artiq/artiq/language/core.py

422 lines
15 KiB
Python

"""
Core ARTIQ extensions to the Python language.
"""
import os, linecache, re
from collections import namedtuple
from functools import wraps
__all__ = ["host_int", "int", "host_round", "round",
"kernel", "portable", "syscall", "host_only",
"set_time_manager", "set_watchdog_factory",
"ARTIQException",
"TerminationRequested"]
# global namespace for kernels
kernel_globals = (
"sequential", "parallel",
"delay_mu", "now_mu", "at_mu", "delay",
"seconds_to_mu", "mu_to_seconds",
"watchdog"
)
__all__.extend(kernel_globals)
host_int = int
class int:
"""
Arbitrary-precision integers for static compilation.
The static compiler does not use unlimited-precision integers,
like Python normally does, because of their unbounded memory requirements.
Instead, it allows to choose a bit width (usually 32 or 64) at compile-time,
and all computations follow wrap-around semantics on overflow.
This class implements the same semantics on the host.
For example:
>>> a = int(1, width=64)
>>> b = int(3, width=64) + 2
>>> isinstance(a, int)
True
>>> isinstance(b, int)
True
>>> a + b
int(6, width=64)
>>> int(10, width=32) + 0x7fffffff
int(9, width=32)
>>> int(0x80000000)
int(-2147483648, width=32)
"""
__slots__ = ['_value', '_width']
def __new__(cls, value, width=32):
if isinstance(value, int):
return value
else:
sign_bit = 2 ** (width - 1)
value = host_int(value)
if value & sign_bit:
value = -1 & ~sign_bit + (value & (sign_bit - 1)) + 1
else:
value &= sign_bit - 1
self = super().__new__(cls)
self._value = value
self._width = width
return self
@property
def width(self):
return self._width
def __int__(self):
return self._value
def __float__(self):
return float(self._value)
def __str__(self):
return str(self._value)
# range() etc call __index__, not __int__
def __index__(self):
return self._value
def __repr__(self):
return "int({}, width={})".format(self._value, self._width)
def _unaryop(lower_fn):
def operator(self):
return int(lower_fn(self._value), self._width)
return operator
__neg__ = _unaryop(host_int.__neg__)
__pos__ = _unaryop(host_int.__pos__)
__abs__ = _unaryop(host_int.__abs__)
__invert__ = _unaryop(host_int.__invert__)
__round__ = _unaryop(host_int.__round__)
def _binaryop(lower_fn, rlower_fn=None):
def operator(self, other):
if isinstance(other, host_int):
return int(lower_fn(self._value, other), self._width)
elif isinstance(other, int):
width = self._width if self._width > other._width else other._width
return int(lower_fn(self._value, other._value), width)
elif rlower_fn:
return getattr(other, rlower_fn)(self._value)
else:
return NotImplemented
return operator
__add__ = __iadd__ = _binaryop(host_int.__add__, "__radd__")
__sub__ = __isub__ = _binaryop(host_int.__sub__, "__rsub__")
__mul__ = __imul__ = _binaryop(host_int.__mul__, "__rmul__")
__truediv__ = __itruediv__ = _binaryop(host_int.__truediv__, "__rtruediv__")
__floordiv__ = __ifloordiv__ = _binaryop(host_int.__floordiv__, "__rfloordiv__")
__mod__ = __imod__ = _binaryop(host_int.__mod__, "__rmod__")
__pow__ = __ipow__ = _binaryop(host_int.__pow__, "__rpow__")
__radd__ = _binaryop(host_int.__radd__, "__add__")
__rsub__ = _binaryop(host_int.__rsub__, "__sub__")
__rmul__ = _binaryop(host_int.__rmul__, "__mul__")
__rfloordiv__ = _binaryop(host_int.__rfloordiv__, "__floordiv__")
__rtruediv__ = _binaryop(host_int.__rtruediv__, "__truediv__")
__rmod__ = _binaryop(host_int.__rmod__, "__mod__")
__rpow__ = _binaryop(host_int.__rpow__, "__pow__")
__lshift__ = __ilshift__ = _binaryop(host_int.__lshift__)
__rshift__ = __irshift__ = _binaryop(host_int.__rshift__)
__and__ = __iand__ = _binaryop(host_int.__and__)
__or__ = __ior__ = _binaryop(host_int.__or__)
__xor__ = __ixor__ = _binaryop(host_int.__xor__)
__rlshift__ = _binaryop(host_int.__rlshift__)
__rrshift__ = _binaryop(host_int.__rrshift__)
__rand__ = _binaryop(host_int.__rand__)
__ror__ = _binaryop(host_int.__ror__)
__rxor__ = _binaryop(host_int.__rxor__)
def _compareop(lower_fn, rlower_fn):
def operator(self, other):
if isinstance(other, host_int):
return lower_fn(self._value, other)
elif isinstance(other, int):
return lower_fn(self._value, other._value)
else:
return getattr(other, rlower_fn)(self._value)
return operator
__eq__ = _compareop(host_int.__eq__, "__ne__")
__ne__ = _compareop(host_int.__ne__, "__eq__")
__gt__ = _compareop(host_int.__gt__, "__le__")
__ge__ = _compareop(host_int.__ge__, "__lt__")
__lt__ = _compareop(host_int.__lt__, "__ge__")
__le__ = _compareop(host_int.__le__, "__gt__")
host_round = round
def round(value, width=32):
return int(host_round(value), width)
_ARTIQEmbeddedInfo = namedtuple("_ARTIQEmbeddedInfo",
"core_name function syscall forbidden")
def kernel(arg):
"""
This decorator marks an object's method for execution on the core
device.
When a decorated method is called from the Python interpreter, the ``core``
attribute of the object is retrieved and used as core device driver. The
core device driver will typically compile, transfer and run the method
(kernel) on the device.
When kernels call another method:
- if the method is a kernel for the same core device, is it compiled
and sent in the same binary. Calls between kernels happen entirely on
the device.
- if the method is a regular Python method (not a kernel), it generates
a remote procedure call (RPC) for execution on the host.
The decorator takes an optional parameter that defaults to ``core`` and
specifies the name of the attribute to use as core device driver.
"""
if isinstance(arg, str):
def inner_decorator(function):
@wraps(function)
def run_on_core(self, *k_args, **k_kwargs):
return getattr(self, arg).run(run_on_core, ((self,) + k_args), k_kwargs)
run_on_core.artiq_embedded = _ARTIQEmbeddedInfo(
core_name=arg, function=function, syscall=None,
forbidden=False)
return run_on_core
return inner_decorator
else:
return kernel("core")(arg)
def portable(function):
"""
This decorator marks a function for execution on the same device as its
caller.
In other words, a decorated function called from the interpreter on the
host will be executed on the host (no compilation and execution on the
core device). A decorated function called from a kernel will be executed
on the core device (no RPC).
"""
function.artiq_embedded = \
_ARTIQEmbeddedInfo(core_name=None, function=function, syscall=None,
forbidden=False)
return function
def syscall(arg):
"""
This decorator marks a function as a system call. When executed on a core
device, a C function with the provided name (or the same name as
the Python function, if not provided) will be called. When executed on
host, the Python function will be called as usual.
Every argument and the return value must be annotated with ARTIQ types.
Only drivers should normally define syscalls.
"""
if isinstance(arg, str):
def inner_decorator(function):
function.artiq_embedded = \
_ARTIQEmbeddedInfo(core_name=None, function=None,
syscall=function.__name__, forbidden=False)
return function
return inner_decorator
else:
return syscall(arg.__name__)(arg)
def host_only(function):
"""
This decorator marks a function so that it can only be executed
in the host Python interpreter.
"""
function.artiq_embedded = \
_ARTIQEmbeddedInfo(core_name=None, function=None, syscall=None,
forbidden=True)
return function
class _DummyTimeManager:
def _not_implemented(self, *args, **kwargs):
raise NotImplementedError(
"Attempted to interpret kernel without a time manager")
enter_sequential = _not_implemented
enter_parallel = _not_implemented
exit = _not_implemented
take_time_mu = _not_implemented
get_time_mu = _not_implemented
set_time_mu = _not_implemented
take_time = _not_implemented
_time_manager = _DummyTimeManager()
def set_time_manager(time_manager):
"""Set the time manager used for simulating kernels by running them
directly inside the Python interpreter. The time manager responds to the
entering and leaving of parallel/sequential blocks, delays, etc. and
provides a time-stamped logging facility for events.
"""
global _time_manager
_time_manager = time_manager
class _Sequential:
"""In a sequential block, statements are executed one after another, with
the time increasing as one moves down the statement list."""
def __enter__(self):
_time_manager.enter_sequential()
def __exit__(self, type, value, traceback):
_time_manager.exit()
sequential = _Sequential()
class _Parallel:
"""In a parallel block, all top-level statements start their execution at
the same time.
The execution time of a parallel block is the execution time of its longest
statement. A parallel block may contain sequential blocks, which themselves
may contain parallel blocks, etc.
"""
def __enter__(self):
_time_manager.enter_parallel()
def __exit__(self, type, value, traceback):
_time_manager.exit()
parallel = _Parallel()
def delay_mu(duration):
"""Increases the RTIO time by the given amount (in machine units)."""
_time_manager.take_time_mu(duration)
def now_mu():
"""Retrieves the current RTIO time, in machine units."""
return _time_manager.get_time_mu()
def at_mu(time):
"""Sets the RTIO time to the specified absolute value, in machine units."""
_time_manager.set_time_mu(time)
def delay(duration):
"""Increases the RTIO time by the given amount (in seconds)."""
_time_manager.take_time(duration)
def seconds_to_mu(seconds, core=None):
"""Converts seconds to the corresponding number of machine units
(RTIO cycles).
:param seconds: time (in seconds) to convert.
:param core: core device for which to perform the conversion. Specify only
when running in the interpreter (not in kernel).
"""
if core is None:
raise ValueError("Core device must be specified for time conversion")
return round(seconds//core.ref_period, width=64)
def mu_to_seconds(mu, core=None):
"""Converts machine units (RTIO cycles) to seconds.
:param mu: cycle count to convert.
:param core: core device for which to perform the conversion. Specify only
when running in the interpreter (not in kernel).
"""
if core is None:
raise ValueError("Core device must be specified for time conversion")
return mu*core.ref_period
class _DummyWatchdog:
def __init__(self, timeout):
pass
def __enter__(self):
pass
def __exit__(self, type, value, traceback):
pass
# Watchdogs are simply not enforced by default.
_watchdog_factory = _DummyWatchdog
def set_watchdog_factory(f):
global _watchdog_factory
_watchdog_factory = f
def watchdog(timeout):
return _watchdog_factory(timeout)
class TerminationRequested(Exception):
"""Raised by ``pause`` when the user has requested termination."""
pass
class ARTIQException:
"""Information about an exception raised or passed through the core device."""
def __init__(self, name, message, params, traceback):
if ':' in name:
exn_id, self.name = name.split(':', 2)
self.id = host_int(exn_id)
else:
self.id, self.name = 0, name
self.message, self.params = message, params
self.traceback = list(traceback)
def __str__(self):
# lazy import this
from artiq.coredevice.runtime import source_loader
lines = []
lines.append("Core Device Traceback (most recent call last):")
for (filename, line, column, function, address) in self.traceback:
stub_globals = {"__name__": filename, "__loader__": source_loader}
source_line = linecache.getline(filename, line, stub_globals)
indentation = re.search(r"^\s*", source_line).end()
if address is None:
formatted_address = ""
else:
formatted_address = " (RA=0x{:x})".format(address)
filename = filename.replace(os.path.normpath(os.path.join(os.path.dirname(__file__),
"..")), "<artiq>")
if column == -1:
lines.append(" File \"{file}\", line {line}, in {function}{address}".
format(file=filename, line=line, function=function,
address=formatted_address))
lines.append(" {}".format(source_line.strip() if source_line else "<unknown>"))
else:
lines.append(" File \"{file}\", line {line}, column {column},"
" in {function}{address}".
format(file=filename, line=line, column=column + 1,
function=function, address=formatted_address))
lines.append(" {}".format(source_line.strip() if source_line else "<unknown>"))
lines.append(" {}^".format(" " * (column - indentation)))
lines.append("{}({}): {}".format(self.name, self.id,
self.message.format(*self.params)))
return "\n".join(lines)