mirror of
https://github.com/m-labs/artiq.git
synced 2025-01-08 01:53:34 +08:00
139 lines
4.8 KiB
Python
139 lines
4.8 KiB
Python
# Robert Jordens <rj@m-labs.hk>, 2016
|
||
|
||
import numpy as np
|
||
|
||
|
||
class Ticker:
|
||
# TODO: if this turns out to be computationally expensive, then refactor
|
||
# such that the log()s and intermediate values are reused. But
|
||
# probably the string formatting itself is the limiting factor here.
|
||
def __init__(self, min_ticks=3, precision=3, steps=(5, 2, 1, .5)):
|
||
"""
|
||
min_ticks: minimum number of ticks to generate
|
||
The maximum number of ticks is
|
||
max(consecutive ratios in steps)*min_ticks
|
||
thus 5/2*min_ticks for default steps.
|
||
precision: maximum number of significant digits in labels
|
||
Also extract common offset and magnitude from ticks
|
||
if dynamic range exceeds precision number of digits
|
||
(small range on top of large offset).
|
||
steps: tick increments at a given magnitude
|
||
The .5 catches rounding errors where the calculation
|
||
of step_magnitude falls into the wrong exponent bin.
|
||
"""
|
||
self.min_ticks = min_ticks
|
||
self.precision = precision
|
||
self.steps = steps
|
||
|
||
def step(self, i):
|
||
"""
|
||
Return recommended step value for interval size `i`.
|
||
"""
|
||
if not i:
|
||
raise ValueError("Need a finite interval")
|
||
step = i/self.min_ticks # rational step size for min_ticks
|
||
step_magnitude = 10**np.floor(np.log10(step))
|
||
# underlying magnitude for steps
|
||
for m in self.steps:
|
||
good_step = m*step_magnitude
|
||
if good_step <= step:
|
||
return good_step
|
||
|
||
def ticks(self, a, b):
|
||
"""
|
||
Return recommended tick values for interval `[a, b[`.
|
||
"""
|
||
step = self.step(b - a)
|
||
a0 = np.ceil(a/step)*step
|
||
ticks = np.arange(a0, b, step)
|
||
return ticks
|
||
|
||
def offset(self, a, step):
|
||
"""
|
||
Find offset if dynamic range of the interval is large
|
||
(small range on large offset).
|
||
|
||
If offset is finite, show `offset + value`.
|
||
"""
|
||
if a == 0.:
|
||
return 0.
|
||
la = np.floor(np.log10(abs(a)))
|
||
lr = np.floor(np.log10(step))
|
||
if la - lr < self.precision:
|
||
return 0.
|
||
magnitude = 10**(lr - 1 + self.precision)
|
||
offset = np.floor(a/magnitude)*magnitude
|
||
return offset
|
||
|
||
def magnitude(self, a, b, step):
|
||
"""
|
||
Determine the scaling magnitude.
|
||
|
||
If magnitude differs from unity, show `magnitude * value`.
|
||
This depends on proper offsetting by `offset()`.
|
||
"""
|
||
v = np.floor(np.log10(max(abs(a), abs(b))))
|
||
w = np.floor(np.log10(step))
|
||
if v < self.precision and w > -self.precision:
|
||
return 1.
|
||
return 10**v
|
||
|
||
def fix_minus(self, s):
|
||
return s.replace("-", "−") # unicode minus
|
||
|
||
def format(self, step):
|
||
"""
|
||
Determine format string to represent step sufficiently accurate.
|
||
"""
|
||
dynamic = -int(np.floor(np.log10(step)))
|
||
dynamic = min(max(0, dynamic), self.precision)
|
||
return "{{:1.{:d}f}}".format(dynamic)
|
||
|
||
def compact_exponential(self, v):
|
||
"""
|
||
Format `v` in in compact exponential, stripping redundant elements
|
||
(pluses, leading and trailing zeros and decimal point, trailing `e`).
|
||
"""
|
||
# this is after the matplotlib ScalarFormatter
|
||
# without any i18n
|
||
v = "{:.15e}".format(v)
|
||
if "e" not in v:
|
||
return v # short number, inf, NaN, -inf
|
||
mantissa, exponent = v.split("e")
|
||
mantissa = mantissa.rstrip("0").rstrip(".")
|
||
exponent_sign = exponent[0].lstrip("+")
|
||
exponent = exponent[1:].lstrip("0")
|
||
return "{:s}e{:s}{:s}".format(mantissa, exponent_sign,
|
||
exponent).rstrip("e")
|
||
|
||
def prefix(self, offset, magnitude):
|
||
"""
|
||
Stringify `offset` and `magnitude`.
|
||
|
||
Expects the string to be shown top/left of the value it refers to.
|
||
"""
|
||
prefix = ""
|
||
if offset != 0.:
|
||
prefix += self.compact_exponential(offset) + " + "
|
||
if magnitude != 1.:
|
||
prefix += self.compact_exponential(magnitude) + " × "
|
||
return self.fix_minus(prefix)
|
||
|
||
def __call__(self, a, b):
|
||
"""
|
||
Determine ticks, prefix and labels given the interval
|
||
`[a, b[`.
|
||
|
||
Return tick values, prefix string to be show to the left or
|
||
above the labels, and tick labels.
|
||
"""
|
||
ticks = self.ticks(a, b)
|
||
offset = self.offset(a, ticks[1] - ticks[0])
|
||
t = ticks - offset
|
||
magnitude = self.magnitude(t[0], t[-1], t[1] - t[0])
|
||
t /= magnitude
|
||
prefix = self.prefix(offset, magnitude)
|
||
format = self.format(t[1] - t[0])
|
||
labels = [self.fix_minus(format.format(t)) for t in t]
|
||
return ticks, prefix, labels
|