2016-08-18 04:51:37 +08:00
|
|
|
use core::num::Wrapping;
|
|
|
|
use float::Float;
|
|
|
|
|
|
|
|
macro_rules! add {
|
|
|
|
($intrinsic:ident: $ty:ty) => {
|
|
|
|
/// Returns `a + b`
|
|
|
|
#[allow(unused_parens)]
|
|
|
|
#[cfg_attr(not(test), no_mangle)]
|
|
|
|
pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty {
|
|
|
|
let one = Wrapping(1 as <$ty as Float>::Int);
|
|
|
|
let zero = Wrapping(0 as <$ty as Float>::Int);
|
|
|
|
|
|
|
|
let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
|
|
|
|
let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
|
|
|
|
let exponent_bits = bits - significand_bits - one;
|
|
|
|
let max_exponent = (one << exponent_bits.0 as usize) - one;
|
|
|
|
|
|
|
|
let implicit_bit = one << significand_bits.0 as usize;
|
|
|
|
let significand_mask = implicit_bit - one;
|
|
|
|
let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
|
|
|
|
let abs_mask = sign_bit - one;
|
|
|
|
let exponent_mask = abs_mask ^ significand_mask;
|
|
|
|
let inf_rep = exponent_mask;
|
|
|
|
let quiet_bit = implicit_bit >> 1;
|
|
|
|
let qnan_rep = exponent_mask | quiet_bit;
|
|
|
|
|
|
|
|
let mut a_rep = Wrapping(a.repr());
|
|
|
|
let mut b_rep = Wrapping(b.repr());
|
|
|
|
let a_abs = a_rep & abs_mask;
|
|
|
|
let b_abs = b_rep & abs_mask;
|
|
|
|
|
|
|
|
// Detect if a or b is zero, infinity, or NaN.
|
|
|
|
if a_abs - one >= inf_rep - one ||
|
|
|
|
b_abs - one >= inf_rep - one {
|
|
|
|
// NaN + anything = qNaN
|
|
|
|
if a_abs > inf_rep {
|
|
|
|
return (<$ty as Float>::from_repr((a_abs | quiet_bit).0));
|
|
|
|
}
|
|
|
|
// anything + NaN = qNaN
|
|
|
|
if b_abs > inf_rep {
|
|
|
|
return (<$ty as Float>::from_repr((b_abs | quiet_bit).0));
|
|
|
|
}
|
|
|
|
|
|
|
|
if a_abs == inf_rep {
|
|
|
|
// +/-infinity + -/+infinity = qNaN
|
|
|
|
if (a.repr() ^ b.repr()) == sign_bit.0 {
|
|
|
|
return (<$ty as Float>::from_repr(qnan_rep.0));
|
|
|
|
} else {
|
|
|
|
// +/-infinity + anything remaining = +/- infinity
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// anything remaining + +/-infinity = +/-infinity
|
|
|
|
if b_abs == inf_rep {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
// zero + anything = anything
|
|
|
|
if a_abs.0 == 0 {
|
|
|
|
// but we need to get the sign right for zero + zero
|
|
|
|
if b_abs.0 == 0 {
|
|
|
|
return (<$ty as Float>::from_repr(a.repr() & b.repr()));
|
|
|
|
} else {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// anything + zero = anything
|
|
|
|
if b_abs.0 == 0 {
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Swap a and b if necessary so that a has the larger absolute value.
|
|
|
|
if b_abs > a_abs {
|
2016-08-21 11:30:02 +08:00
|
|
|
::core::mem::swap(&mut a_rep, &mut b_rep);
|
2016-08-18 04:51:37 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Extract the exponent and significand from the (possibly swapped) a and b.
|
|
|
|
let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
|
|
|
|
let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
|
|
|
|
let mut a_significand = a_rep & significand_mask;
|
|
|
|
let mut b_significand = b_rep & significand_mask;
|
|
|
|
|
|
|
|
// normalize any denormals, and adjust the exponent accordingly.
|
|
|
|
if a_exponent.0 == 0 {
|
|
|
|
let (exponent, significand) = <$ty>::normalize(a_significand.0);
|
|
|
|
a_exponent = Wrapping(exponent);
|
|
|
|
a_significand = Wrapping(significand);
|
|
|
|
}
|
|
|
|
if b_exponent.0 == 0 {
|
|
|
|
let (exponent, significand) = <$ty>::normalize(b_significand.0);
|
|
|
|
b_exponent = Wrapping(exponent);
|
|
|
|
b_significand = Wrapping(significand);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The sign of the result is the sign of the larger operand, a. If they
|
|
|
|
// have opposite signs, we are performing a subtraction; otherwise addition.
|
|
|
|
let result_sign = a_rep & sign_bit;
|
|
|
|
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
|
|
|
|
|
|
|
|
// Shift the significands to give us round, guard and sticky, and or in the
|
|
|
|
// implicit significand bit. (If we fell through from the denormal path it
|
|
|
|
// was already set by normalize(), but setting it twice won't hurt
|
|
|
|
// anything.)
|
|
|
|
a_significand = (a_significand | implicit_bit) << 3;
|
|
|
|
b_significand = (b_significand | implicit_bit) << 3;
|
|
|
|
|
|
|
|
// Shift the significand of b by the difference in exponents, with a sticky
|
|
|
|
// bottom bit to get rounding correct.
|
|
|
|
let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
|
|
|
|
if align.0 != 0 {
|
|
|
|
if align < bits {
|
|
|
|
let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
|
|
|
|
b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
|
|
|
|
} else {
|
|
|
|
b_significand = one; // sticky; b is known to be non-zero.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if subtraction {
|
|
|
|
a_significand -= b_significand;
|
|
|
|
// If a == -b, return +zero.
|
|
|
|
if a_significand.0 == 0 {
|
|
|
|
return (<$ty as Float>::from_repr(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// If partial cancellation occured, we need to left-shift the result
|
|
|
|
// and adjust the exponent:
|
|
|
|
if a_significand < implicit_bit << 3 {
|
|
|
|
let shift = a_significand.0.leading_zeros() as i32
|
|
|
|
- (implicit_bit << 3).0.leading_zeros() as i32;
|
|
|
|
a_significand <<= shift as usize;
|
|
|
|
a_exponent -= Wrapping(shift);
|
|
|
|
}
|
|
|
|
} else /* addition */ {
|
|
|
|
a_significand += b_significand;
|
|
|
|
|
|
|
|
// If the addition carried up, we need to right-shift the result and
|
|
|
|
// adjust the exponent:
|
|
|
|
if (a_significand & implicit_bit << 4).0 != 0 {
|
|
|
|
let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
|
|
|
|
a_significand = a_significand >> 1 | Wrapping(sticky);
|
|
|
|
a_exponent += Wrapping(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we have overflowed the type, return +/- infinity:
|
|
|
|
if a_exponent >= Wrapping(max_exponent.0 as i32) {
|
|
|
|
return (<$ty>::from_repr((inf_rep | result_sign).0));
|
|
|
|
}
|
|
|
|
|
|
|
|
if a_exponent.0 <= 0 {
|
|
|
|
// Result is denormal before rounding; the exponent is zero and we
|
|
|
|
// need to shift the significand.
|
|
|
|
let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
|
|
|
|
let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
|
|
|
|
a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
|
|
|
|
a_exponent = Wrapping(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Low three bits are round, guard, and sticky.
|
|
|
|
let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
|
|
|
|
|
|
|
|
// Shift the significand into place, and mask off the implicit bit.
|
|
|
|
let mut result = a_significand >> 3 & significand_mask;
|
|
|
|
|
|
|
|
// Insert the exponent and sign.
|
|
|
|
result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
|
|
|
|
result |= result_sign;
|
|
|
|
|
|
|
|
// Final rounding. The result may overflow to infinity, but that is the
|
|
|
|
// correct result in that case.
|
|
|
|
if round_guard_sticky > 0x4 { result += one; }
|
|
|
|
if round_guard_sticky == 0x4 { result += result & one; }
|
|
|
|
return (<$ty>::from_repr(result.0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
add!(__addsf3: f32);
|
|
|
|
add!(__adddf3: f64);
|
|
|
|
|
|
|
|
// FIXME: Implement these using aliases
|
|
|
|
#[cfg(target_arch = "arm")]
|
|
|
|
#[cfg_attr(not(test), no_mangle)]
|
|
|
|
pub extern fn __aeabi_dadd(a: f64, b: f64) -> f64 {
|
|
|
|
__adddf3(a, b)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(target_arch = "arm")]
|
|
|
|
#[cfg_attr(not(test), no_mangle)]
|
|
|
|
pub extern fn __aeabi_fadd(a: f32, b: f32) -> f32 {
|
|
|
|
__addsf3(a, b)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use core::{f32, f64};
|
|
|
|
use qc::{U32, U64};
|
|
|
|
use float::Float;
|
|
|
|
|
|
|
|
// NOTE The tests below have special handing for NaN values.
|
|
|
|
// Because NaN != NaN, the floating-point representations must be used
|
|
|
|
// Because there are many diffferent values of NaN, and the implementation
|
|
|
|
// doesn't care about calculating the 'correct' one, if both values are NaN
|
|
|
|
// the values are considered equivalent.
|
|
|
|
|
|
|
|
// TODO: Add F32/F64 to qc so that they print the right values (at the very least)
|
|
|
|
quickcheck! {
|
|
|
|
fn addsf3(a: U32, b: U32) -> bool {
|
|
|
|
let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0));
|
|
|
|
let x = super::__addsf3(a, b);
|
|
|
|
let y = a + b;
|
|
|
|
if !(x.is_nan() && y.is_nan()) {
|
|
|
|
x.repr() == y.repr()
|
|
|
|
} else {
|
|
|
|
true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn adddf3(a: U64, b: U64) -> bool {
|
|
|
|
let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0));
|
|
|
|
let x = super::__adddf3(a, b);
|
|
|
|
let y = a + b;
|
|
|
|
if !(x.is_nan() && y.is_nan()) {
|
|
|
|
x.repr() == y.repr()
|
|
|
|
} else {
|
|
|
|
true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// More tests for special float values
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_tiny_plus_tiny() {
|
|
|
|
let tiny = f32::from_repr(1);
|
|
|
|
let r = super::__addsf3(tiny, tiny);
|
|
|
|
assert_eq!(r, tiny + tiny);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_double_tiny_plus_tiny() {
|
|
|
|
let tiny = f64::from_repr(1);
|
|
|
|
let r = super::__adddf3(tiny, tiny);
|
|
|
|
assert_eq!(r, tiny + tiny);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_small_plus_small() {
|
|
|
|
let a = f32::from_repr(327);
|
|
|
|
let b = f32::from_repr(256);
|
|
|
|
let r = super::__addsf3(a, b);
|
|
|
|
assert_eq!(r, a + b);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_double_small_plus_small() {
|
|
|
|
let a = f64::from_repr(327);
|
|
|
|
let b = f64::from_repr(256);
|
|
|
|
let r = super::__adddf3(a, b);
|
|
|
|
assert_eq!(r, a + b);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_one_plus_one() {
|
|
|
|
let r = super::__addsf3(1f32, 1f32);
|
|
|
|
assert_eq!(r, 1f32 + 1f32);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_double_one_plus_one() {
|
|
|
|
let r = super::__adddf3(1f64, 1f64);
|
|
|
|
assert_eq!(r, 1f64 + 1f64);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_different_nan() {
|
|
|
|
let a = f32::from_repr(1);
|
|
|
|
let b = f32::from_repr(0b11111111100100010001001010101010);
|
|
|
|
let x = super::__addsf3(a, b);
|
|
|
|
let y = a + b;
|
|
|
|
if !(x.is_nan() && y.is_nan()) {
|
|
|
|
assert_eq!(x.repr(), y.repr());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_double_different_nan() {
|
|
|
|
let a = f64::from_repr(1);
|
|
|
|
let b = f64::from_repr(
|
|
|
|
0b1111111111110010001000100101010101001000101010000110100011101011);
|
|
|
|
let x = super::__adddf3(a, b);
|
|
|
|
let y = a + b;
|
|
|
|
if !(x.is_nan() && y.is_nan()) {
|
|
|
|
assert_eq!(x.repr(), y.repr());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_nan() {
|
|
|
|
let r = super::__addsf3(f32::NAN, 1.23);
|
|
|
|
assert_eq!(r.repr(), f32::NAN.repr());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_double_nan() {
|
|
|
|
let r = super::__adddf3(f64::NAN, 1.23);
|
|
|
|
assert_eq!(r.repr(), f64::NAN.repr());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_inf() {
|
|
|
|
let r = super::__addsf3(f32::INFINITY, -123.4);
|
|
|
|
assert_eq!(r, f32::INFINITY);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_double_inf() {
|
|
|
|
let r = super::__adddf3(f64::INFINITY, -123.4);
|
|
|
|
assert_eq!(r, f64::INFINITY);
|
|
|
|
}
|
|
|
|
}
|