mirror of
https://github.com/m-labs/artiq.git
synced 2025-02-11 18:13:19 +08:00
115 lines
3.8 KiB
Python
115 lines
3.8 KiB
Python
from math import ceil
|
|
from functools import reduce
|
|
from operator import add
|
|
|
|
from migen import *
|
|
from migen.genlib.cdc import MultiReg, PulseSynchronizer
|
|
|
|
|
|
# Changes the phase of the transceiver RX clock to align the comma to
|
|
# the LSBs of RXDATA, fixing the latency.
|
|
#
|
|
# This is implemented by repeatedly resetting the transceiver until it
|
|
# gives out the correct phase. Each reset gives a random phase.
|
|
#
|
|
# If Xilinx had designed the GTX transceiver correctly, RXSLIDE_MODE=PMA
|
|
# would achieve this faster and in a cleaner way. But:
|
|
# * the phase jumps are of 2 UI at every second RXSLIDE pulse, instead
|
|
# of 1 UI at every pulse. It is unclear what the latency becomes.
|
|
# * RXSLIDE_MODE=PMA cannot be used with the RX buffer bypassed.
|
|
# Those design flaws make RXSLIDE_MODE=PMA yet another broken and useless
|
|
# transceiver "feature".
|
|
#
|
|
# Warning: Xilinx transceivers are LSB first, and comma needs to be flipped
|
|
# compared to the usual 8b10b binary representation.
|
|
class BruteforceClockAligner(Module):
|
|
def __init__(self, comma, tx_clk_freq, check_period=6e-3):
|
|
self.rxdata = Signal(20)
|
|
self.restart = Signal()
|
|
|
|
self.ready = Signal()
|
|
|
|
check_max_val = ceil(check_period*tx_clk_freq)
|
|
check_counter = Signal(max=check_max_val+1)
|
|
check = Signal()
|
|
reset_check_counter = Signal()
|
|
self.sync.rtio_tx += [
|
|
check.eq(0),
|
|
If(reset_check_counter,
|
|
check_counter.eq(check_max_val)
|
|
).Else(
|
|
If(check_counter == 0,
|
|
check.eq(1),
|
|
check_counter.eq(check_max_val)
|
|
).Else(
|
|
check_counter.eq(check_counter-1)
|
|
)
|
|
)
|
|
]
|
|
|
|
checks_reset = PulseSynchronizer("rtio_tx", "rtio_rx")
|
|
self.submodules += checks_reset
|
|
|
|
comma_n = ~comma & 0b1111111111
|
|
comma_seen_rxclk = Signal()
|
|
comma_seen = Signal()
|
|
comma_seen_rxclk.attr.add("no_retiming")
|
|
self.specials += MultiReg(comma_seen_rxclk, comma_seen)
|
|
self.sync.rtio_rx += \
|
|
If(checks_reset.o,
|
|
comma_seen_rxclk.eq(0)
|
|
).Elif((self.rxdata[:10] == comma) | (self.rxdata[:10] == comma_n),
|
|
comma_seen_rxclk.eq(1)
|
|
)
|
|
|
|
error_seen_rxclk = Signal()
|
|
error_seen = Signal()
|
|
error_seen_rxclk.attr.add("no_retiming")
|
|
self.specials += MultiReg(error_seen_rxclk, error_seen)
|
|
rx1cnt = Signal(max=11)
|
|
self.sync.rtio_rx += [
|
|
rx1cnt.eq(reduce(add, [self.rxdata[i] for i in range(10)])),
|
|
If(checks_reset.o,
|
|
error_seen_rxclk.eq(0)
|
|
).Elif((rx1cnt != 4) & (rx1cnt != 5) & (rx1cnt != 6),
|
|
error_seen_rxclk.eq(1)
|
|
)
|
|
]
|
|
|
|
fsm = ClockDomainsRenamer("rtio_tx")(FSM(reset_state="WAIT_COMMA"))
|
|
self.submodules += fsm
|
|
|
|
fsm.act("WAIT_COMMA",
|
|
If(check,
|
|
# Errors are still OK at this stage, as the transceiver
|
|
# has just been reset and may output garbage data.
|
|
If(comma_seen,
|
|
NextState("WAIT_NOERROR")
|
|
).Else(
|
|
self.restart.eq(1)
|
|
),
|
|
checks_reset.i.eq(1)
|
|
)
|
|
)
|
|
fsm.act("WAIT_NOERROR",
|
|
If(check,
|
|
If(comma_seen & ~error_seen,
|
|
NextState("READY")
|
|
).Else(
|
|
self.restart.eq(1),
|
|
NextState("WAIT_COMMA")
|
|
),
|
|
checks_reset.i.eq(1)
|
|
)
|
|
)
|
|
fsm.act("READY",
|
|
reset_check_counter.eq(1),
|
|
self.ready.eq(1),
|
|
If(error_seen,
|
|
checks_reset.i.eq(1),
|
|
self.restart.eq(1),
|
|
NextState("WAIT_COMMA")
|
|
)
|
|
)
|
|
|