artiq/artiq/firmware/satman/jdcg.rs

590 lines
20 KiB
Rust

pub mod jesd {
use board_misoc::{csr, clock};
pub fn reset(reset: bool) {
unsafe {
csr::jesd_crg::jreset_write(if reset {1} else {0});
}
}
pub fn enable(dacno: u8, en: bool) {
unsafe {
(csr::JDCG[dacno as usize].jesd_control_enable_write)(if en {1} else {0})
}
}
pub fn phy_done(dacno: u8) -> bool {
unsafe {
(csr::JDCG[dacno as usize].jesd_control_phy_done_read)() != 0
}
}
pub fn ready(dacno: u8) -> bool {
unsafe {
(csr::JDCG[dacno as usize].jesd_control_ready_read)() != 0
}
}
pub fn prbs(dacno: u8, en: bool) {
unsafe {
(csr::JDCG[dacno as usize].jesd_control_prbs_config_write)(if en {0b01} else {0b00})
}
clock::spin_us(5000);
}
pub fn stpl(dacno: u8, en: bool) {
unsafe {
(csr::JDCG[dacno as usize].jesd_control_stpl_enable_write)(if en {1} else {0})
}
clock::spin_us(5000);
}
pub fn jsync(dacno: u8) -> bool {
unsafe {
(csr::JDCG[dacno as usize].jesd_control_jsync_read)() != 0
}
}
}
pub mod jdac {
use board_misoc::{csr, clock};
use board_artiq::drtioaux;
use super::jesd;
use super::super::jdac_common;
pub fn basic_request(dacno: u8, reqno: u8, param: u8) -> Result<u8, &'static str> {
if let Err(e) = drtioaux::send(1, &drtioaux::Packet::JdacBasicRequest {
destination: 0,
dacno: dacno,
reqno: reqno,
param: param
}) {
error!("aux packet error ({})", e);
return Err("aux packet error while sending for JESD DAC basic request");
}
match drtioaux::recv_timeout(1, Some(1000)) {
Ok(drtioaux::Packet::JdacBasicReply { succeeded, retval }) => {
if succeeded {
Ok(retval)
} else {
error!("JESD DAC basic request failed (dacno={}, reqno={})", dacno, reqno);
Err("remote error status to JESD DAC basic request")
}
},
Ok(packet) => {
error!("received unexpected aux packet: {:?}", packet);
Err("unexpected aux packet in reply to JESD DAC basic request")
},
Err(e) => {
error!("aux packet error ({})", e);
Err("aux packet error while waiting for JESD DAC basic reply")
}
}
}
pub fn init() -> Result<(), &'static str> {
for dacno in 0..csr::JDCG.len() {
let dacno = dacno as u8;
info!("DAC-{} initializing...", dacno);
jesd::enable(dacno, true);
clock::spin_us(10_000);
if !jesd::phy_done(dacno) {
error!("JESD core PHY not done");
return Err("JESD core PHY not done");
}
basic_request(dacno, jdac_common::INIT, 0)?;
// JESD ready depends on JSYNC being valid, so DAC init needs to happen first
if !jesd::ready(dacno) {
error!("JESD core reported not ready, sending DAC status print request");
basic_request(dacno, jdac_common::PRINT_STATUS, 0)?;
return Err("JESD core reported not ready");
}
jesd::prbs(dacno, true);
basic_request(dacno, jdac_common::PRBS, 0)?;
jesd::prbs(dacno, false);
basic_request(dacno, jdac_common::INIT, 0)?;
clock::spin_us(5000);
if !jesd::jsync(dacno) {
error!("JESD core reported bad SYNC");
return Err("JESD core reported bad SYNC");
}
info!(" ...done initializing");
}
Ok(())
}
pub fn stpl() -> Result<(), &'static str> {
for dacno in 0..csr::JDCG.len() {
let dacno = dacno as u8;
info!("Running STPL test on DAC-{}...", dacno);
jesd::stpl(dacno, true);
basic_request(dacno, jdac_common::STPL, 0)?;
jesd::stpl(dacno, false);
info!(" ...done STPL test");
}
Ok(())
}
}
pub mod jesd204sync {
use board_misoc::{csr, clock, config};
use super::jdac;
use super::super::jdac_common;
const HMC7043_ANALOG_DELAY_RANGE: u8 = 24;
const FPGA_CLK_DIV: u16 = 16; // Keep in sync with hmc830_7043.rs
const SYSREF_DIV: u16 = 256; // Keep in sync with hmc830_7043.rs
fn hmc7043_sysref_delay_dac(dacno: u8, phase_offset: u8) -> Result<(), &'static str> {
match jdac::basic_request(dacno, jdac_common::SYSREF_DELAY_DAC, phase_offset) {
Ok(_) => Ok(()),
Err(e) => Err(e)
}
}
fn hmc7043_sysref_slip() -> Result<(), &'static str> {
match jdac::basic_request(0, jdac_common::SYSREF_SLIP, 0) {
Ok(_) => Ok(()),
Err(e) => Err(e)
}
}
fn ad9154_sync(dacno: u8) -> Result<bool, &'static str> {
match jdac::basic_request(dacno, jdac_common::SYNC, 0) {
Ok(0) => Ok(false),
Ok(_) => Ok(true),
Err(e) => Err(e)
}
}
fn measure_ddmdt_phase_raw() -> Result<i32, &'static str> {
Ok(jdac::basic_request(0, jdac_common::DDMTD_SYSREF_RAW, 0)? as i32)
}
fn measure_ddmdt_phase() -> Result<i32, &'static str> {
Ok(jdac::basic_request(0, jdac_common::DDMTD_SYSREF, 0)? as i32)
}
fn test_ddmtd_stability(raw: bool, tolerance: i32) -> Result<(), &'static str> {
info!("testing DDMTD stability (raw={}, tolerance={})...", raw, tolerance);
let modulo = if raw { jdac_common::RAW_DDMTD_N } else { jdac_common::DDMTD_N };
let measurement = if raw { measure_ddmdt_phase_raw } else { measure_ddmdt_phase };
let ntests = if raw { 150 } else { 15 };
let mut max_pkpk = 0;
for _ in 0..32 {
// If we are near the edges, wraparound can throw off the simple min/max computation.
// In this case, add an offset to get near the center.
let quadrant = measure_ddmdt_phase()?;
let center_offset =
if quadrant < jdac_common::DDMTD_N/4 || quadrant > 3*jdac_common::DDMTD_N/4 {
modulo/2
} else {
0
};
let mut min = modulo;
let mut max = 0;
for _ in 0..ntests {
let m = (measurement()? + center_offset) % modulo;
if m < min {
min = m;
}
if m > max {
max = m;
}
}
let pkpk = max - min;
if pkpk > max_pkpk {
max_pkpk = pkpk;
}
if pkpk > tolerance {
error!(" ...excessive peak-peak jitter: {} (min={} max={} center_offset={})", pkpk,
min, max, center_offset);
return Err("excessive DDMTD peak-peak jitter");
}
hmc7043_sysref_slip();
}
info!(" ...passed, peak-peak jitter: {}", max_pkpk);
Ok(())
}
fn test_slip_ddmtd() -> Result<(), &'static str> {
// expected_step = (RTIO clock frequency)*(DDMTD N)/(HMC7043 CLKIN frequency)
let expected_step = 8;
let tolerance = 1;
info!("testing HMC7043 SYSREF slip against DDMTD...");
let mut old_phase = measure_ddmdt_phase()?;
for _ in 0..1024 {
hmc7043_sysref_slip();
let phase = measure_ddmdt_phase()?;
let step = (jdac_common::DDMTD_N + old_phase - phase) % jdac_common::DDMTD_N;
if (step - expected_step).abs() > tolerance {
error!(" ...got unexpected step: {} ({} -> {})", step, old_phase, phase);
return Err("HMC7043 SYSREF slip produced unexpected DDMTD step");
}
old_phase = phase;
}
info!(" ...passed");
Ok(())
}
fn sysref_sh_error() -> bool {
unsafe {
csr::sysref_sampler::sh_error_reset_write(1);
clock::spin_us(1);
csr::sysref_sampler::sh_error_reset_write(0);
clock::spin_us(10);
csr::sysref_sampler::sh_error_read() != 0
}
}
const SYSREF_SH_PRECISION_SHIFT: i32 = 5;
const SYSREF_SH_PRECISION: i32 = 1 << SYSREF_SH_PRECISION_SHIFT;
const SYSREF_SH_MOD: i32 = 1 << (jdac_common::DDMTD_N_SHIFT + SYSREF_SH_PRECISION_SHIFT);
#[derive(Default)]
struct SysrefShLimits {
rising_phases: [i32; SYSREF_SH_PRECISION as usize],
falling_phases: [i32; SYSREF_SH_PRECISION as usize],
}
fn measure_sysref_sh_limits() -> Result<SysrefShLimits, &'static str> {
let mut ret = SysrefShLimits::default();
let mut nslips = 0;
let mut rising_n = 0;
let mut falling_n = 0;
let mut previous = sysref_sh_error();
while rising_n < SYSREF_SH_PRECISION || falling_n < SYSREF_SH_PRECISION {
hmc7043_sysref_slip();
nslips += 1;
if nslips > 1024 {
return Err("too many slips and not enough SYSREF S/H error transitions");
}
let current = sysref_sh_error();
let phase = measure_ddmdt_phase()?;
if current && !previous && rising_n < SYSREF_SH_PRECISION {
ret.rising_phases[rising_n as usize] = phase << SYSREF_SH_PRECISION_SHIFT;
rising_n += 1;
}
if !current && previous && falling_n < SYSREF_SH_PRECISION {
ret.falling_phases[falling_n as usize] = phase << SYSREF_SH_PRECISION_SHIFT;
falling_n += 1;
}
previous = current;
}
Ok(ret)
}
fn max_phase_deviation(average: i32, phases: &[i32]) -> i32 {
let mut ret = 0;
for phase in phases.iter() {
let deviation = (phase - average + jdac_common::DDMTD_N) % jdac_common::DDMTD_N;
if deviation > ret {
ret = deviation;
}
}
return ret;
}
fn reach_sysref_ddmtd_target(target: i32, tolerance: i32) -> Result<i32, &'static str> {
for _ in 0..1024 {
let delta = (measure_ddmdt_phase()? - target + jdac_common::DDMTD_N) % jdac_common::DDMTD_N;
if delta <= tolerance {
return Ok(delta)
}
hmc7043_sysref_slip();
}
Err("failed to reach SYSREF DDMTD phase target")
}
fn calibrate_sysref_target(rising_average: i32, falling_average: i32) -> Result<i32, &'static str> {
info!("calibrating SYSREF DDMTD target phase...");
let coarse_target =
if rising_average < falling_average {
(rising_average + falling_average)/2
} else {
((falling_average - (jdac_common::DDMTD_N - rising_average))/2 + jdac_common::DDMTD_N) % jdac_common::DDMTD_N
};
info!(" SYSREF calibration coarse target: {}", coarse_target);
reach_sysref_ddmtd_target(coarse_target, 8)?;
let target = measure_ddmdt_phase()?;
info!(" ...done, target={}", target);
Ok(target)
}
fn sysref_get_tsc_phase_raw() -> Result<u8, &'static str> {
if sysref_sh_error() {
return Err("SYSREF failed S/H timing");
}
let ret = unsafe { csr::sysref_sampler::sysref_phase_read() };
Ok(ret)
}
// Note: the code below assumes RTIO/SYSREF frequency ratio is a power of 2
fn sysref_get_tsc_phase() -> Result<i32, &'static str> {
let mask = (SYSREF_DIV/FPGA_CLK_DIV - 1) as u8;
Ok((sysref_get_tsc_phase_raw()? & mask) as i32)
}
pub fn test_sysref_frequency() -> Result<(), &'static str> {
info!("testing SYSREF frequency against raw TSC phase bit toggles...");
let mut all_toggles = 0;
let initial_phase = sysref_get_tsc_phase_raw()?;
for _ in 0..20000 {
clock::spin_us(1);
all_toggles |= sysref_get_tsc_phase_raw()? ^ initial_phase;
}
let ratio = (SYSREF_DIV/FPGA_CLK_DIV) as u8;
let expected_toggles = 0xff ^ (ratio - 1);
if all_toggles == expected_toggles {
info!(" ...done (0x{:02x})", all_toggles);
Ok(())
} else {
error!(" ...unexpected toggles: got 0x{:02x}, expected 0x{:02x}",
all_toggles, expected_toggles);
Err("unexpected toggles")
}
}
fn sysref_slip_rtio_cycle() {
for _ in 0..FPGA_CLK_DIV {
hmc7043_sysref_slip();
}
}
pub fn test_slip_tsc() -> Result<(), &'static str> {
info!("testing HMC7043 SYSREF slip against TSC phase...");
let initial_phase = sysref_get_tsc_phase()?;
let modulo = (SYSREF_DIV/FPGA_CLK_DIV) as i32;
for i in 0..128 {
sysref_slip_rtio_cycle();
let expected_phase = (initial_phase + i + 1) % modulo;
let phase = sysref_get_tsc_phase()?;
if phase != expected_phase {
error!(" ...unexpected TSC phase: got {}, expected {} ", phase, expected_phase);
return Err("HMC7043 SYSREF slip produced unexpected TSC phase");
}
}
info!(" ...done");
Ok(())
}
pub fn sysref_rtio_align() -> Result<(), &'static str> {
info!("aligning SYSREF with RTIO TSC...");
let mut nslips = 0;
loop {
sysref_slip_rtio_cycle();
if sysref_get_tsc_phase()? == 0 {
info!(" ...done");
return Ok(())
}
nslips += 1;
if nslips > SYSREF_DIV/FPGA_CLK_DIV {
return Err("failed to find SYSREF transition aligned with RTIO TSC");
}
}
}
pub fn sysref_auto_rtio_align() -> Result<(), &'static str> {
test_ddmtd_stability(true, 4)?;
test_ddmtd_stability(false, 1)?;
test_slip_ddmtd()?;
info!("determining SYSREF S/H limits...");
let sysref_sh_limits = measure_sysref_sh_limits()?;
let rising_average = jdac_common::average_phases(&sysref_sh_limits.rising_phases, SYSREF_SH_MOD);
let falling_average = jdac_common::average_phases(&sysref_sh_limits.falling_phases, SYSREF_SH_MOD);
let rising_max_deviation = max_phase_deviation(rising_average, &sysref_sh_limits.rising_phases);
let falling_max_deviation = max_phase_deviation(falling_average, &sysref_sh_limits.falling_phases);
let rising_average = rising_average >> SYSREF_SH_PRECISION_SHIFT;
let falling_average = falling_average >> SYSREF_SH_PRECISION_SHIFT;
let rising_max_deviation = rising_max_deviation >> SYSREF_SH_PRECISION_SHIFT;
let falling_max_deviation = falling_max_deviation >> SYSREF_SH_PRECISION_SHIFT;
info!(" SYSREF S/H average limits (DDMTD phases): {} {}", rising_average, falling_average);
info!(" SYSREF S/H maximum limit deviation: {} {}", rising_max_deviation, falling_max_deviation);
if rising_max_deviation > 8 || falling_max_deviation > 8 {
return Err("excessive SYSREF S/H limit deviation");
}
info!(" ...done");
let entry = config::read_str("sysref_ddmtd_phase_fpga", |r| r.map(|s| s.parse()));
let target_phase = match entry {
Ok(Ok(phase)) => {
info!("using FPGA SYSREF DDMTD phase target from config: {}", phase);
phase
}
_ => {
let phase = calibrate_sysref_target(rising_average, falling_average)?;
if let Err(e) = config::write_int("sysref_ddmtd_phase_fpga", phase as u32) {
error!("failed to update FPGA SYSREF DDMTD phase target in config: {}", e);
}
phase
}
};
info!("aligning SYSREF with RTIO clock...");
let delta = reach_sysref_ddmtd_target(target_phase, 3)?;
if sysref_sh_error() {
return Err("SYSREF does not meet S/H timing at DDMTD phase target");
}
info!(" ...done, delta={}", delta);
test_sysref_frequency()?;
test_slip_tsc()?;
sysref_rtio_align()?;
Ok(())
}
fn sysref_cal_dac(dacno: u8) -> Result<u8, &'static str> {
info!("calibrating SYSREF delay at DAC-{}...", dacno);
// Allocate for more than expected as jitter may create spurious entries.
let mut limits_buf = [0; 8];
let mut n_limits = 0;
limits_buf[n_limits] = -1;
n_limits += 1;
// avoid spurious rotation at delay=0
hmc7043_sysref_delay_dac(dacno, 0);
ad9154_sync(dacno)?;
for scan_delay in 0..HMC7043_ANALOG_DELAY_RANGE {
hmc7043_sysref_delay_dac(dacno, scan_delay);
if ad9154_sync(dacno)? {
limits_buf[n_limits] = scan_delay as i16;
n_limits += 1;
if n_limits >= limits_buf.len() - 1 {
break;
}
}
}
limits_buf[n_limits] = HMC7043_ANALOG_DELAY_RANGE as i16;
n_limits += 1;
info!(" using limits: {:?}", &limits_buf[..n_limits]);
let mut delay = 0;
let mut best_margin = 0;
for i in 0..(n_limits-1) {
let margin = limits_buf[i+1] - limits_buf[i];
if margin > best_margin {
best_margin = margin;
delay = ((limits_buf[i+1] + limits_buf[i])/2) as u8;
}
}
info!(" ...done, delay={}", delay);
Ok(delay)
}
fn sysref_dac_align(dacno: u8, delay: u8) -> Result<(), &'static str> {
let tolerance = 5;
info!("verifying SYSREF margins at DAC-{}...", dacno);
// avoid spurious rotation at delay=0
hmc7043_sysref_delay_dac(dacno, 0);
ad9154_sync(dacno)?;
let mut rotation_seen = false;
for scan_delay in 0..HMC7043_ANALOG_DELAY_RANGE {
hmc7043_sysref_delay_dac(dacno, scan_delay);
if ad9154_sync(dacno)? {
rotation_seen = true;
let distance = (scan_delay as i16 - delay as i16).abs();
if distance < tolerance {
error!(" rotation at delay={} is {} delay steps from target (FAIL)", scan_delay, distance);
return Err("insufficient SYSREF margin at DAC");
} else {
info!(" rotation at delay={} is {} delay steps from target (PASS)", scan_delay, distance);
}
}
}
if !rotation_seen {
return Err("no rotation seen when scanning DAC SYSREF delay");
}
info!(" ...done");
// We tested that the value is correct - now use it
info!("synchronizing DAC-{}", dacno);
hmc7043_sysref_delay_dac(dacno, delay);
ad9154_sync(dacno)?;
Ok(())
}
pub fn sysref_auto_dac_align() -> Result<(), &'static str> {
// We assume that DAC SYSREF traces are length-matched so only one delay
// value is needed, and we use DAC-0 as calibration reference.
let entry = config::read_str("sysref_7043_delay_dac", |r| r.map(|s| s.parse()));
let delay = match entry {
Ok(Ok(delay)) => {
info!("using DAC SYSREF delay from config: {}", delay);
delay
},
_ => {
let delay = sysref_cal_dac(0)?;
if let Err(e) = config::write_int("sysref_7043_delay_dac", delay as u32) {
error!("failed to update DAC SYSREF delay in config: {}", e);
}
delay
}
};
for dacno in 0..csr::JDCG.len() {
sysref_dac_align(dacno as u8, delay)?;
}
Ok(())
}
pub fn sysref_auto_align() {
if let Err(e) = sysref_auto_rtio_align() {
error!("failed to align SYSREF at FPGA: {}", e);
}
if let Err(e) = sysref_auto_dac_align() {
error!("failed to align SYSREF at DAC: {}", e);
}
}
pub fn resync_dacs() -> Result<(), &'static str> {
for dacno in 0..csr::JDCG.len() {
info!("resynchronizing DAC-{}", dacno);
ad9154_sync(dacno as u8)?;
}
Ok(())
}
}