mirror of
https://github.com/m-labs/artiq.git
synced 2025-01-12 12:03:35 +08:00
35 lines
2.9 KiB
ReStructuredText
35 lines
2.9 KiB
ReStructuredText
Introduction
|
|
------------
|
|
|
|
.. this does not work because of relative paths for the logo:
|
|
.. include:: ../../README.rst
|
|
and including in README.rst does not work on github therefore just keep this content synchronized with README.rst
|
|
|
|
ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) is the next-generation control system for quantum information experiments.
|
|
It is developed by `M-Labs <https://m-labs.hk>`_ for and in partnership with the `Ion Storage Group at NIST <http://www.nist.gov/pml/div688/grp10/index.cfm>`_ as free software.
|
|
It is offered to the entire research community as a solution equally applicable to other challenging control tasks outside the field of ion trapping.
|
|
|
|
The system features a high-level programming language that helps describing complex experiments, which is compiled and executed on dedicated hardware with nanosecond timing resolution and sub-microsecond latency. It includes graphical user interfaces to parametrize and schedule experiments and to visualize and explore the results.
|
|
|
|
ARTIQ uses FPGA hardware to perform its time-critical tasks.
|
|
It is designed to be portable to hardware platforms from different vendors and FPGA manufacturers.
|
|
Currently, one configuration of a `low-cost open hardware FPGA board <http://pipistrello.saanlima.com/>`_ and several different configurations of a `high-end FPGA evaluation kit <http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html>`_ are used and supported.
|
|
Any of these FPGA platforms can be combined with any number of additional peripherals, either already accessible from ARTIQ or made accessible with little effort.
|
|
|
|
Custom hardware components with widely extended capabilities and advanced support for scalable and fully distributed real-time control of experiments `are being designed <https://github.com/m-labs/artiq-hardware>`_.
|
|
|
|
ARTIQ and its dependencies are available in the form of `conda packages <https://conda.anaconda.org/m-labs/label/main>`_ for both Linux and Windows.
|
|
Packages containing pre-compiled binary images to be loaded onto the hardware platforms are supplied for each configuration.
|
|
Like any open source software ARTIQ can equally be built and installed directly from `source <https://github.com/m-labs/artiq>`_.
|
|
|
|
ARTIQ is supported by M-Labs and developed openly.
|
|
Components, features, fixes, improvements, and extensions are funded by and developed for the partnering research groups.
|
|
|
|
Technologies employed include `Python <https://www.python.org/>`_, `Migen <https://github.com/m-labs/migen>`_, `MiSoC <https://github.com/m-labs/misoc>`_/`mor1kx <https://github.com/openrisc/mor1kx>`_, `LLVM <http://llvm.org/>`_/`llvmlite <https://github.com/numba/llvmlite>`_, and `Qt5 <http://www.qt.io/>`_.
|
|
|
|
Website: https://m-labs.hk/artiq
|
|
|
|
`Cite ARTIQ <http://dx.doi.org/10.5281/zenodo.51303>`_ as ``Bourdeauducq, Sébastien et al. (2016). ARTIQ 1.0. Zenodo. 10.5281/zenodo.51303``.
|
|
|
|
Copyright (C) 2014-2017 M-Labs Limited. Licensed under GNU GPL version 3.
|