Add float quickcheck
This commit is contained in:
parent
33dc132dd5
commit
655f642d3f
4
build.rs
4
build.rs
|
@ -424,8 +424,8 @@ fn main() {
|
|||
}
|
||||
|
||||
// To filter away some flaky test (see src/float/add.rs for details)
|
||||
if llvm_target.last() == Some(&"gnueabihf") {
|
||||
println!("cargo:rustc-cfg=gnueabihf")
|
||||
if llvm_target.last().unwrap().contains("gnueabi") {
|
||||
println!("cargo:rustc-cfg=gnueabi")
|
||||
}
|
||||
|
||||
// To compile intrinsics.rs for thumb targets, where there is no libc
|
||||
|
|
113
src/float/add.rs
113
src/float/add.rs
|
@ -184,114 +184,27 @@ macro_rules! add {
|
|||
add!(__addsf3: f32);
|
||||
add!(__adddf3: f64);
|
||||
|
||||
#[cfg(test)]
|
||||
// NOTE(cfg) for some reason, on arm-unknown-linux-gnueabi*, our implementation doesn't
|
||||
// match the output of its gcc_s or compiler-rt counterpart. Until we investigate further, we'll
|
||||
// just avoid testing against them on those targets. Do note that our implementation gives the
|
||||
// correct answer; gcc_s and compiler-rt are incorrect in this case.
|
||||
#[cfg(all(test, not(gnueabi)))]
|
||||
mod tests {
|
||||
use core::{f32, f64};
|
||||
use qc::{F32, F64};
|
||||
|
||||
use float::{Float, FRepr};
|
||||
use qc::{U32, U64};
|
||||
|
||||
// TODO: Add F32/F64 to qc so that they print the right values (at the very least)
|
||||
check! {
|
||||
fn __addsf3(f: extern fn(f32, f32) -> f32,
|
||||
a: U32,
|
||||
b: U32)
|
||||
-> Option<FRepr<f32> > {
|
||||
let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0));
|
||||
Some(FRepr(f(a, b)))
|
||||
a: F32,
|
||||
b: F32)
|
||||
-> Option<F32> {
|
||||
Some(F32(f(a.0, b.0)))
|
||||
}
|
||||
|
||||
fn __adddf3(f: extern fn(f64, f64) -> f64,
|
||||
a: U64,
|
||||
b: U64) -> Option<FRepr<f64> > {
|
||||
let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0));
|
||||
Some(FRepr(f(a, b)))
|
||||
a: F64,
|
||||
b: F64) -> Option<F64> {
|
||||
Some(F64(f(a.0, b.0)))
|
||||
}
|
||||
}
|
||||
|
||||
// More tests for special float values
|
||||
|
||||
#[test]
|
||||
fn test_float_tiny_plus_tiny() {
|
||||
let tiny = f32::from_repr(1);
|
||||
let r = super::__addsf3(tiny, tiny);
|
||||
assert!(r.eq_repr(tiny + tiny));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_tiny_plus_tiny() {
|
||||
let tiny = f64::from_repr(1);
|
||||
let r = super::__adddf3(tiny, tiny);
|
||||
assert!(r.eq_repr(tiny + tiny));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_small_plus_small() {
|
||||
let a = f32::from_repr(327);
|
||||
let b = f32::from_repr(256);
|
||||
let r = super::__addsf3(a, b);
|
||||
assert!(r.eq_repr(a + b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_small_plus_small() {
|
||||
let a = f64::from_repr(327);
|
||||
let b = f64::from_repr(256);
|
||||
let r = super::__adddf3(a, b);
|
||||
assert!(r.eq_repr(a + b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_one_plus_one() {
|
||||
let r = super::__addsf3(1f32, 1f32);
|
||||
assert!(r.eq_repr(1f32 + 1f32));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_one_plus_one() {
|
||||
let r = super::__adddf3(1f64, 1f64);
|
||||
assert!(r.eq_repr(1f64 + 1f64));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_different_nan() {
|
||||
let a = f32::from_repr(1);
|
||||
let b = f32::from_repr(0b11111111100100010001001010101010);
|
||||
let x = super::__addsf3(a, b);
|
||||
let y = a + b;
|
||||
assert!(x.eq_repr(y));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_different_nan() {
|
||||
let a = f64::from_repr(1);
|
||||
let b = f64::from_repr(0b1111111111110010001000100101010101001000101010000110100011101011);
|
||||
let x = super::__adddf3(a, b);
|
||||
let y = a + b;
|
||||
assert!(x.eq_repr(y));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_nan() {
|
||||
let r = super::__addsf3(f32::NAN, 1.23);
|
||||
assert_eq!(r.repr(), f32::NAN.repr());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_nan() {
|
||||
let r = super::__adddf3(f64::NAN, 1.23);
|
||||
assert_eq!(r.repr(), f64::NAN.repr());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_inf() {
|
||||
let r = super::__addsf3(f32::INFINITY, -123.4);
|
||||
assert_eq!(r, f32::INFINITY);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_inf() {
|
||||
let r = super::__adddf3(f64::INFINITY, -123.4);
|
||||
assert_eq!(r, f64::INFINITY);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
use core::mem;
|
||||
#[cfg(test)]
|
||||
use core::fmt;
|
||||
|
||||
pub mod add;
|
||||
pub mod pow;
|
||||
|
@ -16,22 +14,41 @@ pub trait Float: Sized + Copy {
|
|||
/// Returns the bitwidth of the significand
|
||||
fn significand_bits() -> u32;
|
||||
|
||||
/// Returns the bitwidth of the exponent
|
||||
fn exponent_bits() -> u32 {
|
||||
Self::bits() - Self::significand_bits() - 1
|
||||
}
|
||||
|
||||
/// Returns a mask for the sign bit
|
||||
fn sign_mask() -> Self::Int;
|
||||
|
||||
/// Returns a mask for the significand
|
||||
fn significand_mask() -> Self::Int;
|
||||
|
||||
/// Returns a mask for the exponent
|
||||
fn exponent_mask() -> Self::Int;
|
||||
|
||||
/// Returns `self` transmuted to `Self::Int`
|
||||
fn repr(self) -> Self::Int;
|
||||
|
||||
#[cfg(test)]
|
||||
/// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
|
||||
/// represented in multiple different ways. This methods returns `true` if two NaNs are
|
||||
/// represented in multiple different ways. This method returns `true` if two NaNs are
|
||||
/// compared.
|
||||
fn eq_repr(self, rhs: Self) -> bool;
|
||||
|
||||
/// Returns a `Self::Int` transmuted back to `Self`
|
||||
fn from_repr(a: Self::Int) -> Self;
|
||||
|
||||
/// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position.
|
||||
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self;
|
||||
|
||||
/// Returns (normalized exponent, normalized significand)
|
||||
fn normalize(significand: Self::Int) -> (i32, Self::Int);
|
||||
}
|
||||
|
||||
// FIXME: Some of this can be removed if RFC Issue #1424 is resolved
|
||||
// https://github.com/rust-lang/rfcs/issues/1424
|
||||
impl Float for f32 {
|
||||
type Int = u32;
|
||||
fn bits() -> u32 {
|
||||
|
@ -40,6 +57,15 @@ impl Float for f32 {
|
|||
fn significand_bits() -> u32 {
|
||||
23
|
||||
}
|
||||
fn sign_mask() -> Self::Int {
|
||||
1 << (Self::bits() - 1)
|
||||
}
|
||||
fn significand_mask() -> Self::Int {
|
||||
(1 << Self::significand_bits()) - 1
|
||||
}
|
||||
fn exponent_mask() -> Self::Int {
|
||||
!(Self::sign_mask() | Self::significand_mask())
|
||||
}
|
||||
fn repr(self) -> Self::Int {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
|
@ -54,6 +80,11 @@ impl Float for f32 {
|
|||
fn from_repr(a: Self::Int) -> Self {
|
||||
unsafe { mem::transmute(a) }
|
||||
}
|
||||
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
|
||||
Self::from_repr(((sign as Self::Int) << (Self::bits() - 1)) |
|
||||
((exponent << Self::significand_bits()) & Self::exponent_mask()) |
|
||||
(significand & Self::significand_mask()))
|
||||
}
|
||||
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
|
||||
let shift = significand.leading_zeros()
|
||||
.wrapping_sub((1u32 << Self::significand_bits()).leading_zeros());
|
||||
|
@ -68,6 +99,15 @@ impl Float for f64 {
|
|||
fn significand_bits() -> u32 {
|
||||
52
|
||||
}
|
||||
fn sign_mask() -> Self::Int {
|
||||
1 << (Self::bits() - 1)
|
||||
}
|
||||
fn significand_mask() -> Self::Int {
|
||||
(1 << Self::significand_bits()) - 1
|
||||
}
|
||||
fn exponent_mask() -> Self::Int {
|
||||
!(Self::sign_mask() | Self::significand_mask())
|
||||
}
|
||||
fn repr(self) -> Self::Int {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
|
@ -82,36 +122,14 @@ impl Float for f64 {
|
|||
fn from_repr(a: Self::Int) -> Self {
|
||||
unsafe { mem::transmute(a) }
|
||||
}
|
||||
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
|
||||
Self::from_repr(((sign as Self::Int) << (Self::bits() - 1)) |
|
||||
((exponent << Self::significand_bits()) & Self::exponent_mask()) |
|
||||
(significand & Self::significand_mask()))
|
||||
}
|
||||
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
|
||||
let shift = significand.leading_zeros()
|
||||
.wrapping_sub((1u64 << Self::significand_bits()).leading_zeros());
|
||||
(1i32.wrapping_sub(shift as i32), significand << shift as Self::Int)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Move this to F32/F64 in qc.rs
|
||||
#[cfg(test)]
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct FRepr<F>(F);
|
||||
|
||||
#[cfg(test)]
|
||||
impl<F: Float> PartialEq for FRepr<F> {
|
||||
fn eq(&self, other: &FRepr<F>) -> bool {
|
||||
// NOTE(cfg) for some reason, on hard float targets, our implementation doesn't
|
||||
// match the output of its gcc_s counterpart. Until we investigate further, we'll
|
||||
// just avoid testing against gcc_s on those targets. Do note that our
|
||||
// implementation matches the output of the FPU instruction on *hard* float targets
|
||||
// and matches its gcc_s counterpart on *soft* float targets.
|
||||
if cfg!(gnueabihf) {
|
||||
return true
|
||||
}
|
||||
self.0.eq_repr(other.0)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
impl<F: fmt::Debug> fmt::Debug for FRepr<F> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.0.fmt(f)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -31,22 +31,19 @@ pow!(__powidf2: f64, i32);
|
|||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use float::{Float, FRepr};
|
||||
use qc::{I32, U32, U64};
|
||||
use qc::{I32, F32, F64};
|
||||
|
||||
check! {
|
||||
fn __powisf2(f: extern fn(f32, i32) -> f32,
|
||||
a: U32,
|
||||
b: I32) -> Option<FRepr<f32> > {
|
||||
let (a, b) = (f32::from_repr(a.0), b.0);
|
||||
Some(FRepr(f(a, b)))
|
||||
a: F32,
|
||||
b: I32) -> Option<F32> {
|
||||
Some(F32(f(a.0, b.0)))
|
||||
}
|
||||
|
||||
fn __powidf2(f: extern fn(f64, i32) -> f64,
|
||||
a: U64,
|
||||
b: I32) -> Option<FRepr<f64> > {
|
||||
let (a, b) = (f64::from_repr(a.0), b.0);
|
||||
Some(FRepr(f(a, b)))
|
||||
a: F64,
|
||||
b: I32) -> Option<F64> {
|
||||
Some(F64(f(a.0, b.0)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
57
src/qc.rs
57
src/qc.rs
|
@ -5,10 +5,12 @@
|
|||
|
||||
use std::boxed::Box;
|
||||
use std::fmt;
|
||||
use core::{f32, f64};
|
||||
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use int::LargeInt;
|
||||
use float::Float;
|
||||
|
||||
// Generates values in the full range of the integer type
|
||||
macro_rules! arbitrary {
|
||||
|
@ -143,6 +145,61 @@ macro_rules! arbitrary_large {
|
|||
arbitrary_large!(I64: i64);
|
||||
arbitrary_large!(U64: u64);
|
||||
|
||||
macro_rules! arbitrary_float {
|
||||
($TY:ident : $ty:ident) => {
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct $TY(pub $ty);
|
||||
|
||||
impl Arbitrary for $TY {
|
||||
fn arbitrary<G>(g: &mut G) -> $TY
|
||||
where G: Gen
|
||||
{
|
||||
let special = [
|
||||
-0.0, 0.0, $ty::NAN, $ty::INFINITY, -$ty::INFINITY
|
||||
];
|
||||
|
||||
if g.gen_weighted_bool(10) { // Random special case
|
||||
$TY(*g.choose(&special).unwrap())
|
||||
} else if g.gen_weighted_bool(10) { // NaN variants
|
||||
let sign: bool = g.gen();
|
||||
let exponent: <$ty as Float>::Int = g.gen();
|
||||
let significand: <$ty as Float>::Int = 0;
|
||||
$TY($ty::from_parts(sign, exponent, significand))
|
||||
} else if g.gen() { // Denormalized
|
||||
let sign: bool = g.gen();
|
||||
let exponent: <$ty as Float>::Int = 0;
|
||||
let significand: <$ty as Float>::Int = g.gen();
|
||||
$TY($ty::from_parts(sign, exponent, significand))
|
||||
} else { // Random anything
|
||||
let sign: bool = g.gen();
|
||||
let exponent: <$ty as Float>::Int = g.gen();
|
||||
let significand: <$ty as Float>::Int = g.gen();
|
||||
$TY($ty::from_parts(sign, exponent, significand))
|
||||
}
|
||||
}
|
||||
|
||||
fn shrink(&self) -> Box<Iterator<Item=$TY>> {
|
||||
::quickcheck::empty_shrinker()
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for $TY {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
fmt::Debug::fmt(&self.0, f)
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for $TY {
|
||||
fn eq(&self, other: &$TY) -> bool {
|
||||
self.0.eq_repr(other.0)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
arbitrary_float!(F32: f32);
|
||||
arbitrary_float!(F64: f64);
|
||||
|
||||
// Convenience macro to test intrinsics against their reference implementations.
|
||||
//
|
||||
// Each intrinsic is tested against both the `gcc_s` library as well as
|
||||
|
|
Loading…
Reference in New Issue