Convert float intrinsics to the `intrinsics!` macro

This commit is contained in:
Alex Crichton 2017-06-23 11:05:25 -07:00
parent 93fed264c1
commit 83d63eaa9b
6 changed files with 358 additions and 365 deletions

View File

@ -3,192 +3,190 @@ use core::num::Wrapping;
use float::Float;
/// Returns `a + b`
macro_rules! add {
($abi:tt, $intrinsic:ident: $ty:ty) => {
/// Returns `a + b`
#[allow(unused_parens)]
#[cfg_attr(not(test), no_mangle)]
pub extern $abi fn $intrinsic(a: $ty, b: $ty) -> $ty {
let one = Wrapping(1 as <$ty as Float>::Int);
let zero = Wrapping(0 as <$ty as Float>::Int);
($a:expr, $b:expr, $ty:ty) => ({
let a = $a;
let b = $b;
let one = Wrapping(1 as <$ty as Float>::Int);
let zero = Wrapping(0 as <$ty as Float>::Int);
let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
let exponent_bits = bits - significand_bits - one;
let max_exponent = (one << exponent_bits.0 as usize) - one;
let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
let exponent_bits = bits - significand_bits - one;
let max_exponent = (one << exponent_bits.0 as usize) - one;
let implicit_bit = one << significand_bits.0 as usize;
let significand_mask = implicit_bit - one;
let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
let abs_mask = sign_bit - one;
let exponent_mask = abs_mask ^ significand_mask;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
let implicit_bit = one << significand_bits.0 as usize;
let significand_mask = implicit_bit - one;
let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
let abs_mask = sign_bit - one;
let exponent_mask = abs_mask ^ significand_mask;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
let mut a_rep = Wrapping(a.repr());
let mut b_rep = Wrapping(b.repr());
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
let mut a_rep = Wrapping(a.repr());
let mut b_rep = Wrapping(b.repr());
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// Detect if a or b is zero, infinity, or NaN.
if a_abs - one >= inf_rep - one ||
b_abs - one >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return (<$ty as Float>::from_repr((a_abs | quiet_bit).0));
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return (<$ty as Float>::from_repr((b_abs | quiet_bit).0));
// Detect if a or b is zero, infinity, or NaN.
if a_abs - one >= inf_rep - one ||
b_abs - one >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return <$ty as Float>::from_repr((a_abs | quiet_bit).0);
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return <$ty as Float>::from_repr((b_abs | quiet_bit).0);
}
if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit.0 {
return <$ty as Float>::from_repr(qnan_rep.0);
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}
if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit.0 {
return (<$ty as Float>::from_repr(qnan_rep.0));
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}
// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
return b;
}
// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
// zero + anything = anything
if a_abs.0 == 0 {
// but we need to get the sign right for zero + zero
if b_abs.0 == 0 {
return <$ty as Float>::from_repr(a.repr() & b.repr());
} else {
return b;
}
// zero + anything = anything
if a_abs.0 == 0 {
// but we need to get the sign right for zero + zero
if b_abs.0 == 0 {
return (<$ty as Float>::from_repr(a.repr() & b.repr()));
} else {
return b;
}
}
// anything + zero = anything
if b_abs.0 == 0 {
return a;
}
}
// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
mem::swap(&mut a_rep, &mut b_rep);
// anything + zero = anything
if b_abs.0 == 0 {
return a;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
// normalize any denormals, and adjust the exponent accordingly.
if a_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(a_significand.0);
a_exponent = Wrapping(exponent);
a_significand = Wrapping(significand);
}
if b_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(b_significand.0);
b_exponent = Wrapping(exponent);
b_significand = Wrapping(significand);
}
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
if align.0 != 0 {
if align < bits {
let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
}
if subtraction {
a_significand -= b_significand;
// If a == -b, return +zero.
if a_significand.0 == 0 {
return (<$ty as Float>::from_repr(0));
}
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift = a_significand.0.leading_zeros() as i32
- (implicit_bit << 3).0.leading_zeros() as i32;
a_significand <<= shift as usize;
a_exponent -= Wrapping(shift);
}
} else /* addition */ {
a_significand += b_significand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (a_significand & implicit_bit << 4).0 != 0 {
let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> 1 | Wrapping(sticky);
a_exponent += Wrapping(1);
}
}
// If we have overflowed the type, return +/- infinity:
if a_exponent >= Wrapping(max_exponent.0 as i32) {
return (<$ty>::from_repr((inf_rep | result_sign).0));
}
if a_exponent.0 <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
a_exponent = Wrapping(0);
}
// Low three bits are round, guard, and sticky.
let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;
// Insert the exponent and sign.
result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
result |= result_sign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 { result += one; }
if round_guard_sticky == 0x4 { result += result & one; }
<$ty>::from_repr(result.0)
}
}
// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
mem::swap(&mut a_rep, &mut b_rep);
}
// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
// normalize any denormals, and adjust the exponent accordingly.
if a_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(a_significand.0);
a_exponent = Wrapping(exponent);
a_significand = Wrapping(significand);
}
if b_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(b_significand.0);
b_exponent = Wrapping(exponent);
b_significand = Wrapping(significand);
}
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
if align.0 != 0 {
if align < bits {
let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
}
if subtraction {
a_significand -= b_significand;
// If a == -b, return +zero.
if a_significand.0 == 0 {
return <$ty as Float>::from_repr(0);
}
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift = a_significand.0.leading_zeros() as i32
- (implicit_bit << 3).0.leading_zeros() as i32;
a_significand <<= shift as usize;
a_exponent -= Wrapping(shift);
}
} else /* addition */ {
a_significand += b_significand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (a_significand & implicit_bit << 4).0 != 0 {
let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> 1 | Wrapping(sticky);
a_exponent += Wrapping(1);
}
}
// If we have overflowed the type, return +/- infinity:
if a_exponent >= Wrapping(max_exponent.0 as i32) {
return <$ty>::from_repr((inf_rep | result_sign).0);
}
if a_exponent.0 <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
a_exponent = Wrapping(0);
}
// Low three bits are round, guard, and sticky.
let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;
// Insert the exponent and sign.
result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
result |= result_sign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 { result += one; }
if round_guard_sticky == 0x4 { result += result & one; }
<$ty>::from_repr(result.0)
})
}
#[cfg(target_arch = "arm")]
add!("aapcs", __addsf3: f32);
intrinsics! {
#[aapcs_on_arm]
pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 {
add!(a, b, f32)
}
#[cfg(not(target_arch = "arm"))]
add!("C", __addsf3: f32);
#[cfg(target_arch = "arm")]
add!("aapcs", __adddf3: f64);
#[cfg(not(target_arch = "arm"))]
add!("C", __adddf3: f64);
#[aapcs_on_arm]
pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 {
add!(a, b, f64)
}
}

View File

@ -2,12 +2,8 @@ use float::Float;
use int::Int;
macro_rules! int_to_float {
($intrinsic:ident: $ity:ty, $fty:ty) => {
int_to_float!($intrinsic: $ity, $fty, "C");
};
($intrinsic:ident: $ity:ty, $fty:ty, $abi:tt) => {
pub extern $abi fn $intrinsic(i: $ity) -> $fty {
($i:expr, $ity:ty, $fty:ty) => ({
let i = $i;
if i == 0 {
return 0.0
}
@ -70,29 +66,54 @@ macro_rules! int_to_float {
<$fty>::from_parts(s,
(e + exponent_bias) as <$fty as Float>::Int,
a as <$fty as Float>::Int)
}
}
})
}
macro_rules! int_to_float_unadj_on_win {
($intrinsic:ident: $ity:ty, $fty:ty) => {
#[cfg(all(windows, target_pointer_width="64"))]
int_to_float!($intrinsic: $ity, $fty, "unadjusted");
#[cfg(not(all(windows, target_pointer_width="64")))]
int_to_float!($intrinsic: $ity, $fty, "C");
};
}
intrinsics! {
pub extern "C" fn __floatsisf(i: i32) -> f32 {
int_to_float!(i, i32, f32)
}
int_to_float!(__floatsisf: i32, f32);
int_to_float!(__floatsidf: i32, f64);
int_to_float!(__floatdidf: i64, f64);
int_to_float_unadj_on_win!(__floattisf: i128, f32);
int_to_float_unadj_on_win!(__floattidf: i128, f64);
int_to_float!(__floatunsisf: u32, f32);
int_to_float!(__floatunsidf: u32, f64);
int_to_float!(__floatundidf: u64, f64);
int_to_float_unadj_on_win!(__floatuntisf: u128, f32);
int_to_float_unadj_on_win!(__floatuntidf: u128, f64);
pub extern "C" fn __floatsidf(i: i32) -> f64 {
int_to_float!(i, i32, f64)
}
pub extern "C" fn __floatdidf(i: i64) -> f64 {
int_to_float!(i, i64, f64)
}
#[unadjusted_on_win64]
pub extern "C" fn __floattisf(i: i128) -> f32 {
int_to_float!(i, i128, f32)
}
#[unadjusted_on_win64]
pub extern "C" fn __floattidf(i: i128) -> f64 {
int_to_float!(i, i128, f64)
}
pub extern "C" fn __floatunsisf(i: u32) -> f32 {
int_to_float!(i, u32, f32)
}
pub extern "C" fn __floatunsidf(i: u32) -> f64 {
int_to_float!(i, u32, f64)
}
pub extern "C" fn __floatundidf(i: u64) -> f64 {
int_to_float!(i, u64, f64)
}
#[unadjusted_on_win64]
pub extern "C" fn __floatuntisf(i: u128) -> f32 {
int_to_float!(i, u128, f32)
}
#[unadjusted_on_win64]
pub extern "C" fn __floatuntidf(i: u128) -> f64 {
int_to_float!(i, u128, f64)
}
}
#[derive(PartialEq, Debug)]
enum Sign {
@ -101,79 +122,106 @@ enum Sign {
}
macro_rules! float_to_int {
($intrinsic:ident: $fty:ty, $ity:ty) => {
float_to_int!($intrinsic: $fty, $ity, "C");
};
($intrinsic:ident: $fty:ty, $ity:ty, $abi:tt) => {
pub extern $abi fn $intrinsic(f: $fty) -> $ity {
let fixint_min = <$ity>::min_value();
let fixint_max = <$ity>::max_value();
let fixint_bits = <$ity>::bits() as usize;
let fixint_unsigned = fixint_min == 0;
($f:expr, $fty:ty, $ity:ty) => ({
let f = $f;
let fixint_min = <$ity>::min_value();
let fixint_max = <$ity>::max_value();
let fixint_bits = <$ity>::bits() as usize;
let fixint_unsigned = fixint_min == 0;
let sign_bit = <$fty>::sign_mask();
let significand_bits = <$fty>::significand_bits() as usize;
let exponent_bias = <$fty>::exponent_bias() as usize;
//let exponent_max = <$fty>::exponent_max() as usize;
let sign_bit = <$fty>::sign_mask();
let significand_bits = <$fty>::significand_bits() as usize;
let exponent_bias = <$fty>::exponent_bias() as usize;
//let exponent_max = <$fty>::exponent_max() as usize;
// Break a into sign, exponent, significand
let a_rep = <$fty>::repr(f);
let a_abs = a_rep & !sign_bit;
// Break a into sign, exponent, significand
let a_rep = <$fty>::repr(f);
let a_abs = a_rep & !sign_bit;
// this is used to work around -1 not being available for unsigned
let sign = if (a_rep & sign_bit) == 0 { Sign::Positive } else { Sign::Negative };
let mut exponent = (a_abs >> significand_bits) as usize;
let significand = (a_abs & <$fty>::significand_mask()) | <$fty>::implicit_bit();
// this is used to work around -1 not being available for unsigned
let sign = if (a_rep & sign_bit) == 0 { Sign::Positive } else { Sign::Negative };
let mut exponent = (a_abs >> significand_bits) as usize;
let significand = (a_abs & <$fty>::significand_mask()) | <$fty>::implicit_bit();
// if < 1 or unsigned & negative
if exponent < exponent_bias ||
fixint_unsigned && sign == Sign::Negative {
return 0
}
exponent -= exponent_bias;
// If the value is infinity, saturate.
// If the value is too large for the integer type, 0.
if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) {
return if sign == Sign::Positive {fixint_max} else {fixint_min}
}
// If 0 <= exponent < significand_bits, right shift to get the result.
// Otherwise, shift left.
// (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned
let r = if exponent < significand_bits {
(significand >> (significand_bits - exponent)) as $ity
} else {
(significand as $ity) << (exponent - significand_bits)
};
if sign == Sign::Negative {
(!r).wrapping_add(1)
} else {
r
}
// if < 1 or unsigned & negative
if exponent < exponent_bias ||
fixint_unsigned && sign == Sign::Negative {
return 0
}
exponent -= exponent_bias;
// If the value is infinity, saturate.
// If the value is too large for the integer type, 0.
if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) {
return if sign == Sign::Positive {fixint_max} else {fixint_min}
}
// If 0 <= exponent < significand_bits, right shift to get the result.
// Otherwise, shift left.
// (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned
let r = if exponent < significand_bits {
(significand >> (significand_bits - exponent)) as $ity
} else {
(significand as $ity) << (exponent - significand_bits)
};
if sign == Sign::Negative {
(!r).wrapping_add(1)
} else {
r
}
})
}
intrinsics! {
pub extern "C" fn __fixsfsi(f: f32) -> i32 {
float_to_int!(f, f32, i32)
}
pub extern "C" fn __fixsfdi(f: f32) -> i64 {
float_to_int!(f, f32, i64)
}
#[unadjusted_on_win64]
pub extern "C" fn __fixsfti(f: f32) -> i128 {
float_to_int!(f, f32, i128)
}
pub extern "C" fn __fixdfsi(f: f64) -> i32 {
float_to_int!(f, f64, i32)
}
pub extern "C" fn __fixdfdi(f: f64) -> i64 {
float_to_int!(f, f64, i64)
}
#[unadjusted_on_win64]
pub extern "C" fn __fixdfti(f: f64) -> i128 {
float_to_int!(f, f64, i128)
}
pub extern "C" fn __fixunssfsi(f: f32) -> u32 {
float_to_int!(f, f32, u32)
}
pub extern "C" fn __fixunssfdi(f: f32) -> u64 {
float_to_int!(f, f32, u64)
}
#[unadjusted_on_win64]
pub extern "C" fn __fixunssfti(f: f32) -> u128 {
float_to_int!(f, f32, u128)
}
pub extern "C" fn __fixunsdfsi(f: f64) -> u32 {
float_to_int!(f, f64, u32)
}
pub extern "C" fn __fixunsdfdi(f: f64) -> u64 {
float_to_int!(f, f64, u64)
}
#[unadjusted_on_win64]
pub extern "C" fn __fixunsdfti(f: f64) -> u128 {
float_to_int!(f, f64, u128)
}
}
macro_rules! float_to_int_unadj_on_win {
($intrinsic:ident: $fty:ty, $ity:ty) => {
#[cfg(all(windows, target_pointer_width="64"))]
float_to_int!($intrinsic: $fty, $ity, "unadjusted");
#[cfg(not(all(windows, target_pointer_width="64")))]
float_to_int!($intrinsic: $fty, $ity, "C");
};
}
float_to_int!(__fixsfsi: f32, i32);
float_to_int!(__fixsfdi: f32, i64);
float_to_int_unadj_on_win!(__fixsfti: f32, i128);
float_to_int!(__fixdfsi: f64, i32);
float_to_int!(__fixdfdi: f64, i64);
float_to_int_unadj_on_win!(__fixdfti: f64, i128);
float_to_int!(__fixunssfsi: f32, u32);
float_to_int!(__fixunssfdi: f32, u64);
float_to_int_unadj_on_win!(__fixunssfti: f32, u128);
float_to_int!(__fixunsdfsi: f64, u32);
float_to_int!(__fixunsdfdi: f64, u64);
float_to_int_unadj_on_win!(__fixunsdfti: f64, u128);

View File

@ -1,30 +1,34 @@
/// Returns `a` raised to the power `b`
macro_rules! pow {
($intrinsic:ident: $fty:ty, $ity:ident) => {
/// Returns `a` raised to the power `b`
#[cfg_attr(not(test), no_mangle)]
pub extern "C" fn $intrinsic(a: $fty, b: $ity) -> $fty {
let (mut a, mut b) = (a, b);
let recip = b < 0;
let mut r: $fty = 1.0;
loop {
if (b & 1) != 0 {
r *= a;
}
b = sdiv!($ity, b, 2);
if b == 0 {
break;
}
a *= a;
($a: expr, $b: expr) => ({
let (mut a, mut b) = ($a, $b);
let recip = b < 0;
let mut r = 1.0;
loop {
if (b & 1) != 0 {
r *= a;
}
if recip {
1.0 / r
} else {
r
b = b.checked_div(2).unwrap_or_else(|| ::abort());
if b == 0 {
break;
}
a *= a;
}
}
if recip {
1.0 / r
} else {
r
}
})
}
pow!(__powisf2: f32, i32);
pow!(__powidf2: f64, i32);
intrinsics! {
pub extern "C" fn __powisf2(a: f32, b: i32) -> f32 {
pow!(a, b)
}
pub extern "C" fn __powidf2(a: f64, b: i32) -> f64 {
pow!(a, b)
}
}

View File

@ -1,20 +1,11 @@
use float::Float;
macro_rules! sub {
($(#[$attr:meta])*
| $intrinsic:ident: $ty:ty) => {
/// Returns `a - b`
$(#[$attr])*
pub extern "C" fn $intrinsic(a: $ty, b: $ty) -> $ty {
a + <$ty>::from_repr(b.repr() ^ <$ty>::sign_mask())
}
intrinsics! {
pub extern "C" fn __subsf3(a: f32, b: f32) -> f32 {
a + f32::from_repr(b.repr() ^ f32::sign_mask())
}
pub extern "C" fn __subdf3(a: f64, b: f64) -> f64 {
a + f64::from_repr(b.repr() ^ f64::sign_mask())
}
}
sub!(#[cfg_attr(all(not(test), not(target_arch = "arm")), no_mangle)]
#[cfg_attr(all(not(test), target_arch = "arm"), inline(always))]
| __subsf3: f32);
sub!(#[cfg_attr(all(not(test), not(target_arch = "arm")), no_mangle)]
#[cfg_attr(all(not(test), target_arch = "arm"), inline(always))]
| __subdf3: f64);

View File

@ -1,5 +1,3 @@
use core::intrinsics;
use int::{Int, LargeInt};
macro_rules! udivmod_inner {
@ -13,9 +11,11 @@ macro_rules! udivmod_inner {
// 0 X
if let Some(rem) = rem {
*rem = <$ty>::from(urem!(n.low(), d.low()));
*rem = <$ty>::from(n.low().checked_rem(d.low())
.unwrap_or_else(|| ::abort()));
}
return <$ty>::from(udiv!(n.low(), d.low()));
return <$ty>::from(n.low().checked_div(d.low())
.unwrap_or_else(|| ::abort()));
} else {
// 0 X
// ---
@ -38,9 +38,7 @@ macro_rules! udivmod_inner {
// 0 0
// NOTE This should be unreachable in safe Rust because the program will panic before
// this intrinsic is called
unsafe {
intrinsics::abort()
}
::abort();
}
if n.low() == 0 {
@ -48,9 +46,11 @@ macro_rules! udivmod_inner {
// ---
// K 0
if let Some(rem) = rem {
*rem = <$ty>::from_parts(0, urem!(n.high(), d.high()));
*rem = <$ty>::from_parts(0, n.high().checked_rem(d.high())
.unwrap_or_else(|| ::abort()));
}
return <$ty>::from(udiv!(n.high(), d.high()));
return <$ty>::from(n.high().checked_div(d.high())
.unwrap_or_else(|| ::abort()));
}
// K K
@ -161,9 +161,7 @@ intrinsics! {
if d == 0 {
// NOTE This should be unreachable in safe Rust because the program will panic before
// this intrinsic is called
unsafe {
intrinsics::abort()
}
::abort();
}
if n == 0 {

View File

@ -32,52 +32,6 @@
// that follow "x86 naming convention" (e.g. addsf3). Those aeabi intrinsics must adhere to the
// AAPCS calling convention (`extern "aapcs"`) because that's how LLVM will call them.
// TODO(rust-lang/rust#37029) use e.g. checked_div(_).unwrap_or_else(|| abort())
macro_rules! udiv {
($a:expr, $b:expr) => {
unsafe {
let a = $a;
let b = $b;
if b == 0 {
::core::intrinsics::abort()
} else {
::core::intrinsics::unchecked_div(a, b)
}
}
}
}
macro_rules! sdiv {
($sty:ident, $a:expr, $b:expr) => {
unsafe {
let a = $a;
let b = $b;
if b == 0 || (b == -1 && a == $sty::min_value()) {
::core::intrinsics::abort()
} else {
::core::intrinsics::unchecked_div(a, b)
}
}
}
}
macro_rules! urem {
($a:expr, $b:expr) => {
unsafe {
let a = $a;
let b = $b;
if b == 0 {
::core::intrinsics::abort()
} else {
::core::intrinsics::unchecked_rem(a, b)
}
}
}
}
#[cfg(test)]
extern crate core;