artiq/artiq/firmware/satman/main.rs

870 lines
33 KiB
Rust

#![feature(never_type, panic_info_message, llvm_asm, default_alloc_error_handler, try_trait)]
#![no_std]
#[macro_use]
extern crate log;
#[macro_use]
extern crate board_misoc;
extern crate board_artiq;
extern crate riscv;
extern crate alloc;
extern crate proto_artiq;
extern crate cslice;
extern crate io;
extern crate eh;
use core::convert::TryFrom;
use board_misoc::{csr, ident, clock, uart_logger, i2c, pmp};
#[cfg(has_si5324)]
use board_artiq::si5324;
use board_artiq::{spi, drtioaux, drtio_routing};
#[cfg(soc_platform = "efc")]
use board_artiq::ad9117;
use proto_artiq::drtioaux_proto::{SAT_PAYLOAD_MAX_SIZE, MASTER_PAYLOAD_MAX_SIZE};
#[cfg(has_drtio_eem)]
use board_artiq::drtio_eem;
use riscv::register::{mcause, mepc, mtval};
use dma::Manager as DmaManager;
use kernel::Manager as KernelManager;
use analyzer::Analyzer;
#[global_allocator]
static mut ALLOC: alloc_list::ListAlloc = alloc_list::EMPTY;
mod repeater;
mod routing;
mod dma;
mod analyzer;
mod kernel;
mod cache;
fn drtiosat_reset(reset: bool) {
unsafe {
csr::drtiosat::reset_write(if reset { 1 } else { 0 });
}
}
fn drtiosat_reset_phy(reset: bool) {
unsafe {
csr::drtiosat::reset_phy_write(if reset { 1 } else { 0 });
}
}
fn drtiosat_link_rx_up() -> bool {
unsafe {
csr::drtiosat::rx_up_read() == 1
}
}
fn drtiosat_tsc_loaded() -> bool {
unsafe {
let tsc_loaded = csr::drtiosat::tsc_loaded_read() == 1;
if tsc_loaded {
csr::drtiosat::tsc_loaded_write(1);
}
tsc_loaded
}
}
pub enum RtioMaster {
Drtio,
Dma,
Kernel
}
pub fn cricon_select(master: RtioMaster) {
let val = match master {
RtioMaster::Drtio => 0,
RtioMaster::Dma => 1,
RtioMaster::Kernel => 2
};
unsafe {
csr::cri_con::selected_write(val);
}
}
#[cfg(has_drtio_routing)]
macro_rules! forward {
($routing_table:expr, $destination:expr, $rank:expr, $repeaters:expr, $packet:expr) => {{
let hop = $routing_table.0[$destination as usize][$rank as usize];
if hop != 0 {
let repno = (hop - 1) as usize;
if repno < $repeaters.len() {
return $repeaters[repno].aux_forward($packet);
} else {
return Err(drtioaux::Error::RoutingError);
}
}
}}
}
#[cfg(not(has_drtio_routing))]
macro_rules! forward {
($routing_table:expr, $destination:expr, $rank:expr, $repeaters:expr, $packet:expr) => {}
}
fn process_aux_packet(dmamgr: &mut DmaManager, analyzer: &mut Analyzer, kernelmgr: &mut KernelManager,
_repeaters: &mut [repeater::Repeater], _routing_table: &mut drtio_routing::RoutingTable, rank: &mut u8,
router: &mut routing::Router, self_destination: &mut u8, packet: drtioaux::Packet
) -> Result<(), drtioaux::Error<!>> {
// In the code below, *_chan_sel_write takes an u8 if there are fewer than 256 channels,
// and u16 otherwise; hence the `as _` conversion.
match packet {
drtioaux::Packet::EchoRequest =>
drtioaux::send(0, &drtioaux::Packet::EchoReply),
drtioaux::Packet::ResetRequest => {
info!("resetting RTIO");
drtiosat_reset(true);
clock::spin_us(100);
drtiosat_reset(false);
for rep in _repeaters.iter() {
if let Err(e) = rep.rtio_reset() {
error!("failed to issue RTIO reset ({})", e);
}
}
drtioaux::send(0, &drtioaux::Packet::ResetAck)
},
drtioaux::Packet::DestinationStatusRequest { destination } => {
#[cfg(has_drtio_routing)]
let hop = _routing_table.0[destination as usize][*rank as usize];
#[cfg(not(has_drtio_routing))]
let hop = 0;
if hop == 0 {
*self_destination = destination;
// async messages
if *rank == 1 {
if let Some(packet) = router.get_upstream_packet(*rank) {
// pass any async or routed packets to master
// this does mean that DDMA/SK packets to master will "trickle down" to higher rank
return drtioaux::send(0, &packet)
}
}
let errors;
unsafe {
errors = csr::drtiosat::rtio_error_read();
}
if errors & 1 != 0 {
let channel;
unsafe {
channel = csr::drtiosat::sequence_error_channel_read();
csr::drtiosat::rtio_error_write(1);
}
drtioaux::send(0,
&drtioaux::Packet::DestinationSequenceErrorReply { channel })?;
} else if errors & 2 != 0 {
let channel;
unsafe {
channel = csr::drtiosat::collision_channel_read();
csr::drtiosat::rtio_error_write(2);
}
drtioaux::send(0,
&drtioaux::Packet::DestinationCollisionReply { channel })?;
} else if errors & 4 != 0 {
let channel;
unsafe {
channel = csr::drtiosat::busy_channel_read();
csr::drtiosat::rtio_error_write(4);
}
drtioaux::send(0,
&drtioaux::Packet::DestinationBusyReply { channel })?;
}
else {
drtioaux::send(0, &drtioaux::Packet::DestinationOkReply)?;
}
}
#[cfg(has_drtio_routing)]
{
if hop != 0 {
let hop = hop as usize;
if hop <= csr::DRTIOREP.len() {
let repno = hop - 1;
match _repeaters[repno].aux_forward(&drtioaux::Packet::DestinationStatusRequest {
destination: destination
}) {
Ok(()) => (),
Err(drtioaux::Error::LinkDown) => drtioaux::send(0, &drtioaux::Packet::DestinationDownReply)?,
Err(e) => {
drtioaux::send(0, &drtioaux::Packet::DestinationDownReply)?;
error!("aux error when handling destination status request: {}", e);
},
}
} else {
drtioaux::send(0, &drtioaux::Packet::DestinationDownReply)?;
}
}
}
Ok(())
}
#[cfg(has_drtio_routing)]
drtioaux::Packet::RoutingSetPath { destination, hops } => {
_routing_table.0[destination as usize] = hops;
for rep in _repeaters.iter() {
if let Err(e) = rep.set_path(destination, &hops) {
error!("failed to set path ({})", e);
}
}
drtioaux::send(0, &drtioaux::Packet::RoutingAck)
}
#[cfg(has_drtio_routing)]
drtioaux::Packet::RoutingSetRank { rank: new_rank } => {
*rank = new_rank;
drtio_routing::interconnect_enable_all(_routing_table, new_rank);
let rep_rank = new_rank + 1;
for rep in _repeaters.iter() {
if let Err(e) = rep.set_rank(rep_rank) {
error!("failed to set rank ({})", e);
}
}
info!("rank: {}", new_rank);
info!("routing table: {}", _routing_table);
drtioaux::send(0, &drtioaux::Packet::RoutingAck)
}
#[cfg(not(has_drtio_routing))]
drtioaux::Packet::RoutingSetPath { destination: _, hops: _ } => {
drtioaux::send(0, &drtioaux::Packet::RoutingAck)
}
#[cfg(not(has_drtio_routing))]
drtioaux::Packet::RoutingSetRank { rank: _ } => {
drtioaux::send(0, &drtioaux::Packet::RoutingAck)
}
#[cfg(has_drtio_routing)]
drtioaux::Packet::RoutingAck => {
if *rank > 1 {
router.routing_ack_received();
} else {
warn!("received unexpected RoutingAck");
}
Ok(())
}
drtioaux::Packet::MonitorRequest { destination: _destination, channel, probe } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let value;
#[cfg(has_rtio_moninj)]
unsafe {
csr::rtio_moninj::mon_chan_sel_write(channel as _);
csr::rtio_moninj::mon_probe_sel_write(probe);
csr::rtio_moninj::mon_value_update_write(1);
value = csr::rtio_moninj::mon_value_read() as u64;
}
#[cfg(not(has_rtio_moninj))]
{
value = 0;
}
let reply = drtioaux::Packet::MonitorReply { value: value };
drtioaux::send(0, &reply)
},
drtioaux::Packet::InjectionRequest { destination: _destination, channel, overrd, value } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
#[cfg(has_rtio_moninj)]
unsafe {
csr::rtio_moninj::inj_chan_sel_write(channel as _);
csr::rtio_moninj::inj_override_sel_write(overrd);
csr::rtio_moninj::inj_value_write(value);
}
Ok(())
},
drtioaux::Packet::InjectionStatusRequest { destination: _destination, channel, overrd } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let value;
#[cfg(has_rtio_moninj)]
unsafe {
csr::rtio_moninj::inj_chan_sel_write(channel as _);
csr::rtio_moninj::inj_override_sel_write(overrd);
value = csr::rtio_moninj::inj_value_read();
}
#[cfg(not(has_rtio_moninj))]
{
value = 0;
}
drtioaux::send(0, &drtioaux::Packet::InjectionStatusReply { value: value })
},
drtioaux::Packet::I2cStartRequest { destination: _destination, busno } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = i2c::start(busno).is_ok();
drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded })
}
drtioaux::Packet::I2cRestartRequest { destination: _destination, busno } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = i2c::restart(busno).is_ok();
drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded })
}
drtioaux::Packet::I2cStopRequest { destination: _destination, busno } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = i2c::stop(busno).is_ok();
drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded })
}
drtioaux::Packet::I2cWriteRequest { destination: _destination, busno, data } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
match i2c::write(busno, data) {
Ok(ack) => drtioaux::send(0,
&drtioaux::Packet::I2cWriteReply { succeeded: true, ack: ack }),
Err(_) => drtioaux::send(0,
&drtioaux::Packet::I2cWriteReply { succeeded: false, ack: false })
}
}
drtioaux::Packet::I2cReadRequest { destination: _destination, busno, ack } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
match i2c::read(busno, ack) {
Ok(data) => drtioaux::send(0,
&drtioaux::Packet::I2cReadReply { succeeded: true, data: data }),
Err(_) => drtioaux::send(0,
&drtioaux::Packet::I2cReadReply { succeeded: false, data: 0xff })
}
}
drtioaux::Packet::I2cSwitchSelectRequest { destination: _destination, busno, address, mask } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = i2c::switch_select(busno, address, mask).is_ok();
drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded })
}
drtioaux::Packet::SpiSetConfigRequest { destination: _destination, busno, flags, length, div, cs } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = spi::set_config(busno, flags, length, div, cs).is_ok();
drtioaux::send(0,
&drtioaux::Packet::SpiBasicReply { succeeded: succeeded })
},
drtioaux::Packet::SpiWriteRequest { destination: _destination, busno, data } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = spi::write(busno, data).is_ok();
drtioaux::send(0,
&drtioaux::Packet::SpiBasicReply { succeeded: succeeded })
}
drtioaux::Packet::SpiReadRequest { destination: _destination, busno } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
match spi::read(busno) {
Ok(data) => drtioaux::send(0,
&drtioaux::Packet::SpiReadReply { succeeded: true, data: data }),
Err(_) => drtioaux::send(0,
&drtioaux::Packet::SpiReadReply { succeeded: false, data: 0 })
}
}
drtioaux::Packet::AnalyzerHeaderRequest { destination: _destination } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let header = analyzer.get_header();
drtioaux::send(0, &drtioaux::Packet::AnalyzerHeader {
total_byte_count: header.total_byte_count,
sent_bytes: header.sent_bytes,
overflow_occurred: header.overflow,
})
}
drtioaux::Packet::AnalyzerDataRequest { destination: _destination } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let mut data_slice: [u8; SAT_PAYLOAD_MAX_SIZE] = [0; SAT_PAYLOAD_MAX_SIZE];
let meta = analyzer.get_data(&mut data_slice);
drtioaux::send(0, &drtioaux::Packet::AnalyzerData {
last: meta.last,
length: meta.len,
data: data_slice,
})
}
drtioaux::Packet::DmaAddTraceRequest { source, destination, id, status, length, trace } => {
forward!(_routing_table, destination, *rank, _repeaters, &packet);
*self_destination = destination;
let succeeded = dmamgr.add(source, id, status, &trace, length as usize).is_ok();
router.send(drtioaux::Packet::DmaAddTraceReply {
destination: source, succeeded: succeeded
}, _routing_table, *rank, *self_destination)
}
drtioaux::Packet::DmaRemoveTraceRequest { source, destination: _destination, id } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let succeeded = dmamgr.erase(source, id).is_ok();
router.send(drtioaux::Packet::DmaRemoveTraceReply {
destination: source, succeeded: succeeded
}, _routing_table, *rank, *self_destination)
}
drtioaux::Packet::DmaPlaybackRequest { source, destination: _destination, id, timestamp } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
// no DMA with a running kernel
let succeeded = !kernelmgr.is_running() && dmamgr.playback(source, id, timestamp).is_ok();
router.send(drtioaux::Packet::DmaPlaybackReply {
destination: source, succeeded: succeeded
}, _routing_table, *rank, *self_destination)
}
drtioaux::Packet::SubkernelAddDataRequest { destination, id, status, length, data } => {
forward!(_routing_table, destination, *rank, _repeaters, &packet);
*self_destination = destination;
let succeeded = kernelmgr.add(id, status, &data, length as usize).is_ok();
drtioaux::send(0,
&drtioaux::Packet::SubkernelAddDataReply { succeeded: succeeded })
}
drtioaux::Packet::SubkernelLoadRunRequest { source, destination: _destination, id, run } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let mut succeeded = kernelmgr.load(id).is_ok();
// allow preloading a kernel with delayed run
if run {
if dmamgr.running() {
// cannot run kernel while DDMA is running
succeeded = false;
} else {
succeeded |= kernelmgr.run(source, id).is_ok();
}
}
router.send(drtioaux::Packet::SubkernelLoadRunReply {
destination: source, succeeded: succeeded
},
_routing_table, *rank, *self_destination)
}
drtioaux::Packet::SubkernelLoadRunReply { destination: _destination, succeeded } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
// received if local subkernel started another, remote subkernel
kernelmgr.subkernel_load_run_reply(succeeded, *self_destination);
Ok(())
}
// { destination: u8, id: u32, with_exception: bool, exception_src: u8 },
drtioaux::Packet::SubkernelFinished { destination: _destination, id, with_exception, exception_src } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
kernelmgr.remote_subkernel_finished(id, with_exception, exception_src);
Ok(())
}
drtioaux::Packet::SubkernelExceptionRequest { destination: _destination } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
let mut data_slice: [u8; SAT_PAYLOAD_MAX_SIZE] = [0; SAT_PAYLOAD_MAX_SIZE];
let meta = kernelmgr.exception_get_slice(&mut data_slice);
drtioaux::send(0, &drtioaux::Packet::SubkernelException {
last: meta.status.is_last(),
length: meta.len,
data: data_slice,
})
}
drtioaux::Packet::SubkernelMessage { source, destination: _destination, id: _id, status, length, data } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
kernelmgr.message_handle_incoming(status, length as usize, &data);
router.send(drtioaux::Packet::SubkernelMessageAck {
destination: source
}, _routing_table, *rank, *self_destination)
}
drtioaux::Packet::SubkernelMessageAck { destination: _destination } => {
forward!(_routing_table, _destination, *rank, _repeaters, &packet);
if kernelmgr.message_ack_slice() {
let mut data_slice: [u8; MASTER_PAYLOAD_MAX_SIZE] = [0; MASTER_PAYLOAD_MAX_SIZE];
if let Some(meta) = kernelmgr.message_get_slice(&mut data_slice) {
router.send(drtioaux::Packet::SubkernelMessage {
source: *self_destination, destination: meta.destination, id: kernelmgr.get_current_id().unwrap(),
status: meta.status, length: meta.len as u16, data: data_slice
}, _routing_table, *rank, *self_destination)?;
} else {
error!("Error receiving message slice");
}
}
Ok(())
}
_ => {
warn!("received unexpected aux packet");
Ok(())
}
}
}
fn process_aux_packets(dma_manager: &mut DmaManager, analyzer: &mut Analyzer,
kernelmgr: &mut KernelManager, repeaters: &mut [repeater::Repeater],
routing_table: &mut drtio_routing::RoutingTable, rank: &mut u8, router: &mut routing::Router,
destination: &mut u8) {
let result =
drtioaux::recv(0).or_else(|_| Ok(router.get_local_packet())).and_then(|packet| {
if let Some(packet) = packet {
process_aux_packet(dma_manager, analyzer, kernelmgr, repeaters, routing_table, rank, router, destination, packet)
} else {
Ok(())
}
});
match result {
Ok(()) => (),
Err(e) => warn!("aux packet error ({})", e)
}
}
fn drtiosat_process_errors() {
let errors = unsafe { csr::drtiosat::protocol_error_read() };
if errors & 1 != 0 {
error!("received packet of an unknown type");
}
if errors & 2 != 0 {
error!("received truncated packet");
}
if errors & 4 != 0 {
let destination = unsafe {
csr::drtiosat::buffer_space_timeout_dest_read()
};
error!("timeout attempting to get buffer space from CRI, destination=0x{:02x}", destination)
}
let drtiosat_active = unsafe { csr::cri_con::selected_read() == 0 };
if drtiosat_active {
// RTIO errors are handled by ksupport and dma manager
if errors & 8 != 0 {
let channel;
let timestamp_event;
let timestamp_counter;
unsafe {
channel = csr::drtiosat::underflow_channel_read();
timestamp_event = csr::drtiosat::underflow_timestamp_event_read() as i64;
timestamp_counter = csr::drtiosat::underflow_timestamp_counter_read() as i64;
}
error!("write underflow, channel={}, timestamp={}, counter={}, slack={}",
channel, timestamp_event, timestamp_counter, timestamp_event-timestamp_counter);
}
if errors & 16 != 0 {
error!("write overflow");
}
}
unsafe {
csr::drtiosat::protocol_error_write(errors);
}
}
#[cfg(has_rtio_crg)]
fn init_rtio_crg() {
unsafe {
csr::rtio_crg::pll_reset_write(0);
}
clock::spin_us(150);
let locked = unsafe { csr::rtio_crg::pll_locked_read() != 0 };
if !locked {
error!("RTIO clock failed");
}
}
#[cfg(not(has_rtio_crg))]
fn init_rtio_crg() { }
fn hardware_tick(ts: &mut u64) {
let now = clock::get_ms();
if now > *ts {
#[cfg(has_grabber)]
board_artiq::grabber::tick();
*ts = now + 200;
}
}
#[cfg(all(has_si5324, rtio_frequency = "125.0"))]
const SI5324_SETTINGS: si5324::FrequencySettings
= si5324::FrequencySettings {
n1_hs : 5,
nc1_ls : 8,
n2_hs : 7,
n2_ls : 360,
n31 : 63,
n32 : 63,
bwsel : 4,
crystal_as_ckin2: true
};
#[cfg(all(has_si5324, rtio_frequency = "100.0"))]
const SI5324_SETTINGS: si5324::FrequencySettings
= si5324::FrequencySettings {
n1_hs : 5,
nc1_ls : 10,
n2_hs : 10,
n2_ls : 250,
n31 : 50,
n32 : 50,
bwsel : 4,
crystal_as_ckin2: true
};
#[cfg(not(soc_platform = "efc"))]
fn sysclk_setup() {
let switched = unsafe {
csr::crg::switch_done_read()
};
if switched == 1 {
info!("Clocking has already been set up.");
return;
}
else {
#[cfg(has_si5324)]
si5324::setup(&SI5324_SETTINGS, si5324::Input::Ckin1).expect("cannot initialize Si5324");
info!("Switching sys clock, rebooting...");
// delay for clean UART log, wait until UART FIFO is empty
clock::spin_us(3000);
unsafe {
csr::gt_drtio::stable_clkin_write(1);
}
loop {}
}
}
#[no_mangle]
pub extern fn main() -> i32 {
extern {
static mut _fheap: u8;
static mut _eheap: u8;
static mut _sstack_guard: u8;
}
unsafe {
ALLOC.add_range(&mut _fheap, &mut _eheap);
pmp::init_stack_guard(&_sstack_guard as *const u8 as usize);
}
clock::init();
uart_logger::ConsoleLogger::register();
info!("ARTIQ satellite manager starting...");
info!("software ident {}", csr::CONFIG_IDENTIFIER_STR);
info!("gateware ident {}", ident::read(&mut [0; 64]));
#[cfg(has_i2c)]
i2c::init().expect("I2C initialization failed");
#[cfg(all(soc_platform = "kasli", hw_rev = "v2.0"))]
let (mut io_expander0, mut io_expander1);
#[cfg(all(soc_platform = "kasli", hw_rev = "v2.0"))]
{
io_expander0 = board_misoc::io_expander::IoExpander::new(0).unwrap();
io_expander1 = board_misoc::io_expander::IoExpander::new(1).unwrap();
io_expander0.init().expect("I2C I/O expander #0 initialization failed");
io_expander1.init().expect("I2C I/O expander #1 initialization failed");
// Actively drive TX_DISABLE to false on SFP0..3
io_expander0.set_oe(0, 1 << 1).unwrap();
io_expander0.set_oe(1, 1 << 1).unwrap();
io_expander1.set_oe(0, 1 << 1).unwrap();
io_expander1.set_oe(1, 1 << 1).unwrap();
io_expander0.set(0, 1, false);
io_expander0.set(1, 1, false);
io_expander1.set(0, 1, false);
io_expander1.set(1, 1, false);
io_expander0.service().unwrap();
io_expander1.service().unwrap();
}
#[cfg(not(soc_platform = "efc"))]
sysclk_setup();
#[cfg(soc_platform = "efc")]
let mut io_expander;
#[cfg(soc_platform = "efc")]
{
io_expander = board_misoc::io_expander::IoExpander::new().unwrap();
io_expander.init().expect("I2C I/O expander initialization failed");
// Enable LEDs
io_expander.set_oe(0, 1 << 5 | 1 << 6 | 1 << 7).unwrap();
// Enable VADJ and P3V3_FMC
io_expander.set_oe(1, 1 << 0 | 1 << 1).unwrap();
io_expander.set(1, 0, true);
io_expander.set(1, 1, true);
io_expander.service().unwrap();
}
#[cfg(not(has_drtio_eem))]
unsafe {
csr::gt_drtio::txenable_write(0xffffffffu32 as _);
}
#[cfg(has_drtio_eem)]
unsafe {
csr::eem_transceiver::txenable_write(0xffffffffu32 as _);
}
init_rtio_crg();
#[cfg(has_drtio_eem)]
drtio_eem::init();
#[cfg(has_drtio_routing)]
let mut repeaters = [repeater::Repeater::default(); csr::DRTIOREP.len()];
#[cfg(not(has_drtio_routing))]
let mut repeaters = [repeater::Repeater::default(); 0];
for i in 0..repeaters.len() {
repeaters[i] = repeater::Repeater::new(i as u8);
}
let mut routing_table = drtio_routing::RoutingTable::default_empty();
let mut rank = 1;
let mut destination = 1;
let mut hardware_tick_ts = 0;
#[cfg(soc_platform = "efc")]
ad9117::init().expect("AD9117 initialization failed");
loop {
let mut router = routing::Router::new();
while !drtiosat_link_rx_up() {
drtiosat_process_errors();
for rep in repeaters.iter_mut() {
rep.service(&routing_table, rank, destination, &mut router);
}
#[cfg(all(soc_platform = "kasli", hw_rev = "v2.0"))]
{
io_expander0.service().expect("I2C I/O expander #0 service failed");
io_expander1.service().expect("I2C I/O expander #1 service failed");
}
#[cfg(soc_platform = "efc")]
io_expander.service().expect("I2C I/O expander service failed");
hardware_tick(&mut hardware_tick_ts);
}
info!("uplink is up, switching to recovered clock");
#[cfg(has_si5324)]
{
si5324::siphaser::select_recovered_clock(true).expect("failed to switch clocks");
si5324::siphaser::calibrate_skew().expect("failed to calibrate skew");
}
// various managers created here, so when link is dropped, DMA traces,
// analyzer logs, kernels are cleared and/or stopped for a clean slate
// on subsequent connections, without a manual intervention.
let mut dma_manager = DmaManager::new();
let mut analyzer = Analyzer::new();
let mut kernelmgr = KernelManager::new();
cricon_select(RtioMaster::Drtio);
drtioaux::reset(0);
drtiosat_reset(false);
drtiosat_reset_phy(false);
while drtiosat_link_rx_up() {
drtiosat_process_errors();
process_aux_packets(&mut dma_manager, &mut analyzer,
&mut kernelmgr, &mut repeaters, &mut routing_table,
&mut rank, &mut router, &mut destination);
for rep in repeaters.iter_mut() {
rep.service(&routing_table, rank, destination, &mut router);
}
#[cfg(all(soc_platform = "kasli", hw_rev = "v2.0"))]
{
io_expander0.service().expect("I2C I/O expander #0 service failed");
io_expander1.service().expect("I2C I/O expander #1 service failed");
}
#[cfg(soc_platform = "efc")]
io_expander.service().expect("I2C I/O expander service failed");
hardware_tick(&mut hardware_tick_ts);
if drtiosat_tsc_loaded() {
info!("TSC loaded from uplink");
for rep in repeaters.iter() {
if let Err(e) = rep.sync_tsc() {
error!("failed to sync TSC ({})", e);
}
}
if let Err(e) = drtioaux::send(0, &drtioaux::Packet::TSCAck) {
error!("aux packet error: {}", e);
}
}
if let Some(status) = dma_manager.get_status() {
info!("playback done, error: {}, channel: {}, timestamp: {}", status.error, status.channel, status.timestamp);
router.route(drtioaux::Packet::DmaPlaybackStatus {
source: destination, destination: status.source, id: status.id,
error: status.error, channel: status.channel, timestamp: status.timestamp
}, &routing_table, rank, destination);
}
kernelmgr.process_kern_requests(&mut router, &routing_table, rank, destination);
if rank > 1 {
if let Some(packet) = router.get_upstream_packet(rank) {
// in sat-sat communications, it can be async
let res = drtioaux::send(0, &packet);
if let Err(e) = res {
warn!("error routing packet: {}", e);
}
}
}
}
drtiosat_reset_phy(true);
drtiosat_reset(true);
drtiosat_tsc_loaded();
info!("uplink is down, switching to local oscillator clock");
#[cfg(has_si5324)]
si5324::siphaser::select_recovered_clock(false).expect("failed to switch clocks");
}
}
#[cfg(soc_platform = "efc")]
fn enable_error_led() {
let mut io_expander = board_misoc::io_expander::IoExpander::new().unwrap();
// Keep LEDs enabled
io_expander.set_oe(0, 1 << 5 | 1 << 6 | 1 << 7).unwrap();
// Enable Error LED
io_expander.set(0, 7, true);
// Keep VADJ and P3V3_FMC enabled
io_expander.set_oe(1, 1 << 0 | 1 << 1).unwrap();
io_expander.set(1, 0, true);
io_expander.set(1, 1, true);
io_expander.service().unwrap();
}
#[no_mangle]
pub extern fn exception(_regs: *const u32) {
let pc = mepc::read();
let cause = mcause::read().cause();
fn hexdump(addr: u32) {
let addr = (addr - addr % 4) as *const u32;
let mut ptr = addr;
println!("@ {:08p}", ptr);
for _ in 0..4 {
print!("+{:04x}: ", ptr as usize - addr as usize);
print!("{:08x} ", unsafe { *ptr }); ptr = ptr.wrapping_offset(1);
print!("{:08x} ", unsafe { *ptr }); ptr = ptr.wrapping_offset(1);
print!("{:08x} ", unsafe { *ptr }); ptr = ptr.wrapping_offset(1);
print!("{:08x}\n", unsafe { *ptr }); ptr = ptr.wrapping_offset(1);
}
}
hexdump(u32::try_from(pc).unwrap());
let mtval = mtval::read();
panic!("exception {:?} at PC 0x{:x}, trap value 0x{:x}", cause, u32::try_from(pc).unwrap(), mtval)
}
#[no_mangle]
pub extern fn abort() {
println!("aborted");
loop {}
}
#[no_mangle] // https://github.com/rust-lang/rust/issues/{38281,51647}
#[panic_handler]
pub fn panic_fmt(info: &core::panic::PanicInfo) -> ! {
#[cfg(has_error_led)]
unsafe {
csr::error_led::out_write(1);
}
if let Some(location) = info.location() {
print!("panic at {}:{}:{}", location.file(), location.line(), location.column());
#[cfg(soc_platform = "efc")]
{
if location.file() != "libboard_misoc/io_expander.rs" {
enable_error_led();
}
}
} else {
print!("panic at unknown location");
#[cfg(soc_platform = "efc")]
enable_error_led();
}
if let Some(message) = info.message() {
println!(": {}", message);
} else {
println!("");
}
loop {}
}