mirror of
https://github.com/m-labs/artiq.git
synced 2025-01-18 06:36:41 +08:00
e7d3f36b91
These examples were already broken before my recent changes to the artiq.coredevice.ttl API.
271 lines
8.8 KiB
TeX
271 lines
8.8 KiB
TeX
% Copyright (C) 2014, 2015 Robert Jordens <jordens@gmail.com>
|
|
|
|
\documentclass[final,presentation,compress]{beamer}
|
|
\usepackage[mathcal]{euler}
|
|
\usepackage{amsmath, amssymb, amsopn} %amssymb,amstext
|
|
\usepackage[cm-default]{fontspec}
|
|
\usepackage{xltxtra}
|
|
\usepackage[english]{babel}
|
|
\usepackage{multicol}
|
|
\usepackage{multimedia}
|
|
\usepackage{tikz}
|
|
\usetikzlibrary{arrows,shapes,snakes,positioning,backgrounds,decorations,graphs}
|
|
\definecolor{ethblue}{rgb}{0, 0.2, 0.3568}
|
|
\usepackage{minted}
|
|
|
|
\mode<presentation>
|
|
{
|
|
\useoutertheme{default} % simplistic
|
|
\setbeamertemplate{headline}[default] % kill the headline
|
|
\setbeamertemplate{navigation symbols}{} % no navigaton stuff in lr corner
|
|
\useinnertheme{circles}
|
|
\setbeamercolor*{palette primary}{use=structure,fg=white,bg=ethblue!70}
|
|
\setbeamercolor*{palette secondary}{use=structure,fg=white,bg=ethblue!80}
|
|
\setbeamercolor*{palette tertiary}{use=structure,fg=white,bg=ethblue!90}
|
|
\setbeamercolor*{palette quaternary}{use=structure,fg=white,bg=ethblue!100}
|
|
\setbeamercolor*{structure}{fg=ethblue!70}
|
|
\hypersetup{
|
|
}
|
|
\setbeamercovered{invisible}
|
|
}
|
|
|
|
\graphicspath{{fig//}}
|
|
|
|
\title{Real-time experiment control for quantum physics}
|
|
\author[Robert~Jördens]{{\bf Robert~Jördens}}
|
|
\institute[]{
|
|
Ion Storage Group, Time and Frequency, NIST, Boulder, CO \\
|
|
\url{rjordens@nist.gov}%
|
|
}
|
|
|
|
\begin{document}
|
|
|
|
\begin{frame}[plain]
|
|
\titlepage
|
|
\tikz[overlay,remember picture]\node[anchor=south,above=-.5cm] at (current page.south)
|
|
{\includegraphics[width=\paperwidth]{flatirons_winter_wikipedia}};
|
|
\tikz[overlay,remember picture]\node[anchor=south east, fill=white,
|
|
inner sep=.3mm] at (current page.south east) {%
|
|
\tiny Jesse Varner, AzaToth, CC-BY-SA};
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\includegraphics[width=\columnwidth]{jost_trap-3}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Quantum gate sequences}
|
|
\includegraphics[width=\columnwidth]{gate_sequence}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\begin{tikzpicture}[box/.style={rectangle,fill=white}]
|
|
\node[inner sep=0] {\includegraphics[width=\columnwidth]{lab}};\pause
|
|
%\draw[help lines,white] (-4, -3) grid (4, 3);
|
|
\node[box] at (-4, -2) {FPGA};
|
|
\node[box] at (3.5, 0) {ion trap};
|
|
\node[box] at (-3, 3) {$\sim$10 attenuators};
|
|
\node[box] at (2, 2) {$\sim$50 DAC};
|
|
\node[box] at (-4, 0) {$\sim$20 DDS};
|
|
\node[box] at (-2, 1) {$\sim$50 GPIO};
|
|
\node[box] at (.5, 0) {$\sim$10 motors};
|
|
\node[box] at (2, -2) {$\sim$10 power supplies};
|
|
\node[box] at (4, -3) {$\sim$10 lasers};
|
|
\end{tikzpicture}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Physicists are not programmers:}
|
|
\footnotesize
|
|
\begin{center}
|
|
\only<1>{\includegraphics[width=\columnwidth]{labview}\\
|
|
LabVIEW: a ``visual programming language'' (a.k.a. ``high viscosity language'')}
|
|
\only<2>{\includegraphics[width=\columnwidth]{expwiz_matrix}\\
|
|
Rigid time-versus-channel matrix: inflexible (loops, conditionals?)}
|
|
\only<3>{\includegraphics[width=\columnwidth]{control_buttons}\\
|
|
Hard-coded components: not generic and opaque implementation}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Enter ARTIQ}
|
|
\alert{A}dvanced \alert{R}eal-\alert{T}ime \alert{I}nfrastructure for \alert{Q}uantum physics
|
|
|
|
\footnotesize
|
|
\begin{itemize}
|
|
\item High performance --- nanosecond resolution, hundreds of ns latency
|
|
\item Expressive --- describe algorithms with few lines of code
|
|
\item Portable --- treat hardware, especially FPGA boards, as commodity
|
|
\item Modular --- separate components as much as possible
|
|
\item Flexible --- hard-code as little as possible
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]
|
|
\frametitle{Define a simple timing language}
|
|
\footnotesize
|
|
|
|
\begin{minted}[frame=leftline]{python}
|
|
# wait for trigger input and capture timestamp
|
|
start = trigger.timestamp_mu(trigger.gate_rising(100*ms))
|
|
for i in range(3):
|
|
delay(5*us)
|
|
dds.pulse(900*MHz, 7*us) # first pulse 5 µs after trigger
|
|
# re-reference time-line
|
|
at_mu(start + seconds_to_mu(1*ms))
|
|
dds.pulse(200*MHz, 11*us) # exactly 1 ms after trigger
|
|
\end{minted}
|
|
|
|
\begin{itemize}
|
|
\item Written in a subset of Python
|
|
\item Executed on a CPU embedded on a FPGA (the \emph{core device})
|
|
\item \verb!now_mu(), at_mu(), delay_mu(), delay()! describe time-line of an experiment
|
|
\item Exact time is kept in an internal variable
|
|
\item That variable only loosely tracks the execution time of CPU instructions
|
|
\item The value of that variable is exchanged with the RTIO fabric that
|
|
does precise timing
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}[fragile]
|
|
\frametitle{Convenient syntax additions}
|
|
\footnotesize
|
|
\begin{minted}[frame=leftline]{python}
|
|
with sequential:
|
|
with parallel:
|
|
a.pulse(100*MHz, 10*us)
|
|
b.pulse(200*MHz, 20*us)
|
|
with parallel:
|
|
c.pulse(300*MHz, 30*us)
|
|
d.pulse(400*MHz, 20*us)
|
|
\end{minted}
|
|
|
|
\begin{itemize}
|
|
\item Experiments are inherently parallel:
|
|
simultaneous laser pulses, parallel cooling of ions in different trap zones
|
|
\item \verb!parallel! and \verb!sequential! contexts with arbitrary nesting
|
|
\item \verb!a! and \verb!b! pulses both start at the same time
|
|
\item \verb!c! and \verb!d! pulses both start when \verb!a! and \verb!b! are both done
|
|
(after 20\,µs)
|
|
\item Implemented by inlining, loop-unrolling, and interleaving
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}[fragile]
|
|
\frametitle{Physical quantities, hardware granularity}
|
|
\footnotesize
|
|
\begin{minted}[frame=leftline]{python}
|
|
n = 1000
|
|
dt = 1.2345*ns
|
|
f = 345*MHz
|
|
|
|
dds.on(f, phase=0) # must round to integer tuning word
|
|
for i in range(n):
|
|
delay(dt) # must round to native cycles
|
|
|
|
dt_raw = seconds_to_mu(dt) # integer number of cycles
|
|
f_raw = dds.frequency_to_ftw(f) # integer frequency tuning word
|
|
|
|
# determine correct (to FP precision) phase
|
|
# despite accumulation of rounding errors
|
|
phi = n*mu_to_seconds(dt_raw)*dds.ftw_to_frequency(f_raw)
|
|
\end{minted}
|
|
|
|
\begin{itemize}
|
|
\item Need well defined conversion and rounding of physical quantities
|
|
(time, frequency, phase, etc.) to hardware granularity and back
|
|
\item Complicated because of calibration, offsets, cable delays,
|
|
non-linearities
|
|
\item No generic way to do it automatically and correctly
|
|
\item $\rightarrow$ need to do it explicitly where it matters
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}[fragile]
|
|
\frametitle{Invite organizing experiment components and code reuse}
|
|
\footnotesize
|
|
|
|
\begin{minted}[frame=leftline]{python}
|
|
class Experiment:
|
|
def build(self):
|
|
self.ion1 = Ion(...)
|
|
self.ion2 = Ion(...)
|
|
self.transporter = Transporter(...)
|
|
|
|
@kernel
|
|
def run(self):
|
|
with parallel:
|
|
self.ion1.cool(duration=10*us)
|
|
self.ion2.cool(frequency=...)
|
|
self.transporter.move(speed=...)
|
|
delay(100*ms)
|
|
self.ion1.detect(duration=...)
|
|
\end{minted}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}[fragile]
|
|
\frametitle{RPC to handle distributed non-RT hardware}
|
|
\footnotesize
|
|
|
|
\begin{minted}[frame=leftline]{python}
|
|
class Experiment:
|
|
def prepare(self): # runs on the host
|
|
self.motor.move_to(20*mm) # slow RS232 motor controller
|
|
|
|
@kernel
|
|
def run(self): # runs on the RT core device
|
|
self.prepare() # converted into an RPC
|
|
\end{minted}
|
|
|
|
\begin{itemize}
|
|
\item When a kernel function calls a non-kernel function, it generates a RPC
|
|
\item The callee is executed on the host
|
|
\item Mechanism to report results and control slow devices
|
|
\item The kernel must have a loose real-time constraint (a long \verb!delay!)
|
|
or means of re-synchronization to cover communication, host, and device delays
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Kernel deployment to the core device}
|
|
\footnotesize
|
|
\begin{itemize}
|
|
\item The Python AST is converted to LLVM IR
|
|
\item The LLVM IR is compiled to OpenRISC machine code
|
|
\item The OpenRISC binary is sent to the core device
|
|
\item The runtime in the core device links and runs the kernel
|
|
\item The kernel calls the runtime for communication (RPC) and interfacing
|
|
with core device peripherals (RTIO, DDS)
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\begin{center}
|
|
\url{https://github.com/m-labs/artiq}
|
|
\end{center}
|
|
|
|
\footnotesize
|
|
\begin{itemize}
|
|
\item Fully open-source, BSD licensed
|
|
\item Ported and running on two different FPGA boards
|
|
\item Design applicable beyond ion trapping (superconducting qubits,
|
|
neutral atoms...)
|
|
\item Fastest open-source DDR3 SODIMM controller as a sub-project: 64\,Gbps
|
|
\item Interfacing with lab hardware
|
|
\item Hardware-in-the-loop unittests
|
|
\item Self-contained simulator
|
|
\item Currently $\sim$1\,µs latency and $\sim$1\,MHz event rate
|
|
\item DMA should improve that dramatically
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
\end{document}
|
|
% vim:ts=2:sw=2:et:ai
|