compiler-builtins-zynq/src/macros.rs

283 lines
9.1 KiB
Rust
Raw Normal View History

2017-06-24 07:28:50 +08:00
//! Macros shared throughout the compiler-builtins implementation
/// The "main macro" used for defining intrinsics.
///
/// The compiler-builtins library is super platform-specific with tons of crazy
2017-06-25 12:51:34 +08:00
/// little tweaks for various platforms. As a result it *could* involve a lot of
/// #[cfg] and macro soup, but the intention is that this macro alleviates a lot
2017-06-24 07:28:50 +08:00
/// of that complexity. Ideally this macro has all the weird ABI things
/// platforms need and elsewhere in this library it just looks like normal Rust
/// code.
///
/// This macro is structured to be invoked with a bunch of functions that looks
/// like:
///
/// intrinsics! {
/// pub extern "C" fn foo(a: i32) -> u32 {
/// // ...
/// }
///
/// #[nonstandard_attribute]
/// pub extern "C" fn bar(a: i32) -> u32 {
/// // ...
/// }
/// }
///
/// Each function is defined in a manner that looks like a normal Rust function.
/// The macro then accepts a few nonstandard attributes that can decorate
/// various functions. Each of the attributes is documented below with what it
/// can do, and each of them slightly tweaks how further expansion happens.
///
/// A quick overview of attributes supported right now are:
///
/// * `maybe_use_optimized_c_shim` - indicates that the Rust implementation is
/// ignored if an optimized C version was compiled.
2017-06-24 07:28:50 +08:00
/// * `aapcs_on_arm` - forces the ABI of the function to be `"aapcs"` on ARM and
/// the specified ABI everywhere else.
/// * `unadjusted_on_win64` - like `aapcs_on_arm` this switches to the
/// `"unadjusted"` abi on Win64 and the specified abi elsewhere.
/// * `win64_128bit_abi_hack` - this attribute is used for 128-bit integer
/// intrinsics where the ABI is slightly tweaked on Windows platforms, but
/// it's a normal ABI elsewhere for returning a 128 bit integer.
/// * `arm_aeabi_alias` - handles the "aliasing" of various intrinsics on ARM
/// their otherwise typical names to other prefixed ones.
///
macro_rules! intrinsics {
() => ();
2017-06-24 07:28:50 +08:00
// Right now there's a bunch of architecture-optimized intrinsics in the
// stock compiler-rt implementation. Not all of these have been ported over
// to Rust yet so when the `c` feature of this crate is enabled we fall back
// to the architecture-specific versions which should be more optimized. The
// purpose of this macro is to easily allow specifying this.
//
// The `#[maybe_use_optimized_c_shim]` attribute indicates that this
// intrinsic may have an optimized C version. In these situations the build
// script, if the C code is enabled and compiled, will emit a cfg directive
// to get passed to rustc for our compilation. If that cfg is set we skip
// the Rust implementation, but if the attribute is not enabled then we
// compile in the Rust implementation.
(
#[maybe_use_optimized_c_shim]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($name = "optimized-c")]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
extern $abi {
fn $name($($argname: $ty),*) -> $ret;
}
unsafe {
$name($($argname),*)
}
}
#[cfg(not($name = "optimized-c"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// We recognize the `#[aapcs_on_arm]` attribute here and generate the
// same intrinsic but force it to have the `"aapcs"` calling convention on
// ARM and `"C"` elsewhere.
(
#[aapcs_on_arm]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
intrinsics! {
$(#[$($attr)*])*
pub extern "aapcs" fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Like aapcs above we recognize an attribute for the "unadjusted" abi on
// win64 for some methods.
(
#[unadjusted_on_win64]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(windows, target_pointer_width = "64"))]
intrinsics! {
$(#[$($attr)*])*
pub extern "unadjusted" fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
#[cfg(not(all(windows, target_pointer_width = "64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
2017-06-24 07:28:50 +08:00
// Some intrinsics on win64 which return a 128-bit integer have an.. unusual
// calling convention. That's managed here with this "abi hack" which alters
// the generated symbol's ABI.
//
// This will still define a function in this crate with the given name and
// signature, but the actual symbol for the intrinsic may have a slightly
// different ABI on win64.
(
#[win64_128bit_abi_hack]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(windows, target_pointer_width = "64"))]
$(#[$($attr)*])*
2017-06-23 14:36:50 +08:00
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
#[cfg(all(windows, target_pointer_width = "64"))]
pub mod $name {
intrinsics! {
pub extern $abi fn $name( $($argname: $ty),* )
2017-06-24 07:28:50 +08:00
-> ::macros::win64_128bit_abi_hack::U64x2
2017-06-23 14:36:50 +08:00
{
let e: $ret = super::$name($($argname),*);
2017-06-24 07:28:50 +08:00
::macros::win64_128bit_abi_hack::U64x2::from(e)
2017-06-23 14:36:50 +08:00
}
}
}
#[cfg(not(all(windows, target_pointer_width = "64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// A bunch of intrinsics on ARM are aliased in the standard compiler-rt
// build under `__aeabi_*` aliases, and LLVM will call these instead of the
2017-06-24 07:28:50 +08:00
// original function. The aliasing here is used to generate these symbols in
// the object file.
(
#[arm_aeabi_alias = $alias:ident]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
#[cfg(target_arch = "arm")]
pub mod $name {
intrinsics! {
pub extern "aapcs" fn $alias( $($argname: $ty),* ) -> $ret {
super::$name($($argname),*)
}
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
2017-06-24 07:28:50 +08:00
// This is the final catch-all rule. At this point we just generate an
// intrinsic with a conditional `#[no_mangle]` directive to avoid
// interfereing with duplicate symbols and whatnot during testing.
2017-06-24 07:28:50 +08:00
//
// After the intrinsic is defined we just continue with the rest of the
// input we were given.
(
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
intrinsics!($($rest)*);
);
}
2017-06-24 07:28:50 +08:00
// Hack for LLVM expectations for ABI on windows. This is used by the
// `#[win64_128bit_abi_hack]` attribute recognized above
2019-05-15 05:33:08 +08:00
#[cfg(all(windows, target_pointer_width = "64"))]
2017-06-24 07:28:50 +08:00
pub mod win64_128bit_abi_hack {
#[repr(simd)]
pub struct U64x2(u64, u64);
impl From<i128> for U64x2 {
fn from(i: i128) -> U64x2 {
use int::LargeInt;
let j = i as u128;
U64x2(j.low(), j.high())
}
}
impl From<u128> for U64x2 {
fn from(i: u128) -> U64x2 {
use int::LargeInt;
U64x2(i.low(), i.high())
}
}
}