artiq/examples/master/repository/transport.py

105 lines
3.2 KiB
Python

# Copyright (C) 2014, 2015 Robert Jordens <jordens@gmail.com>
import numpy as np
from artiq import *
# data is usually precomputed offline
transport_data = dict(
t=np.linspace(0, 10, 101), # waveform time
u=np.random.randn(101, 4*3*3), # waveform data,
# 4 devices, 3 board each, 3 dacs each
)
class Transport(EnvExperiment):
"""Transport"""
def build(self):
self.setattr_device("core")
self.setattr_device("bd")
self.setattr_device("bdd")
self.setattr_device("pmt")
self.setattr_device("electrodes")
self.setattr_argument("wait_at_stop", FreeValue(100*us))
self.setattr_argument("speed", FreeValue(1.5))
self.setattr_argument("repeats", FreeValue(100))
self.setattr_argument("nbins", FreeValue(100))
def calc_waveforms(self, stop):
t = transport_data["t"][:stop]*self.speed
u = transport_data["u"][:stop]
self.electrodes.disarm()
self.tf = self.electrodes.create_frame()
self.tf.create_segment(t, u, name="to_stop")
# append the reverse transport (from stop to 0)
# both durations are the same in this case
self.tf.create_segment(t[-1] - t[::-1], u[::-1], name="from_stop")
# distributes frames to the sub-devices in CompoundPDQ2
# and uploads them
self.electrodes.arm()
@kernel
def cool(self):
with parallel:
self.bd.pulse(200*MHz, 1*ms)
self.bdd.pulse(300*MHz, 1*ms)
self.bd.pulse(210*MHz, 100*us)
@kernel
def transport(self):
# selects transport frame
# triggers pdqs to start transport frame segment
# plays the transport waveform from 0 to stop
# delay()s the core by the duration of the waveform segment
self.tf.to_stop.advance()
# leaves the ion in the dark at the transport endpoint
delay(self.wait_at_stop)
# transport back (again: trigger, delay())
# segments can only be advance()ed in order
# since this is the last segment, pdq will go back to jump table
self.tf.from_stop.advance()
@kernel
def detect(self):
with parallel:
self.bd.pulse(220*MHz, 100*us)
self.pmt.gate_rising(100*us)
self.bd.on(200*MHz)
self.bdd.on(300*MHz)
return self.pmt.count()
@kernel
def one(self):
self.cool()
self.transport()
return self.detect()
@kernel
def repeat(self):
self.histogram = [0 for _ in range(self.nbins)]
for i in range(self.repeats):
n = self.one()
if n >= self.nbins:
n = self.nbins - 1
self.histogram[n] += 1
def scan(self, stops):
for s in stops:
self.histogram = []
# non-kernel, build frames
# could also be rpc'ed from repeat()
self.calc_waveforms(s)
# kernel part
self.repeat()
# live update 2d plot with current self.histogram
# broadcast(s, self.histogram)
def run(self):
# scan transport endpoint
stops = range(10, len(transport_data["t"]), 10)
self.scan(stops)