr() ^ b.repr()) == sign_bit.0 { + return <$ty as Float>::from_repr(qnan_rep.0); + } else { + // +/-infinity + anything remaining = +/- infinity + return a; } + } - if a_abs == inf_rep { - // +/-infinity + -/+infinity = qNaN - if (a.repr() ^ b.repr()) == sign_bit.0 { - return (<$ty as Float>::from_repr(qnan_rep.0)); - } else { - // +/-infinity + anything remaining = +/- infinity - return a; - } - } + // anything remaining + +/-infinity = +/-infinity + if b_abs == inf_rep { + return b; + } - // anything remaining + +/-infinity = +/-infinity - if b_abs == inf_rep { + // zero + anything = anything + if a_abs.0 == 0 { + // but we need to get the sign right for zero + zero + if b_abs.0 == 0 { + return <$ty as Float>::from_repr(a.repr() & b.repr()); + } else { return b; } - - // zero + anything = anything - if a_abs.0 == 0 { - // but we need to get the sign right for zero + zero - if b_abs.0 == 0 { - return (<$ty as Float>::from_repr(a.repr() & b.repr())); - } else { - return b; - } - } - - // anything + zero = anything - if b_abs.0 == 0 { - return a; - } } - // Swap a and b if necessary so that a has the larger absolute value. - if b_abs > a_abs { - mem::swap(&mut a_rep, &mut b_rep); + // anything + zero = anything + if b_abs.0 == 0 { + return a; } - - // Extract the exponent and significand from the (possibly swapped) a and b. - let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32); - let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32); - let mut a_significand = a_rep & significand_mask; - let mut b_significand = b_rep & significand_mask; - - // normalize any denormals, and adjust the exponent accordingly. - if a_exponent.0 == 0 { - let (exponent, significand) = <$ty>::normalize(a_significand.0); - a_exponent = Wrapping(exponent); - a_significand = Wrapping(significand); - } - if b_exponent.0 == 0 { - let (exponent, significand) = <$ty>::normalize(b_significand.0); - b_exponent = Wrapping(exponent); - b_significand = Wrapping(significand); - } - - // The sign of the result is the sign of the larger operand, a. If they - // have opposite signs, we are performing a subtraction; otherwise addition. - let result_sign = a_rep & sign_bit; - let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero; - - // Shift the significands to give us round, guard and sticky, and or in the - // implicit significand bit. (If we fell through from the denormal path it - // was already set by normalize(), but setting it twice won't hurt - // anything.) - a_significand = (a_significand | implicit_bit) << 3; - b_significand = (b_significand | implicit_bit) << 3; - - // Shift the significand of b by the difference in exponents, with a sticky - // bottom bit to get rounding correct. - let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int); - if align.0 != 0 { - if align < bits { - let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int; - b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky); - } else { - b_significand = one; // sticky; b is known to be non-zero. - } - } - if subtraction { - a_significand -= b_significand; - // If a == -b, return +zero. - if a_significand.0 == 0 { - return (<$ty as Float>::from_repr(0)); - } - - // If partial cancellation occured, we need to left-shift the result - // and adjust the exponent: - if a_significand < implicit_bit << 3 { - let shift = a_significand.0.leading_zeros() as i32 - - (implicit_bit << 3).0.leading_zeros() as i32; - a_significand <<= shift as usize; - a_exponent -= Wrapping(shift); - } - } else /* addition */ { - a_significand += b_significand; - - // If the addition carried up, we need to right-shift the result and - // adjust the exponent: - if (a_significand & implicit_bit << 4).0 != 0 { - let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int; - a_significand = a_significand >> 1 | Wrapping(sticky); - a_exponent += Wrapping(1); - } - } - - // If we have overflowed the type, return +/- infinity: - if a_exponent >= Wrapping(max_exponent.0 as i32) { - return (<$ty>::from_repr((inf_rep | result_sign).0)); - } - - if a_exponent.0 <= 0 { - // Result is denormal before rounding; the exponent is zero and we - // need to shift the significand. - let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int); - let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int; - a_significand = a_significand >> shift.0 as usize | Wrapping(sticky); - a_exponent = Wrapping(0); - } - - // Low three bits are round, guard, and sticky. - let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32; - - // Shift the significand into place, and mask off the implicit bit. - let mut result = a_significand >> 3 & significand_mask; - - // Insert the exponent and sign. - result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize; - result |= result_sign; - - // Final rounding. The result may overflow to infinity, but that is the - // correct result in that case. - if round_guard_sticky > 0x4 { result += one; } - if round_guard_sticky == 0x4 { result += result & one; } - - <$ty>::from_repr(result.0) } - } + + // Swap a and b if necessary so that a has the larger absolute value. + if b_abs > a_abs { + mem::swap(&mut a_rep, &mut b_rep); + } + + // Extract the exponent and significand from the (possibly swapped) a and b. + let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32); + let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32); + let mut a_significand = a_rep & significand_mask; + let mut b_significand = b_rep & significand_mask; + + // normalize any denormals, and adjust the exponent accordingly. + if a_exponent.0 == 0 { + let (exponent, significand) = <$ty>::normalize(a_significand.0); + a_exponent = Wrapping(exponent); + a_significand = Wrapping(significand); + } + if b_exponent.0 == 0 { + let (exponent, significand) = <$ty>::normalize(b_significand.0); + b_exponent = Wrapping(exponent); + b_significand = Wrapping(significand); + } + + // The sign of the result is the sign of the larger operand, a. If they + // have opposite signs, we are performing a subtraction; otherwise addition. + let result_sign = a_rep & sign_bit; + let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero; + + // Shift the significands to give us round, guard and sticky, and or in the + // implicit significand bit. (If we fell through from the denormal path it + // was already set by normalize(), but setting it twice won't hurt + // anything.) + a_significand = (a_significand | implicit_bit) << 3; + b_significand = (b_significand | implicit_bit) << 3; + + // Shift the significand of b by the difference in exponents, with a sticky + // bottom bit to get rounding correct. + let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int); + if align.0 != 0 { + if align < bits { + let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int; + b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky); + } else { + b_significand = one; // sticky; b is known to be non-zero. + } + } + if subtraction { + a_significand -= b_significand; + // If a == -b, return +zero. + if a_significand.0 == 0 { + return <$ty as Float>::from_repr(0); + } + + // If partial cancellation occured, we need to left-shift the result + // and adjust the exponent: + if a_significand < implicit_bit << 3 { + let shift = a_significand.0.leading_zeros() as i32 + - (implicit_bit << 3).0.leading_zeros() as i32; + a_significand <<= shift as usize; + a_exponent -= Wrapping(shift); + } + } else /* addition */ { + a_significand += b_significand; + + // If the addition carried up, we need to right-shift the result and + // adjust the exponent: + if (a_significand & implicit_bit << 4).0 != 0 { + let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int; + a_significand = a_significand >> 1 | Wrapping(sticky); + a_exponent += Wrapping(1); + } + } + + // If we have overflowed the type, return +/- infinity: + if a_exponent >= Wrapping(max_exponent.0 as i32) { + return <$ty>::from_repr((inf_rep | result_sign).0); + } + + if a_exponent.0 <= 0 { + // Result is denormal before rounding; the exponent is zero and we + // need to shift the significand. + let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int); + let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int; + a_significand = a_significand >> shift.0 as usize | Wrapping(sticky); + a_exponent = Wrapping(0); + } + + // Low three bits are round, guard, and sticky. + let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32; + + // Shift the significand into place, and mask off the implicit bit. + let mut result = a_significand >> 3 & significand_mask; + + // Insert the exponent and sign. + result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize; + result |= result_sign; + + // Final rounding. The result may overflow to infinity, but that is the + // correct result in that case. + if round_guard_sticky > 0x4 { result += one; } + if round_guard_sticky == 0x4 { result += result & one; } + + <$ty>::from_repr(result.0) + }) } -#[cfg(target_arch = "arm")] -add!("aapcs", __addsf3: f32); +intrinsics! { + #[aapcs_on_arm] + pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 { + add!(a, b, f32) + } -#[cfg(not(target_arch = "arm"))] -add!("C", __addsf3: f32); - -#[cfg(target_arch = "arm")] -add!("aapcs", __adddf3: f64); - -#[cfg(not(target_arch = "arm"))] -add!("C", __adddf3: f64); + #[aapcs_on_arm] + pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 { + add!(a, b, f64) + } +} diff --git a/src/float/conv.rs b/src/float/conv.rs index 8905f12..edf9ee6 100644 --- a/src/float/conv.rs +++ b/src/float/conv.rs @@ -2,12 +2,8 @@ use float::Float; use int::Int; macro_rules! int_to_float { - ($intrinsic:ident: $ity:ty, $fty:ty) => { - int_to_float!($intrinsic: $ity, $fty, "C"); - }; - ($intrinsic:ident: $ity:ty, $fty:ty, $abi:tt) => { - - pub extern $abi fn $intrinsic(i: $ity) -> $fty { + ($i:expr, $ity:ty, $fty:ty) => ({ + let i = $i; if i == 0 { return 0.0 } @@ -70,29 +66,54 @@ macro_rules! int_to_float { <$fty>::from_parts(s, (e + exponent_bias) as <$fty as Float>::Int, a as <$fty as Float>::Int) - } - } + }) } -macro_rules! int_to_float_unadj_on_win { - ($intrinsic:ident: $ity:ty, $fty:ty) => { - #[cfg(all(windows, target_pointer_width="64"))] - int_to_float!($intrinsic: $ity, $fty, "unadjusted"); - #[cfg(not(all(windows, target_pointer_width="64")))] - int_to_float!($intrinsic: $ity, $fty, "C"); - }; -} +intrinsics! { + pub extern "C" fn __floatsisf(i: i32) -> f32 { + int_to_float!(i, i32, f32) + } -int_to_float!(__floatsisf: i32, f32); -int_to_float!(__floatsidf: i32, f64); -int_to_float!(__floatdidf: i64, f64); -int_to_float_unadj_on_win!(__floattisf: i128, f32); -int_to_float_unadj_on_win!(__floattidf: i128, f64); -int_to_float!(__floatunsisf: u32, f32); -int_to_float!(__floatunsidf: u32, f64); -int_to_float!(__floatundidf: u64, f64); -int_to_float_unadj_on_win!(__floatuntisf: u128, f32); -int_to_float_unadj_on_win!(__floatuntidf: u128, f64); + pub extern "C" fn __floatsidf(i: i32) -> f64 { + int_to_float!(i, i32, f64) + } + + pub extern "C" fn __floatdidf(i: i64) -> f64 { + int_to_float!(i, i64, f64) + } + + #[unadjusted_on_win64] + pub extern "C" fn __floattisf(i: i128) -> f32 { + int_to_float!(i, i128, f32) + } + + #[unadjusted_on_win64] + pub extern "C" fn __floattidf(i: i128) -> f64 { + int_to_float!(i, i128, f64) + } + + pub extern "C" fn __floatunsisf(i: u32) -> f32 { + int_to_float!(i, u32, f32) + } + + pub extern "C" fn __floatunsidf(i: u32) -> f64 { + int_to_float!(i, u32, f64) + } + + pub extern "C" fn __floatundidf(i: u64) -> f64 { + int_to_float!(i, u64, f64) + } + + #[unadjusted_on_win64] + pub extern "C" fn __floatuntisf(i: u128) -> f32 { + int_to_float!(i, u128, f32) + } + + #[unadjusted_on_win64] + pub extern "C" fn __floatuntidf(i: u128) -> f64 { + int_to_float!(i, u128, f64) + } +} #[derive(PartialEq, Debug)] enum Sign { @@ -101,79 +122,106 @@ enum Sign { } macro_rules! float_to_int { - ($intrinsic:ident: $fty:ty, $ity:ty) => { - float_to_int!($intrinsic: $fty, $ity, "C"); - }; - ($intrinsic:ident: $fty:ty, $ity:ty, $abi:tt) => { - pub extern $abi fn $intrinsic(f: $fty) -> $ity { - let fixint_min = <$ity>::min_value(); - let fixint_max = <$ity>::max_value(); - let fixint_bits = <$ity>::bits() as usize; - let fixint_unsigned = fixint_min == 0; + ($f:expr, $fty:ty, $ity:ty) => ({ + let f = $f; + let fixint_min = <$ity>::min_value(); + let fixint_max = <$ity>::max_value(); + let fixint_bits = <$ity>::bits() as usize; + let fixint_unsigned = fixint_min == 0; - let sign_bit = <$fty>::sign_mask(); - let significand_bits = <$fty>::significand_bits() as usize; - let exponent_bias = <$fty>::exponent_bias() as usize; - //let exponent_max = <$fty>::exponent_max() as usize; + let sign_bit = <$fty>::sign_mask(); + let significand_bits = <$fty>::significand_bits() as usize; + let exponent_bias = <$fty>::exponent_bias() as usize; + //let exponent_max = <$fty>::exponent_max() as usize; - // Break a into sign, exponent, significand - let a_rep = <$fty>::repr(f); - let a_abs = a_rep & !sign_bit; + // Break a into sign, exponent, significand + let a_rep = <$fty>::repr(f); + let a_abs = a_rep & !sign_bit; - // this is used to work around -1 not being available for unsigned - let sign = if (a_rep & sign_bit) == 0 { Sign::Positive } else { Sign::Negative }; - let mut exponent = (a_abs >> significand_bits) as usize; - let significand = (a_abs & <$fty>::significand_mask()) | <$fty>::implicit_bit(); + // this is used to work around -1 not being available for unsigned + let sign = if (a_rep & sign_bit) == 0 { Sign::Positive } else { Sign::Negative }; + let mut exponent = (a_abs >> significand_bits) as usize; + let significand = (a_abs & <$fty>::significand_mask()) | <$fty>::implicit_bit(); - // if < 1 or unsigned & negative - if exponent < exponent_bias || - fixint_unsigned && sign == Sign::Negative { - return 0 - } - exponent -= exponent_bias; - - // If the value is infinity, saturate. - // If the value is too large for the integer type, 0. - if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) { - return if sign == Sign::Positive {fixint_max} else {fixint_min} - } - // If 0 <= exponent < significand_bits, right shift to get the result. - // Otherwise, shift left. - // (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned - let r = if exponent < significand_bits { - (significand >> (significand_bits - exponent)) as $ity - } else { - (significand as $ity) << (exponent - significand_bits) - }; - - if sign == Sign::Negative { - (!r).wrapping_add(1) - } else { - r - } + // if < 1 or unsigned & negative + if exponent < exponent_bias || + fixint_unsigned && sign == Sign::Negative { + return 0 } + exponent -= exponent_bias; + + // If the value is infinity, saturate. + // If the value is too large for the integer type, 0. + if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) { + return if sign == Sign::Positive {fixint_max} else {fixint_min} + } + // If 0 <= exponent < significand_bits, right shift to get the result. + // Otherwise, shift left. + // (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned + let r = if exponent < significand_bits { + (significand >> (significand_bits - exponent)) as $ity + } else { + (significand as $ity) << (exponent - significand_bits) + }; + + if sign == Sign::Negative { + (!r).wrapping_add(1) + } else { + r + } + }) +} + +intrinsics! { + pub extern "C" fn __fixsfsi(f: f32) -> i32 { + float_to_int!(f, f32, i32) + } + + pub extern "C" fn __fixsfdi(f: f32) -> i64 { + float_to_int!(f, f32, i64) + } + + #[unadjusted_on_win64] + pub extern "C" fn __fixsfti(f: f32) -> i128 { + float_to_int!(f, f32, i128) + } + + pub extern "C" fn __fixdfsi(f: f64) -> i32 { + float_to_int!(f, f64, i32) + } + + pub extern "C" fn __fixdfdi(f: f64) -> i64 { + float_to_int!(f, f64, i64) + } + + #[unadjusted_on_win64] + pub extern "C" fn __fixdfti(f: f64) -> i128 { + float_to_int!(f, f64, i128) + } + + pub extern "C" fn __fixunssfsi(f: f32) -> u32 { + float_to_int!(f, f32, u32) + } + + pub extern "C" fn __fixunssfdi(f: f32) -> u64 { + float_to_int!(f, f32, u64) + } + + #[unadjusted_on_win64] + pub extern "C" fn __fixunssfti(f: f32) -> u128 { + float_to_int!(f, f32, u128) + } + + pub extern "C" fn __fixunsdfsi(f: f64) -> u32 { + float_to_int!(f, f64, u32) + } + + pub extern "C" fn __fixunsdfdi(f: f64) -> u64 { + float_to_int!(f, f64, u64) + } + + #[unadjusted_on_win64] + pub extern "C" fn __fixunsdfti(f: f64) -> u128 { + float_to_int!(f, f64, u128) } } - -macro_rules! float_to_int_unadj_on_win { - ($intrinsic:ident: $fty:ty, $ity:ty) => { - #[cfg(all(windows, target_pointer_width="64"))] - float_to_int!($intrinsic: $fty, $ity, "unadjusted"); - #[cfg(not(all(windows, target_pointer_width="64")))] - float_to_int!($intrinsic: $fty, $ity, "C"); - }; -} - -float_to_int!(__fixsfsi: f32, i32); -float_to_int!(__fixsfdi: f32, i64); -float_to_int_unadj_on_win!(__fixsfti: f32, i128); -float_to_int!(__fixdfsi: f64, i32); -float_to_int!(__fixdfdi: f64, i64); -float_to_int_unadj_on_win!(__fixdfti: f64, i128); - -float_to_int!(__fixunssfsi: f32, u32); -float_to_int!(__fixunssfdi: f32, u64); -float_to_int_unadj_on_win!(__fixunssfti: f32, u128); -float_to_int!(__fixunsdfsi: f64, u32); -float_to_int!(__fixunsdfdi: f64, u64); -float_to_int_unadj_on_win!(__fixunsdfti: f64, u128); diff --git a/src/float/pow.rs b/src/float/pow.rs index 5e28d95..f5c5757 100644 --- a/src/float/pow.rs +++ b/src/float/pow.rs @@ -1,30 +1,34 @@ +/// Returns `a` raised to the power `b` macro_rules! pow { - ($intrinsic:ident: $fty:ty, $ity:ident) => { - /// Returns `a` raised to the power `b` - #[cfg_attr(not(test), no_mangle)] - pub extern "C" fn $intrinsic(a: $fty, b: $ity) -> $fty { - let (mut a, mut b) = (a, b); - let recip = b < 0; - let mut r: $fty = 1.0; - loop { - if (b & 1) != 0 { - r *= a; - } - b = sdiv!($ity, b, 2); - if b == 0 { - break; - } - a *= a; + ($a: expr, $b: expr) => ({ + let (mut a, mut b) = ($a, $b); + let recip = b < 0; + let mut r = 1.0; + loop { + if (b & 1) != 0 { + r *= a; } - - if recip { - 1.0 / r - } else { - r + b = b.checked_div(2).unwrap_or_else(|| ::abort()); + if b == 0 { + break; } + a *= a; } - } + + if recip { + 1.0 / r + } else { + r + } + }) } -pow!(__powisf2: f32, i32); -pow!(__powidf2: f64, i32); +intrinsics! { + pub extern "C" fn __powisf2(a: f32, b: i32) -> f32 { + pow!(a, b) + } + + pub extern "C" fn __powidf2(a: f64, b: i32) -> f64 { + pow!(a, b) + } +} diff --git a/src/float/sub.rs b/src/float/sub.rs index a4fd884..a82a943 100644 --- a/src/float/sub.rs +++ b/src/float/sub.rs @@ -1,20 +1,11 @@ use float::Float; -macro_rules! sub { - ($(#[$attr:meta])* - | $intrinsic:ident: $ty:ty) => { - /// Returns `a - b` - $(#[$attr])* - pub extern "C" fn $intrinsic(a: $ty, b: $ty) -> $ty { - a + <$ty>::from_repr(b.repr() ^ <$ty>::sign_mask()) - } +intrinsics! { + pub extern "C" fn __subsf3(a: f32, b: f32) -> f32 { + a + f32::from_repr(b.repr() ^ f32::sign_mask()) + } + + pub extern "C" fn __subdf3(a: f64, b: f64) -> f64 { + a + f64::from_repr(b.repr() ^ f64::sign_mask()) } } - -sub!(#[cfg_attr(all(not(test), not(target_arch = "arm")), no_mangle)] - #[cfg_attr(all(not(test), target_arch = "arm"), inline(always))] - | __subsf3: f32); - -sub!(#[cfg_attr(all(not(test), not(target_arch = "arm")), no_mangle)] - #[cfg_attr(all(not(test), target_arch = "arm"), inline(always))] - | __subdf3: f64); diff --git a/src/int/udiv.rs b/src/int/udiv.rs index 77e9c3f..90ac729 100644 --- a/src/int/udiv.rs +++ b/src/int/udiv.rs @@ -1,5 +1,3 @@ -use core::intrinsics; - use int::{Int, LargeInt}; macro_rules! udivmod_inner { @@ -13,9 +11,11 @@ macro_rules! udivmod_inner { // 0 X if let Some(rem) = rem { - *rem = <$ty>::from(urem!(n.low(), d.low())); + *rem = <$ty>::from(n.low().checked_rem(d.low()) + .unwrap_or_else(|| ::abort())); } - return <$ty>::from(udiv!(n.low(), d.low())); + return <$ty>::from(n.low().checked_div(d.low()) + .unwrap_or_else(|| ::abort())); } else { // 0 X // --- @@ -38,9 +38,7 @@ macro_rules! udivmod_inner { // 0 0 // NOTE This should be unreachable in safe Rust because the program will panic before // this intrinsic is called - unsafe { - intrinsics::abort() - } + ::abort(); } if n.low() == 0 { @@ -48,9 +46,11 @@ macro_rules! udivmod_inner { // --- // K 0 if let Some(rem) = rem { - *rem = <$ty>::from_parts(0, urem!(n.high(), d.high())); + *rem = <$ty>::from_parts(0, n.high().checked_rem(d.high()) + .unwrap_or_else(|| ::abort())); } - return <$ty>::from(udiv!(n.high(), d.high())); + return <$ty>::from(n.high().checked_div(d.high()) + .unwrap_or_else(|| ::abort())); } // K K @@ -161,9 +161,7 @@ intrinsics! { if d == 0 { // NOTE This should be unreachable in safe Rust because the program will panic before // this intrinsic is called - unsafe { - intrinsics::abort() - } + ::abort(); } if n == 0 { diff --git a/src/lib.rs b/src/lib.rs index 6d44fb1..3fa7923 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -32,52 +32,6 @@ // that follow "x86 naming convention" (e.g. addsf3). Those aeabi intrinsics must adhere to the // AAPCS calling convention (`extern "aapcs"`) because that's how LLVM will call them. -// TODO(rust-lang/rust#37029) use e.g. checked_div(_).unwrap_or_else(|| abort()) -macro_rules! udiv { - ($a:expr, $b:expr) => { - unsafe { - let a = $a; - let b = $b; - - if b == 0 { - ::core::intrinsics::abort() - } else { - ::core::intrinsics::unchecked_div(a, b) - } - } - } -} - -macro_rules! sdiv { - ($sty:ident, $a:expr, $b:expr) => { - unsafe { - let a = $a; - let b = $b; - - if b == 0 || (b == -1 && a == $sty::min_value()) { - ::core::intrinsics::abort() - } else { - ::core::intrinsics::unchecked_div(a, b) - } - } - } -} - -macro_rules! urem { - ($a:expr, $b:expr) => { - unsafe { - let a = $a; - let b = $b; - - if b == 0 { - ::core::intrinsics::abort() - } else { - ::core::intrinsics::unchecked_rem(a, b) - } - } - } -} - #[cfg(test)] extern crate core;