mirror of https://github.com/m-labs/artiq.git
278 lines
10 KiB
Python
278 lines
10 KiB
Python
# Copyright (C) 2014, 2015 Robert Jordens <jordens@gmail.com>
|
|
|
|
import numpy as np
|
|
from scipy.interpolate import splrep, splev, spalde
|
|
from scipy.special import binom
|
|
|
|
|
|
class UnivariateMultiSpline:
|
|
"""Multidimensional wrapper around `scipy.interpolate.sp*` functions.
|
|
`scipy.inteprolate.splprep` is limited to 12 dimensions.
|
|
"""
|
|
def __init__(self, x, y, *, x0=None, order=4, **kwargs):
|
|
self.order = order
|
|
self.x = x
|
|
self.s = []
|
|
for i, yi in enumerate(y):
|
|
if x0 is not None:
|
|
yi = self.upsample_knots(x0[i], yi, x)
|
|
self.s.append(splrep(x, yi, k=order - 1, **kwargs))
|
|
|
|
def upsample_knots(self, x0, y0, x):
|
|
return splev(x, splrep(x0, y0, k=self.order - 1))
|
|
|
|
def lev(self, x, *a, **k):
|
|
return np.array([splev(x, si) for si in self.s])
|
|
|
|
def alde(self, x):
|
|
u = np.array([spalde(x, si) for si in self.s])
|
|
if len(x) == 1:
|
|
u = u[:, None, :]
|
|
return u
|
|
|
|
def __call__(self, x, use_alde=True):
|
|
if use_alde:
|
|
u = self.alde(x)[:, :, :self.order]
|
|
s = (len(self.s), len(x), self.order)
|
|
assert u.shape == s, (u.shape, s)
|
|
return u.transpose(2, 0, 1)
|
|
else:
|
|
return np.array([self.lev(x, der=i) for i in range(self.order)])
|
|
|
|
|
|
def pad_const(x, n, axis=0):
|
|
"""Prefix and postfix the array `x` by `n` repetitions of the first and
|
|
last value along `axis`.
|
|
"""
|
|
a = np.repeat(x.take([0], axis), n, axis)
|
|
b = np.repeat(x.take([-1], axis), n, axis)
|
|
xp = np.concatenate([a, x, b], axis)
|
|
s = list(x.shape)
|
|
s[axis] += 2*n
|
|
assert xp.shape == tuple(s), (x.shape, s, xp.shape)
|
|
return xp
|
|
|
|
|
|
def build_segment(durations, coefficients, target="bias",
|
|
variable="amplitude", compress=True):
|
|
"""Build a wavesynth-style segment from homogeneous duration and
|
|
coefficient data.
|
|
|
|
:param durations: 1D sequence of line durations.
|
|
:param coefficients: 3D array with shape `(n, m, len(durations))`,
|
|
with `n` being the interpolation order + 1 and `m` the number of
|
|
channels.
|
|
:param target: The target component of the channel to affect.
|
|
:param variable: The variable within the target component.
|
|
:param compress: If `True`, skip zero high order coefficients.
|
|
"""
|
|
for dxi, yi in zip(durations, coefficients.transpose()):
|
|
cd = []
|
|
for yij in yi:
|
|
cdj = []
|
|
for yijk in reversed(yij):
|
|
if cdj or abs(yijk) or not compress:
|
|
cdj.append(float(yijk))
|
|
cdj.reverse()
|
|
cd.append({target: {variable: cdj}})
|
|
yield {"duration": int(dxi), "channel_data": cd}
|
|
|
|
|
|
class CoefficientSource:
|
|
def crop_x(self, start, stop, num=2):
|
|
"""Return an array of valid sample positions.
|
|
|
|
This method needs to be overloaded if this `CoefficientSource`
|
|
does not support sampling at arbitrary positions or at arbitrary
|
|
density.
|
|
|
|
:param start: First sample position.
|
|
:param stop: Last sample position.
|
|
:param num: Number of samples between `start` and `stop`.
|
|
:return: Array of sample positions. `start` and `stop` should be
|
|
returned as the first and last value in the array respectively.
|
|
"""
|
|
return np.linspace(start, stop, num)
|
|
|
|
def scale_x(self, x, scale):
|
|
# TODO: This could be moved to the the Driver/Mediator code as it is
|
|
# device-specific.
|
|
"""Scale and round sample positions.
|
|
|
|
The sample times may need to be changed and/or decimated if
|
|
incompatible with hardware requirements.
|
|
|
|
:param x: Input sample positions in data space.
|
|
:param scale: Data space position to cycles conversion scale,
|
|
in units of x-units per clock cycle.
|
|
:return: `x_sample`, the rounded sample positions and `durations`, the
|
|
integer durations of the individual samples in cycles.
|
|
"""
|
|
t = np.rint(x/scale)
|
|
x_sample = t*scale
|
|
durations = np.diff(t).astype(np.int)
|
|
return x_sample, durations
|
|
|
|
def __call__(self, x, **kwargs):
|
|
"""Perform sampling and return coefficients.
|
|
|
|
:param x: Sample positions.
|
|
:return: `y` the array of coefficients. `y.shape == (order, n, len(x))`
|
|
with `n` being the number of channels."""
|
|
raise NotImplementedError
|
|
|
|
def get_segment_data(self, start, stop, scale, *, cutoff=1e-12,
|
|
target="bias", variable="amplitude"):
|
|
"""Build wavesynth segment data.
|
|
|
|
:param start: see `crop_x()`.
|
|
:param stop: see `crop_x()`.
|
|
:param scale: see `scale_x()`.
|
|
:param cutoff: coefficient cutoff towards zero to compress data.
|
|
"""
|
|
x = self.crop_x(start, stop)
|
|
x_sample, durations = self.scale_x(x, scale)
|
|
coefficients = self(x_sample)
|
|
if len(x_sample) == 1 and start == stop:
|
|
coefficients = coefficients[:1]
|
|
# rescale coefficients accordingly
|
|
coefficients *= (scale*np.sign(durations))**np.arange(
|
|
coefficients.shape[0])[:, None, None]
|
|
if cutoff:
|
|
coefficients[np.fabs(coefficients) < cutoff] = 0
|
|
return build_segment(durations, coefficients, target=target,
|
|
variable=variable)
|
|
|
|
def extend_segment(self, segment, *args, **kwargs):
|
|
"""Extend a wavesynth segment.
|
|
|
|
See `get_segment()` for arguments.
|
|
"""
|
|
for i, line in enumerate(self.get_segment_data(*args, **kwargs)):
|
|
segment.add_line(**line)
|
|
|
|
|
|
class SplineSource(CoefficientSource):
|
|
def __init__(self, x, y, order=4, pad_dx=1.):
|
|
"""
|
|
:param x: 1D sample positions.
|
|
:param y: 2D sample values.
|
|
"""
|
|
self.x = np.asanyarray(x)
|
|
assert self.x.ndim == 1
|
|
self.y = np.asanyarray(y)
|
|
assert self.y.ndim == 2
|
|
|
|
if pad_dx is not None:
|
|
a = np.arange(-order, 0)*pad_dx + self.x[0]
|
|
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
|
|
self.x = np.r_[a, self.x, b]
|
|
self.y = pad_const(self.y, order, axis=1)
|
|
|
|
assert self.y.shape[1] == self.x.shape[0]
|
|
self.spline = UnivariateMultiSpline(self.x, self.y, order=order)
|
|
|
|
def crop_x(self, start, stop):
|
|
ia, ib = np.searchsorted(self.x, (start, stop))
|
|
if start > stop:
|
|
x = self.x[ia - 1:ib - 1:-1]
|
|
else:
|
|
x = self.x[ia:ib]
|
|
return np.r_[start, x, stop]
|
|
|
|
def scale_x(self, x, scale, min_duration=1, min_length=20):
|
|
"""Enforce, round, and scale x to device-dependent values.
|
|
|
|
Due to minimum duration and/or minimum segment length constraints
|
|
this method may drop samples from `x_sample` or adjust `durations` to
|
|
comply. But `x_sample` and `durations` should be kept consistent.
|
|
|
|
:param min_duration: Minimum duration of a line.
|
|
:param min_length: Minimum segment length to space triggers.
|
|
"""
|
|
# We want to only sample a spline at t_knot + epsilon
|
|
# where the highest order derivative has just jumped
|
|
# and is valid at least up to the next knot after t_knot.
|
|
#
|
|
# To ensure that we are on the correct side of a knot:
|
|
# * only ever increase t when rounding (for increasing t)
|
|
# * or only ever decrease it (for decreasing t)
|
|
t = x/scale
|
|
inc = np.diff(t) >= 0
|
|
inc = np.r_[inc, inc[-1]]
|
|
t = np.where(inc, np.ceil(t), np.floor(t))
|
|
dt = np.diff(t.astype(np.int))
|
|
|
|
valid = np.absolute(dt) >= min_duration
|
|
dt = dt[valid]
|
|
t = t[np.r_[True, valid]]
|
|
if dt.shape[0] == 1:
|
|
dt[0] = max(dt[0], min_length)
|
|
x_sample = t[:-1]*scale
|
|
return x_sample, dt
|
|
|
|
def __call__(self, x):
|
|
return self.spline(x)
|
|
|
|
|
|
class ComposingSplineSource(SplineSource):
|
|
# TODO: verify, test, document
|
|
def __init__(self, x, y, components, order=4, pad_dx=1.):
|
|
self.x = np.asanyarray(x)
|
|
assert self.x.ndim == 1
|
|
self.y = np.asanyarray(y)
|
|
assert self.y.ndim == 3
|
|
|
|
if pad_dx is not None:
|
|
a = np.arange(-order, 0)*pad_dx + self.x[0]
|
|
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
|
|
self.x = np.r_[a, self.x, b]
|
|
self.y = pad_const(self.y, order, axis=2)
|
|
|
|
assert self.y.shape[2] == self.x.shape[0]
|
|
self.splines = [UnivariateMultiSpline(self.x, yi, order=order)
|
|
for yi in self.y]
|
|
|
|
# need to resample/upsample the shim splines to the master spline knots
|
|
# shim knot spacings can span an master spline knot and thus would
|
|
# cross a highest order derivative boundary
|
|
y0, x0 = zip(*components)
|
|
self.components = UnivariateMultiSpline(self.x, y0, x0=x0, order=order)
|
|
|
|
def __call__(self, t, gain={}, offset={}):
|
|
der = list((set(self.components.n) | set(offset))
|
|
& set(range(len(self.splines))))
|
|
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
|
|
# der, order, ele, t
|
|
p = np.array([self.splines[i](t) for i in der])
|
|
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
|
|
# order, der, None, t
|
|
s = self.components(t)[:, :, None, :]*s_gain[None, :, None, None]
|
|
for k, v in offset.items():
|
|
if v:
|
|
u += v*p[k]
|
|
ps = p[self.shims.n]
|
|
for i in range(u.shape[1]):
|
|
for j in range(i + 1):
|
|
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)
|
|
return u # (order, ele, t)
|
|
|
|
|
|
def discrete_compensate(c):
|
|
"""Compensate spline coefficients for discrete accumulators
|
|
|
|
Given continuous-time b-spline coefficients, this function
|
|
compensates for the effect of discrete time steps in the
|
|
target devices.
|
|
|
|
The compensation is performed in-place.
|
|
"""
|
|
l = len(c)
|
|
if l > 2:
|
|
c[1] += c[2]/2.
|
|
if l > 3:
|
|
c[1] += c[3]/6.
|
|
c[2] += c[3]
|
|
if l > 4:
|
|
raise ValueError("only third-order splines supported")
|