2
0
mirror of https://github.com/m-labs/artiq.git synced 2024-12-20 08:56:28 +08:00
artiq/artiq/gui/ticker.py

137 lines
4.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Robert Jordens <rj@m-labs.hk>, 2016
import numpy as np
class Ticker:
# TODO: if this turns out to be computationally expensive, then refactor
# such that the log()s and intermediate values are reused. But
# probably the string formatting itself is the limiting factor here.
def __init__(self, min_ticks=3, precision=3, steps=(5, 2, 1, .5)):
"""
min_ticks: minimum number of ticks to generate
The maximum number of ticks is
max(consecutive ratios in steps)*min_ticks
thus 5/2*min_ticks for default steps.
precision: maximum number of significant digits in labels
Also extract common offset and magnitude from ticks
if dynamic range exceeds precision number of digits
(small range on top of large offset).
steps: tick increments at a given magnitude
The .5 catches rounding errors where the calculation
of step_magnitude falls into the wrong exponent bin.
"""
self.min_ticks = min_ticks
self.precision = precision
self.steps = steps
def step(self, i):
"""
Return recommended step value for interval size `i`.
"""
if not i:
raise ValueError("Need a finite interval")
step = i/self.min_ticks # rational step size for min_ticks
step_magnitude = 10**np.floor(np.log10(step))
# underlying magnitude for steps
for m in self.steps:
good_step = m*step_magnitude
if good_step <= step:
return good_step
def ticks(self, a, b):
"""
Return recommended tick values for interval `[a, b[`.
"""
step = self.step(b - a)
a0 = np.ceil(a/step)*step
ticks = np.arange(a0, b, step)
return ticks
def offset(self, a, step):
"""
Find offset if dynamic range of the interval is large
(small range on large offset).
If offset is finite, show `offset + value`.
"""
if a == 0.:
return 0.
la = np.floor(np.log10(abs(a)))
lr = np.floor(np.log10(step))
if la - lr < self.precision:
return 0.
magnitude = 10**(lr - 1 + self.precision)
offset = np.floor(a/magnitude)*magnitude
return offset
def magnitude(self, a, b, step):
"""
Determine the scaling magnitude.
If magnitude differs from unity, show `magnitude * value`.
This depends on proper offsetting by `offset()`.
"""
v = np.floor(np.log10(max(abs(a), abs(b))))
w = np.floor(np.log10(step))
if v < self.precision and w > -self.precision:
return 1.
return 10**v
def fix_minus(self, s):
return s.replace("-", "") # unicode minus
def format(self, step):
"""
Determine format string to represent step sufficiently accurate.
"""
dynamic = -int(np.floor(np.log10(step)))
dynamic = min(max(0, dynamic), self.precision)
return "{{:1.{:d}f}}".format(dynamic)
def compact_exponential(self, v):
"""
Format `v` in in compact exponential, stripping redundant elements
(pluses, leading and trailing zeros and decimal point, trailing `e`).
"""
# this is after the matplotlib ScalarFormatter
# without any i18n
significand, exponent = "{:1.10e}".format(v).split("e")
significand = significand.rstrip("0").rstrip(".")
exponent_sign = exponent[0].replace("+", "")
exponent = exponent[1:].lstrip("0")
s = "{:s}e{:s}{:s}".format(significand, exponent_sign,
exponent).rstrip("e")
return self.fix_minus(s)
def prefix(self, offset, magnitude):
"""
Stringify `offset` and `magnitude`.
Expects the string to be shown top/left of the value it refers to.
"""
prefix = ""
if offset != 0.:
prefix += self.compact_exponential(offset) + " + "
if magnitude != 1.:
prefix += self.compact_exponential(magnitude) + " × "
return prefix
def __call__(self, a, b):
"""
Determine ticks, prefix and labels given the interval
`[a, b[`.
Return tick values, prefix string to be show to the left or
above the labels, and tick labels.
"""
ticks = self.ticks(a, b)
offset = self.offset(a, ticks[1] - ticks[0])
t = ticks - offset
magnitude = self.magnitude(t[0], t[-1], t[1] - t[0])
t /= magnitude
prefix = self.prefix(offset, magnitude)
format = self.format(t[1] - t[0])
labels = [self.fix_minus(format.format(t)) for t in t]
return ticks, prefix, labels