2017-11-13 03:40:17 +08:00
|
|
|
use int::{CastInto, Int, WideInt};
|
|
|
|
use float::Float;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fn div32<F: Float>(a: F, b: F) -> F
|
|
|
|
where
|
|
|
|
u32: CastInto<F::Int>,
|
|
|
|
F::Int: CastInto<u32>,
|
|
|
|
i32: CastInto<F::Int>,
|
|
|
|
F::Int: CastInto<i32>,
|
|
|
|
F::Int: WideInt,
|
|
|
|
{
|
|
|
|
let one = F::Int::ONE;
|
|
|
|
let zero = F::Int::ZERO;
|
|
|
|
|
|
|
|
// let bits = F::BITS;
|
|
|
|
let significand_bits = F::SIGNIFICAND_BITS;
|
|
|
|
let max_exponent = F::EXPONENT_MAX;
|
|
|
|
|
|
|
|
let exponent_bias = F::EXPONENT_BIAS;
|
|
|
|
|
|
|
|
let implicit_bit = F::IMPLICIT_BIT;
|
|
|
|
let significand_mask = F::SIGNIFICAND_MASK;
|
|
|
|
let sign_bit = F::SIGN_MASK as F::Int;
|
|
|
|
let abs_mask = sign_bit - one;
|
|
|
|
let exponent_mask = F::EXPONENT_MASK;
|
|
|
|
let inf_rep = exponent_mask;
|
|
|
|
let quiet_bit = implicit_bit >> 1;
|
|
|
|
let qnan_rep = exponent_mask | quiet_bit;
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn negate_u32(a: u32) -> u32 {
|
|
|
|
(<i32>::wrapping_neg(a as i32)) as u32
|
|
|
|
}
|
|
|
|
|
|
|
|
let a_rep = a.repr();
|
|
|
|
let b_rep = b.repr();
|
|
|
|
|
|
|
|
let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
|
|
|
|
let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
|
|
|
|
let quotient_sign = (a_rep ^ b_rep) & sign_bit;
|
|
|
|
|
|
|
|
let mut a_significand = a_rep & significand_mask;
|
|
|
|
let mut b_significand = b_rep & significand_mask;
|
|
|
|
let mut scale = 0;
|
|
|
|
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
|
|
if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|
|
|
|
|| b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|
|
|
|
{
|
|
|
|
let a_abs = a_rep & abs_mask;
|
|
|
|
let b_abs = b_rep & abs_mask;
|
|
|
|
|
|
|
|
// NaN / anything = qNaN
|
|
|
|
if a_abs > inf_rep {
|
|
|
|
return F::from_repr(a_rep | quiet_bit);
|
|
|
|
}
|
|
|
|
// anything / NaN = qNaN
|
|
|
|
if b_abs > inf_rep {
|
|
|
|
return F::from_repr(b_rep | quiet_bit);
|
|
|
|
}
|
|
|
|
|
|
|
|
if a_abs == inf_rep {
|
|
|
|
if b_abs == inf_rep {
|
|
|
|
// infinity / infinity = NaN
|
|
|
|
return F::from_repr(qnan_rep);
|
|
|
|
} else {
|
|
|
|
// infinity / anything else = +/- infinity
|
|
|
|
return F::from_repr(a_abs | quotient_sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// anything else / infinity = +/- 0
|
|
|
|
if b_abs == inf_rep {
|
|
|
|
return F::from_repr(quotient_sign);
|
|
|
|
}
|
|
|
|
|
|
|
|
if a_abs == zero {
|
|
|
|
if b_abs == zero {
|
|
|
|
// zero / zero = NaN
|
|
|
|
return F::from_repr(qnan_rep);
|
|
|
|
} else {
|
|
|
|
// zero / anything else = +/- zero
|
|
|
|
return F::from_repr(quotient_sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// anything else / zero = +/- infinity
|
|
|
|
if b_abs == zero {
|
|
|
|
return F::from_repr(inf_rep | quotient_sign);
|
|
|
|
}
|
|
|
|
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
|
|
// include the necessary exponent adjustment.
|
|
|
|
if a_abs < implicit_bit {
|
|
|
|
let (exponent, significand) = F::normalize(a_significand);
|
|
|
|
scale += exponent;
|
|
|
|
a_significand = significand;
|
|
|
|
}
|
|
|
|
|
|
|
|
if b_abs < implicit_bit {
|
|
|
|
let (exponent, significand) = F::normalize(b_significand);
|
|
|
|
scale -= exponent;
|
|
|
|
b_significand = significand;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
|
|
// won't hurt anything.)
|
|
|
|
a_significand |= implicit_bit;
|
|
|
|
b_significand |= implicit_bit;
|
|
|
|
let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent)
|
|
|
|
.wrapping_sub(CastInto::<i32>::cast(b_exponent))
|
|
|
|
.wrapping_add(scale);
|
|
|
|
|
|
|
|
// Align the significand of b as a Q31 fixed-point number in the range
|
|
|
|
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
|
|
|
|
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
|
|
|
|
// is accurate to about 3.5 binary digits.
|
|
|
|
let q31b = CastInto::<u32>::cast(b_significand << 8.cast());
|
|
|
|
let mut reciprocal = (0x7504f333u32).wrapping_sub(q31b);
|
|
|
|
|
|
|
|
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
|
|
|
|
//
|
|
|
|
// x1 = x0 * (2 - x0 * b)
|
|
|
|
//
|
|
|
|
// This doubles the number of correct binary digits in the approximation
|
|
|
|
// with each iteration, so after three iterations, we have about 28 binary
|
|
|
|
// digits of accuracy.
|
|
|
|
let mut correction: u32;
|
|
|
|
correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
|
|
|
|
reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
|
|
|
|
correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
|
|
|
|
reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
|
|
|
|
correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
|
|
|
|
reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
|
|
|
|
|
|
|
|
// Exhaustive testing shows that the error in reciprocal after three steps
|
|
|
|
// is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
|
|
|
|
// expectations. We bump the reciprocal by a tiny value to force the error
|
|
|
|
// to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
|
|
|
|
// be specific). This also causes 1/1 to give a sensible approximation
|
|
|
|
// instead of zero (due to overflow).
|
|
|
|
reciprocal = reciprocal.wrapping_sub(2);
|
|
|
|
|
|
|
|
// The numerical reciprocal is accurate to within 2^-28, lies in the
|
|
|
|
// interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
|
|
|
|
// than the true reciprocal of b. Multiplying a by this reciprocal thus
|
|
|
|
// gives a numerical q = a/b in Q24 with the following properties:
|
|
|
|
//
|
|
|
|
// 1. q < a/b
|
|
|
|
// 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
|
|
|
|
// 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
|
|
|
|
// from the fact that we truncate the product, and the 2^27 term
|
|
|
|
// is the error in the reciprocal of b scaled by the maximum
|
|
|
|
// possible value of a. As a consequence of this error bound,
|
|
|
|
// either q or nextafter(q) is the correctly rounded
|
|
|
|
let (mut quotient, _) = <F::Int as WideInt>::wide_mul(a_significand << 1, reciprocal.cast());
|
|
|
|
|
|
|
|
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
|
|
|
|
// In either case, we are going to compute a residual of the form
|
|
|
|
//
|
|
|
|
// r = a - q*b
|
|
|
|
//
|
|
|
|
// We know from the construction of q that r satisfies:
|
|
|
|
//
|
|
|
|
// 0 <= r < ulp(q)*b
|
|
|
|
//
|
|
|
|
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
|
|
|
|
// already have the correct result. The exact halfway case cannot occur.
|
|
|
|
// We also take this time to right shift quotient if it falls in the [1,2)
|
|
|
|
// range and adjust the exponent accordingly.
|
|
|
|
let residual = if quotient < (implicit_bit << 1) {
|
|
|
|
quotient_exponent = quotient_exponent.wrapping_sub(1);
|
|
|
|
(a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand))
|
|
|
|
} else {
|
|
|
|
quotient >>= 1;
|
|
|
|
(a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand))
|
|
|
|
};
|
|
|
|
|
|
|
|
let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32);
|
|
|
|
|
|
|
|
if written_exponent >= max_exponent as i32 {
|
|
|
|
// If we have overflowed the exponent, return infinity.
|
|
|
|
return F::from_repr(inf_rep | quotient_sign);
|
|
|
|
} else if written_exponent < 1 {
|
|
|
|
// Flush denormals to zero. In the future, it would be nice to add
|
|
|
|
// code to round them correctly.
|
|
|
|
return F::from_repr(quotient_sign);
|
|
|
|
} else {
|
|
|
|
let round = ((residual << 1) > b_significand) as u32;
|
|
|
|
// Clear the implicit bits
|
|
|
|
let mut abs_result = quotient & significand_mask;
|
|
|
|
// Insert the exponent
|
|
|
|
abs_result |= written_exponent.cast() << significand_bits;
|
|
|
|
// Round
|
|
|
|
abs_result = abs_result.wrapping_add(round.cast());
|
|
|
|
// Insert the sign and return
|
|
|
|
return F::from_repr(abs_result | quotient_sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn div64<F: Float>(a: F, b: F) -> F
|
|
|
|
where
|
|
|
|
u32: CastInto<F::Int>,
|
|
|
|
F::Int: CastInto<u32>,
|
|
|
|
i32: CastInto<F::Int>,
|
|
|
|
F::Int: CastInto<i32>,
|
|
|
|
u64: CastInto<F::Int>,
|
|
|
|
F::Int: CastInto<u64>,
|
|
|
|
i64: CastInto<F::Int>,
|
|
|
|
F::Int: CastInto<i64>,
|
|
|
|
F::Int: WideInt,
|
|
|
|
{
|
|
|
|
let one = F::Int::ONE;
|
|
|
|
let zero = F::Int::ZERO;
|
|
|
|
|
|
|
|
// let bits = F::BITS;
|
|
|
|
let significand_bits = F::SIGNIFICAND_BITS;
|
|
|
|
let max_exponent = F::EXPONENT_MAX;
|
|
|
|
|
|
|
|
let exponent_bias = F::EXPONENT_BIAS;
|
|
|
|
|
|
|
|
let implicit_bit = F::IMPLICIT_BIT;
|
|
|
|
let significand_mask = F::SIGNIFICAND_MASK;
|
|
|
|
let sign_bit = F::SIGN_MASK as F::Int;
|
|
|
|
let abs_mask = sign_bit - one;
|
|
|
|
let exponent_mask = F::EXPONENT_MASK;
|
|
|
|
let inf_rep = exponent_mask;
|
|
|
|
let quiet_bit = implicit_bit >> 1;
|
|
|
|
let qnan_rep = exponent_mask | quiet_bit;
|
|
|
|
// let exponent_bits = F::EXPONENT_BITS;
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn negate_u32(a: u32) -> u32 {
|
|
|
|
(<i32>::wrapping_neg(a as i32)) as u32
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn negate_u64(a: u64) -> u64 {
|
|
|
|
(<i64>::wrapping_neg(a as i64)) as u64
|
|
|
|
}
|
|
|
|
|
|
|
|
let a_rep = a.repr();
|
|
|
|
let b_rep = b.repr();
|
|
|
|
|
|
|
|
let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
|
|
|
|
let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
|
|
|
|
let quotient_sign = (a_rep ^ b_rep) & sign_bit;
|
|
|
|
|
|
|
|
let mut a_significand = a_rep & significand_mask;
|
|
|
|
let mut b_significand = b_rep & significand_mask;
|
|
|
|
let mut scale = 0;
|
|
|
|
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
|
|
if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|
|
|
|
|| b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|
|
|
|
{
|
|
|
|
let a_abs = a_rep & abs_mask;
|
|
|
|
let b_abs = b_rep & abs_mask;
|
|
|
|
|
|
|
|
// NaN / anything = qNaN
|
|
|
|
if a_abs > inf_rep {
|
|
|
|
return F::from_repr(a_rep | quiet_bit);
|
|
|
|
}
|
|
|
|
// anything / NaN = qNaN
|
|
|
|
if b_abs > inf_rep {
|
|
|
|
return F::from_repr(b_rep | quiet_bit);
|
|
|
|
}
|
|
|
|
|
|
|
|
if a_abs == inf_rep {
|
|
|
|
if b_abs == inf_rep {
|
|
|
|
// infinity / infinity = NaN
|
|
|
|
return F::from_repr(qnan_rep);
|
|
|
|
} else {
|
|
|
|
// infinity / anything else = +/- infinity
|
|
|
|
return F::from_repr(a_abs | quotient_sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// anything else / infinity = +/- 0
|
|
|
|
if b_abs == inf_rep {
|
|
|
|
return F::from_repr(quotient_sign);
|
|
|
|
}
|
|
|
|
|
|
|
|
if a_abs == zero {
|
|
|
|
if b_abs == zero {
|
|
|
|
// zero / zero = NaN
|
|
|
|
return F::from_repr(qnan_rep);
|
|
|
|
} else {
|
|
|
|
// zero / anything else = +/- zero
|
|
|
|
return F::from_repr(quotient_sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// anything else / zero = +/- infinity
|
|
|
|
if b_abs == zero {
|
|
|
|
return F::from_repr(inf_rep | quotient_sign);
|
|
|
|
}
|
|
|
|
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
|
|
// include the necessary exponent adjustment.
|
|
|
|
if a_abs < implicit_bit {
|
|
|
|
let (exponent, significand) = F::normalize(a_significand);
|
|
|
|
scale += exponent;
|
|
|
|
a_significand = significand;
|
|
|
|
}
|
|
|
|
|
|
|
|
if b_abs < implicit_bit {
|
|
|
|
let (exponent, significand) = F::normalize(b_significand);
|
|
|
|
scale -= exponent;
|
|
|
|
b_significand = significand;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
|
|
// won't hurt anything.)
|
|
|
|
a_significand |= implicit_bit;
|
|
|
|
b_significand |= implicit_bit;
|
|
|
|
let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent)
|
|
|
|
.wrapping_sub(CastInto::<i32>::cast(b_exponent))
|
|
|
|
.wrapping_add(scale);
|
|
|
|
|
|
|
|
// Align the significand of b as a Q31 fixed-point number in the range
|
|
|
|
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
|
|
|
|
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
|
|
|
|
// is accurate to about 3.5 binary digits.
|
|
|
|
let q31b = CastInto::<u32>::cast(b_significand >> 21.cast());
|
|
|
|
let mut recip32 = (0x7504f333u32).wrapping_sub(q31b);
|
|
|
|
|
|
|
|
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
|
|
|
|
//
|
|
|
|
// x1 = x0 * (2 - x0 * b)
|
|
|
|
//
|
|
|
|
// This doubles the number of correct binary digits in the approximation
|
|
|
|
// with each iteration, so after three iterations, we have about 28 binary
|
|
|
|
// digits of accuracy.
|
|
|
|
let mut correction32: u32;
|
|
|
|
correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
|
|
|
|
recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
|
|
|
|
correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
|
|
|
|
recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
|
|
|
|
correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
|
|
|
|
recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
|
|
|
|
|
|
|
|
// recip32 might have overflowed to exactly zero in the preceeding
|
|
|
|
// computation if the high word of b is exactly 1.0. This would sabotage
|
|
|
|
// the full-width final stage of the computation that follows, so we adjust
|
|
|
|
// recip32 downward by one bit.
|
|
|
|
recip32 = recip32.wrapping_sub(1);
|
|
|
|
|
|
|
|
// We need to perform one more iteration to get us to 56 binary digits;
|
|
|
|
// The last iteration needs to happen with extra precision.
|
|
|
|
let q63blo = CastInto::<u32>::cast(b_significand << 11.cast());
|
|
|
|
let correction: u64;
|
|
|
|
let mut reciprocal: u64;
|
|
|
|
correction = negate_u64(
|
|
|
|
(recip32 as u64)
|
|
|
|
.wrapping_mul(q31b as u64)
|
|
|
|
.wrapping_add((recip32 as u64).wrapping_mul(q63blo as u64) >> 32),
|
|
|
|
);
|
|
|
|
let c_hi = (correction >> 32) as u32;
|
|
|
|
let c_lo = correction as u32;
|
|
|
|
reciprocal = (recip32 as u64)
|
|
|
|
.wrapping_mul(c_hi as u64)
|
|
|
|
.wrapping_add((recip32 as u64).wrapping_mul(c_lo as u64) >> 32);
|
|
|
|
|
|
|
|
// We already adjusted the 32-bit estimate, now we need to adjust the final
|
|
|
|
// 64-bit reciprocal estimate downward to ensure that it is strictly smaller
|
|
|
|
// than the infinitely precise exact reciprocal. Because the computation
|
|
|
|
// of the Newton-Raphson step is truncating at every step, this adjustment
|
|
|
|
// is small; most of the work is already done.
|
|
|
|
reciprocal = reciprocal.wrapping_sub(2);
|
|
|
|
|
|
|
|
// The numerical reciprocal is accurate to within 2^-56, lies in the
|
|
|
|
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
|
|
|
|
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
|
|
|
|
// in Q53 with the following properties:
|
|
|
|
//
|
|
|
|
// 1. q < a/b
|
|
|
|
// 2. q is in the interval [0.5, 2.0)
|
|
|
|
// 3. the error in q is bounded away from 2^-53 (actually, we have a
|
|
|
|
// couple of bits to spare, but this is all we need).
|
|
|
|
|
|
|
|
// We need a 64 x 64 multiply high to compute q, which isn't a basic
|
|
|
|
// operation in C, so we need to be a little bit fussy.
|
|
|
|
// let mut quotient: F::Int = ((((reciprocal as u64)
|
|
|
|
// .wrapping_mul(CastInto::<u32>::cast(a_significand << 1) as u64))
|
|
|
|
// >> 32) as u32)
|
|
|
|
// .cast();
|
|
|
|
|
|
|
|
// We need a 64 x 64 multiply high to compute q, which isn't a basic
|
|
|
|
// operation in C, so we need to be a little bit fussy.
|
|
|
|
let (mut quotient, _) = <F::Int as WideInt>::wide_mul(a_significand << 2, reciprocal.cast());
|
|
|
|
|
|
|
|
|
|
|
|
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
|
|
|
|
// In either case, we are going to compute a residual of the form
|
|
|
|
//
|
|
|
|
// r = a - q*b
|
|
|
|
//
|
|
|
|
// We know from the construction of q that r satisfies:
|
|
|
|
//
|
|
|
|
// 0 <= r < ulp(q)*b
|
|
|
|
//
|
|
|
|
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
|
|
|
|
// already have the correct result. The exact halfway case cannot occur.
|
|
|
|
// We also take this time to right shift quotient if it falls in the [1,2)
|
|
|
|
// range and adjust the exponent accordingly.
|
|
|
|
let residual = if quotient < (implicit_bit << 1) {
|
|
|
|
quotient_exponent = quotient_exponent.wrapping_sub(1);
|
|
|
|
(a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand))
|
|
|
|
} else {
|
|
|
|
quotient >>= 1;
|
|
|
|
(a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand))
|
|
|
|
};
|
|
|
|
|
|
|
|
let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32);
|
|
|
|
|
|
|
|
if written_exponent >= max_exponent as i32 {
|
|
|
|
// If we have overflowed the exponent, return infinity.
|
|
|
|
return F::from_repr(inf_rep | quotient_sign);
|
|
|
|
} else if written_exponent < 1 {
|
|
|
|
// Flush denormals to zero. In the future, it would be nice to add
|
|
|
|
// code to round them correctly.
|
|
|
|
return F::from_repr(quotient_sign);
|
|
|
|
} else {
|
|
|
|
let round = ((residual << 1) > b_significand) as u32;
|
|
|
|
// Clear the implicit bits
|
|
|
|
let mut abs_result = quotient & significand_mask;
|
|
|
|
// Insert the exponent
|
|
|
|
abs_result |= written_exponent.cast() << significand_bits;
|
|
|
|
// Round
|
|
|
|
abs_result = abs_result.wrapping_add(round.cast());
|
|
|
|
// Insert the sign and return
|
|
|
|
return F::from_repr(abs_result | quotient_sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
intrinsics! {
|
|
|
|
#[arm_aeabi_alias = __aeabi_fdiv]
|
|
|
|
pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
|
|
|
|
div32(a, b)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_ddiv]
|
|
|
|
pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
|
|
|
|
div64(a, b)
|
|
|
|
}
|
|
|
|
|
2018-01-31 01:48:20 +08:00
|
|
|
#[cfg(target_arch = "arm")]
|
2018-01-30 02:52:55 +08:00
|
|
|
pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 {
|
|
|
|
a / b
|
|
|
|
}
|
|
|
|
|
2018-01-31 01:48:20 +08:00
|
|
|
#[cfg(target_arch = "arm")]
|
2018-01-30 02:52:55 +08:00
|
|
|
pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 {
|
|
|
|
a / b
|
|
|
|
}
|
2017-11-13 03:40:17 +08:00
|
|
|
}
|