mirror of https://github.com/m-labs/artiq.git
1083 lines
48 KiB
Python
1083 lines
48 KiB
Python
"""
|
|
The :class:`Stitcher` class allows to transparently combine compiled
|
|
Python code and Python code executed on the host system: it resolves
|
|
the references to the host objects and translates the functions
|
|
annotated as ``@kernel`` when they are referenced.
|
|
"""
|
|
|
|
import sys, os, re, linecache, inspect, textwrap, types as pytypes, numpy
|
|
from collections import OrderedDict, defaultdict
|
|
|
|
from pythonparser import ast, algorithm, source, diagnostic, parse_buffer
|
|
from pythonparser import lexer as source_lexer, parser as source_parser
|
|
|
|
from Levenshtein import ratio as similarity, jaro_winkler
|
|
|
|
from ..language import core as language_core
|
|
from . import types, builtins, asttyped, prelude
|
|
from .transforms import ASTTypedRewriter, Inferencer, IntMonomorphizer, TypedtreePrinter
|
|
from .transforms.asttyped_rewriter import LocalExtractor
|
|
|
|
|
|
class SpecializedFunction:
|
|
def __init__(self, instance_type, host_function):
|
|
self.instance_type = instance_type
|
|
self.host_function = host_function
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, tuple):
|
|
return (self.instance_type == other[0] or
|
|
self.host_function == other[1])
|
|
else:
|
|
return (self.instance_type == other.instance_type or
|
|
self.host_function == other.host_function)
|
|
|
|
def __ne__(self, other):
|
|
return not self == other
|
|
|
|
def __hash__(self):
|
|
return hash((self.instance_type, self.host_function))
|
|
|
|
|
|
class EmbeddingMap:
|
|
def __init__(self):
|
|
self.object_current_key = 0
|
|
self.object_forward_map = {}
|
|
self.object_reverse_map = {}
|
|
self.module_map = {}
|
|
self.type_map = {}
|
|
self.function_map = {}
|
|
|
|
# Modules
|
|
def store_module(self, module, module_type):
|
|
self.module_map[module] = module_type
|
|
|
|
def retrieve_module(self, module):
|
|
return self.module_map[module]
|
|
|
|
def has_module(self, module):
|
|
return module in self.module_map
|
|
|
|
# Types
|
|
def store_type(self, host_type, instance_type, constructor_type):
|
|
self._rename_type(instance_type)
|
|
self.type_map[host_type] = (instance_type, constructor_type)
|
|
|
|
def retrieve_type(self, host_type):
|
|
return self.type_map[host_type]
|
|
|
|
def has_type(self, host_type):
|
|
return host_type in self.type_map
|
|
|
|
def _rename_type(self, new_instance_type):
|
|
# Generally, user-defined types that have exact same name (which is to say, classes
|
|
# defined inside functions) do not pose a problem to the compiler. The two places which
|
|
# cannot handle this are:
|
|
# 1. {TInstance,TConstructor}.__hash__
|
|
# 2. LLVM type names
|
|
# Since handling #2 requires renaming on ARTIQ side anyway, it's more straightforward
|
|
# to do it once when embedding (since non-embedded code cannot define classes in
|
|
# functions). Also, easier to debug.
|
|
n = 0
|
|
for host_type in self.type_map:
|
|
instance_type, constructor_type = self.type_map[host_type]
|
|
if instance_type.name == new_instance_type.name:
|
|
n += 1
|
|
new_instance_type.name = "{}.{}".format(new_instance_type.name, n)
|
|
|
|
def attribute_count(self):
|
|
count = 0
|
|
for host_type in self.type_map:
|
|
instance_type, constructor_type = self.type_map[host_type]
|
|
count += len(instance_type.attributes)
|
|
count += len(constructor_type.attributes)
|
|
return count
|
|
|
|
# Functions
|
|
def store_function(self, function, ir_function_name):
|
|
self.function_map[function] = ir_function_name
|
|
|
|
def retrieve_function(self, function):
|
|
return self.function_map[function]
|
|
|
|
def specialize_function(self, instance_type, host_function):
|
|
return SpecializedFunction(instance_type, host_function)
|
|
|
|
# Objects
|
|
def store_object(self, obj_ref):
|
|
obj_id = id(obj_ref)
|
|
if obj_id in self.object_reverse_map:
|
|
return self.object_reverse_map[obj_id]
|
|
|
|
self.object_current_key += 1
|
|
self.object_forward_map[self.object_current_key] = obj_ref
|
|
self.object_reverse_map[obj_id] = self.object_current_key
|
|
return self.object_current_key
|
|
|
|
def retrieve_object(self, obj_key):
|
|
return self.object_forward_map[obj_key]
|
|
|
|
def iter_objects(self):
|
|
for obj_id in self.object_forward_map.keys():
|
|
obj_ref = self.object_forward_map[obj_id]
|
|
if isinstance(obj_ref, (pytypes.FunctionType, pytypes.MethodType,
|
|
pytypes.BuiltinFunctionType, pytypes.ModuleType,
|
|
SpecializedFunction)):
|
|
continue
|
|
elif isinstance(obj_ref, type):
|
|
_, obj_typ = self.type_map[obj_ref]
|
|
else:
|
|
obj_typ, _ = self.type_map[type(obj_ref)]
|
|
yield obj_id, obj_ref, obj_typ
|
|
|
|
def has_rpc(self):
|
|
return any(filter(lambda x: inspect.isfunction(x) or inspect.ismethod(x),
|
|
self.object_forward_map.values()))
|
|
|
|
|
|
class ASTSynthesizer:
|
|
def __init__(self, embedding_map, value_map, quote_function=None, expanded_from=None):
|
|
self.source = ""
|
|
self.source_buffer = source.Buffer(self.source, "<synthesized>")
|
|
self.embedding_map = embedding_map
|
|
self.value_map = value_map
|
|
self.quote_function = quote_function
|
|
self.expanded_from = expanded_from
|
|
self.diagnostics = []
|
|
|
|
def finalize(self):
|
|
self.source_buffer.source = self.source
|
|
return self.source_buffer
|
|
|
|
def _add(self, fragment):
|
|
range_from = len(self.source)
|
|
self.source += fragment
|
|
range_to = len(self.source)
|
|
return source.Range(self.source_buffer, range_from, range_to,
|
|
expanded_from=self.expanded_from)
|
|
|
|
def quote(self, value):
|
|
"""Construct an AST fragment equal to `value`."""
|
|
if value is None:
|
|
typ = builtins.TNone()
|
|
return asttyped.NameConstantT(value=value, type=typ,
|
|
loc=self._add(repr(value)))
|
|
elif value is True or value is False:
|
|
typ = builtins.TBool()
|
|
return asttyped.NameConstantT(value=value, type=typ,
|
|
loc=self._add(repr(value)))
|
|
elif value is numpy.int32:
|
|
typ = builtins.fn_int32()
|
|
return asttyped.NameConstantT(value=None, type=typ,
|
|
loc=self._add("numpy.int32"))
|
|
elif value is numpy.int64:
|
|
typ = builtins.fn_int64()
|
|
return asttyped.NameConstantT(value=None, type=typ,
|
|
loc=self._add("numpy.int64"))
|
|
elif value is numpy.array:
|
|
typ = builtins.fn_array()
|
|
return asttyped.NameConstantT(value=None, type=typ,
|
|
loc=self._add("numpy.array"))
|
|
elif value is numpy.full:
|
|
typ = builtins.fn_make_array()
|
|
return asttyped.NameConstantT(value=None, type=typ,
|
|
loc=self._add("numpy.full"))
|
|
elif isinstance(value, (int, float)):
|
|
if isinstance(value, int):
|
|
typ = builtins.TInt()
|
|
elif isinstance(value, float):
|
|
typ = builtins.TFloat()
|
|
return asttyped.NumT(n=value, ctx=None, type=typ,
|
|
loc=self._add(repr(value)))
|
|
elif isinstance(value, numpy.int32):
|
|
typ = builtins.TInt32()
|
|
return asttyped.NumT(n=int(value), ctx=None, type=typ,
|
|
loc=self._add(repr(value)))
|
|
elif isinstance(value, numpy.int64):
|
|
typ = builtins.TInt64()
|
|
return asttyped.NumT(n=int(value), ctx=None, type=typ,
|
|
loc=self._add(repr(value)))
|
|
elif isinstance(value, str):
|
|
return asttyped.StrT(s=value, ctx=None, type=builtins.TStr(),
|
|
loc=self._add(repr(value)))
|
|
elif isinstance(value, bytes):
|
|
return asttyped.StrT(s=value, ctx=None, type=builtins.TBytes(),
|
|
loc=self._add(repr(value)))
|
|
elif isinstance(value, bytearray):
|
|
quote_loc = self._add('`')
|
|
repr_loc = self._add(repr(value))
|
|
unquote_loc = self._add('`')
|
|
loc = quote_loc.join(unquote_loc)
|
|
|
|
return asttyped.QuoteT(value=value, type=builtins.TByteArray(), loc=loc)
|
|
elif isinstance(value, list):
|
|
begin_loc = self._add("[")
|
|
elts = []
|
|
for index, elt in enumerate(value):
|
|
elts.append(self.quote(elt))
|
|
if index < len(value) - 1:
|
|
self._add(", ")
|
|
end_loc = self._add("]")
|
|
return asttyped.ListT(elts=elts, ctx=None, type=builtins.TList(),
|
|
begin_loc=begin_loc, end_loc=end_loc,
|
|
loc=begin_loc.join(end_loc))
|
|
elif isinstance(value, numpy.ndarray):
|
|
begin_loc = self._add("numpy.array([")
|
|
elts = []
|
|
for index, elt in enumerate(value):
|
|
elts.append(self.quote(elt))
|
|
if index < len(value) - 1:
|
|
self._add(", ")
|
|
end_loc = self._add("])")
|
|
|
|
return asttyped.ListT(elts=elts, ctx=None, type=builtins.TArray(),
|
|
begin_loc=begin_loc, end_loc=end_loc,
|
|
loc=begin_loc.join(end_loc))
|
|
elif inspect.isfunction(value) or inspect.ismethod(value) or \
|
|
isinstance(value, pytypes.BuiltinFunctionType) or \
|
|
isinstance(value, SpecializedFunction):
|
|
if inspect.ismethod(value):
|
|
quoted_self = self.quote(value.__self__)
|
|
function_type = self.quote_function(value.__func__, self.expanded_from)
|
|
method_type = types.TMethod(quoted_self.type, function_type)
|
|
|
|
dot_loc = self._add('.')
|
|
name_loc = self._add(value.__func__.__name__)
|
|
loc = quoted_self.loc.join(name_loc)
|
|
return asttyped.QuoteT(value=value, type=method_type,
|
|
self_loc=quoted_self.loc, loc=loc)
|
|
else: # function
|
|
function_type = self.quote_function(value, self.expanded_from)
|
|
|
|
quote_loc = self._add('`')
|
|
repr_loc = self._add(repr(value))
|
|
unquote_loc = self._add('`')
|
|
loc = quote_loc.join(unquote_loc)
|
|
return asttyped.QuoteT(value=value, type=function_type, loc=loc)
|
|
elif isinstance(value, pytypes.ModuleType):
|
|
if self.embedding_map.has_module(value):
|
|
module_type = self.embedding_map.retrieve_module(value)
|
|
else:
|
|
module_type = types.TModule(value.__name__, OrderedDict())
|
|
module_type.attributes['__objectid__'] = builtins.TInt32()
|
|
self.embedding_map.store_module(value, module_type)
|
|
|
|
quote_loc = self._add('`')
|
|
repr_loc = self._add(repr(value))
|
|
unquote_loc = self._add('`')
|
|
loc = quote_loc.join(unquote_loc)
|
|
|
|
self.value_map[module_type].append((value, loc))
|
|
return asttyped.QuoteT(value=value, type=module_type, loc=loc)
|
|
else:
|
|
quote_loc = self._add('`')
|
|
repr_loc = self._add(repr(value))
|
|
unquote_loc = self._add('`')
|
|
loc = quote_loc.join(unquote_loc)
|
|
|
|
if isinstance(value, type):
|
|
typ = value
|
|
else:
|
|
typ = type(value)
|
|
|
|
if self.embedding_map.has_type(typ):
|
|
instance_type, constructor_type = self.embedding_map.retrieve_type(typ)
|
|
|
|
if hasattr(value, 'kernel_invariants') and \
|
|
value.kernel_invariants != instance_type.constant_attributes:
|
|
attr_diff = value.kernel_invariants.difference(
|
|
instance_type.constant_attributes)
|
|
if len(attr_diff) > 0:
|
|
diag = diagnostic.Diagnostic("warning",
|
|
"object {value} of type {typ} declares attribute(s) {attrs} as "
|
|
"kernel invariant, but other objects of the same type do not; "
|
|
"the invariant annotation on this object will be ignored",
|
|
{"value": repr(value),
|
|
"typ": types.TypePrinter().name(instance_type, max_depth=0),
|
|
"attrs": ", ".join(["'{}'".format(attr) for attr in attr_diff])},
|
|
loc)
|
|
self.diagnostics.append(diag)
|
|
attr_diff = instance_type.constant_attributes.difference(
|
|
value.kernel_invariants)
|
|
if len(attr_diff) > 0:
|
|
diag = diagnostic.Diagnostic("warning",
|
|
"object {value} of type {typ} does not declare attribute(s) {attrs} as "
|
|
"kernel invariant, but other objects of the same type do; "
|
|
"the invariant annotation on other objects will be ignored",
|
|
{"value": repr(value),
|
|
"typ": types.TypePrinter().name(instance_type, max_depth=0),
|
|
"attrs": ", ".join(["'{}'".format(attr) for attr in attr_diff])},
|
|
loc)
|
|
self.diagnostics.append(diag)
|
|
value.kernel_invariants = value.kernel_invariants.intersection(
|
|
instance_type.constant_attributes)
|
|
else:
|
|
if issubclass(typ, BaseException):
|
|
if hasattr(typ, 'artiq_builtin'):
|
|
exception_id = 0
|
|
else:
|
|
exception_id = self.embedding_map.store_object(typ)
|
|
instance_type = builtins.TException("{}.{}".format(typ.__module__,
|
|
typ.__qualname__),
|
|
id=exception_id)
|
|
constructor_type = types.TExceptionConstructor(instance_type)
|
|
else:
|
|
instance_type = types.TInstance("{}.{}".format(typ.__module__, typ.__qualname__),
|
|
OrderedDict())
|
|
instance_type.attributes['__objectid__'] = builtins.TInt32()
|
|
constructor_type = types.TConstructor(instance_type)
|
|
constructor_type.attributes['__objectid__'] = builtins.TInt32()
|
|
instance_type.constructor = constructor_type
|
|
|
|
self.embedding_map.store_type(typ, instance_type, constructor_type)
|
|
|
|
if hasattr(value, 'kernel_invariants'):
|
|
assert isinstance(value.kernel_invariants, set)
|
|
instance_type.constant_attributes = value.kernel_invariants
|
|
|
|
if isinstance(value, type):
|
|
self.value_map[constructor_type].append((value, loc))
|
|
return asttyped.QuoteT(value=value, type=constructor_type,
|
|
loc=loc)
|
|
else:
|
|
self.value_map[instance_type].append((value, loc))
|
|
return asttyped.QuoteT(value=value, type=instance_type,
|
|
loc=loc)
|
|
|
|
def call(self, callee, args, kwargs, callback=None):
|
|
"""
|
|
Construct an AST fragment calling a function specified by
|
|
an AST node `function_node`, with given arguments.
|
|
"""
|
|
if callback is not None:
|
|
callback_node = self.quote(callback)
|
|
cb_begin_loc = self._add("(")
|
|
|
|
callee_node = self.quote(callee)
|
|
arg_nodes = []
|
|
kwarg_nodes = []
|
|
kwarg_locs = []
|
|
|
|
begin_loc = self._add("(")
|
|
for index, arg in enumerate(args):
|
|
arg_nodes.append(self.quote(arg))
|
|
if index < len(args) - 1:
|
|
self._add(", ")
|
|
if any(args) and any(kwargs):
|
|
self._add(", ")
|
|
for index, kw in enumerate(kwargs):
|
|
arg_loc = self._add(kw)
|
|
equals_loc = self._add("=")
|
|
kwarg_locs.append((arg_loc, equals_loc))
|
|
kwarg_nodes.append(self.quote(kwargs[kw]))
|
|
if index < len(kwargs) - 1:
|
|
self._add(", ")
|
|
end_loc = self._add(")")
|
|
|
|
if callback is not None:
|
|
cb_end_loc = self._add(")")
|
|
|
|
node = asttyped.CallT(
|
|
func=callee_node,
|
|
args=arg_nodes,
|
|
keywords=[ast.keyword(arg=kw, value=value,
|
|
arg_loc=arg_loc, equals_loc=equals_loc,
|
|
loc=arg_loc.join(value.loc))
|
|
for kw, value, (arg_loc, equals_loc)
|
|
in zip(kwargs, kwarg_nodes, kwarg_locs)],
|
|
starargs=None, kwargs=None,
|
|
type=types.TVar(), iodelay=None, arg_exprs={},
|
|
begin_loc=begin_loc, end_loc=end_loc, star_loc=None, dstar_loc=None,
|
|
loc=callee_node.loc.join(end_loc))
|
|
|
|
if callback is not None:
|
|
node = asttyped.CallT(
|
|
func=callback_node,
|
|
args=[node], keywords=[], starargs=None, kwargs=None,
|
|
type=builtins.TNone(), iodelay=None, arg_exprs={},
|
|
begin_loc=cb_begin_loc, end_loc=cb_end_loc, star_loc=None, dstar_loc=None,
|
|
loc=callback_node.loc.join(cb_end_loc))
|
|
|
|
return node
|
|
|
|
|
|
def suggest_identifier(id, names):
|
|
sorted_names = sorted(names, key=lambda other: jaro_winkler(id, other), reverse=True)
|
|
if len(sorted_names) > 0:
|
|
if jaro_winkler(id, sorted_names[0]) > 0.0 and similarity(id, sorted_names[0]) > 0.5:
|
|
return sorted_names[0]
|
|
|
|
class StitchingASTTypedRewriter(ASTTypedRewriter):
|
|
def __init__(self, engine, prelude, globals, host_environment, quote):
|
|
super().__init__(engine, prelude)
|
|
self.globals = globals
|
|
self.env_stack.append(self.globals)
|
|
|
|
self.host_environment = host_environment
|
|
self.quote = quote
|
|
|
|
def visit_arg(self, node):
|
|
typ = self._find_name(node.arg, node.loc)
|
|
# ignore annotations; these are handled in _quote_function
|
|
return asttyped.argT(type=typ,
|
|
arg=node.arg, annotation=None,
|
|
arg_loc=node.arg_loc, colon_loc=node.colon_loc, loc=node.loc)
|
|
|
|
def visit_quoted_function(self, node, function):
|
|
extractor = LocalExtractor(env_stack=self.env_stack, engine=self.engine)
|
|
extractor.visit(node)
|
|
|
|
# We quote the defaults so they end up in the global data in LLVM IR.
|
|
# This way there is no "life before main", i.e. they do not have to be
|
|
# constructed before the main translated call executes; but the Python
|
|
# semantics is kept.
|
|
defaults = function.__defaults__ or ()
|
|
quoted_defaults = []
|
|
for default, default_node in zip(defaults, node.args.defaults):
|
|
quoted_defaults.append(self.quote(default, default_node.loc))
|
|
node.args.defaults = quoted_defaults
|
|
|
|
node = asttyped.QuotedFunctionDefT(
|
|
typing_env=extractor.typing_env, globals_in_scope=extractor.global_,
|
|
signature_type=types.TVar(), return_type=types.TVar(),
|
|
name=node.name, args=node.args, returns=node.returns,
|
|
body=node.body, decorator_list=node.decorator_list,
|
|
keyword_loc=node.keyword_loc, name_loc=node.name_loc,
|
|
arrow_loc=node.arrow_loc, colon_loc=node.colon_loc, at_locs=node.at_locs,
|
|
loc=node.loc)
|
|
|
|
try:
|
|
self.env_stack.append(node.typing_env)
|
|
return self.generic_visit(node)
|
|
finally:
|
|
self.env_stack.pop()
|
|
|
|
def visit_Name(self, node):
|
|
typ = super()._try_find_name(node.id)
|
|
if typ is not None:
|
|
# Value from device environment.
|
|
return asttyped.NameT(type=typ, id=node.id, ctx=node.ctx,
|
|
loc=node.loc)
|
|
else:
|
|
# Try to find this value in the host environment and quote it.
|
|
if node.id == "print":
|
|
return self.quote(print, node.loc)
|
|
elif node.id in self.host_environment:
|
|
return self.quote(self.host_environment[node.id], node.loc)
|
|
else:
|
|
names = set()
|
|
names.update(self.host_environment.keys())
|
|
for typing_env in reversed(self.env_stack):
|
|
names.update(typing_env.keys())
|
|
|
|
suggestion = suggest_identifier(node.id, names)
|
|
if suggestion is not None:
|
|
diag = diagnostic.Diagnostic("fatal",
|
|
"name '{name}' is not bound to anything; did you mean '{suggestion}'?",
|
|
{"name": node.id, "suggestion": suggestion},
|
|
node.loc)
|
|
self.engine.process(diag)
|
|
else:
|
|
diag = diagnostic.Diagnostic("fatal",
|
|
"name '{name}' is not bound to anything", {"name": node.id},
|
|
node.loc)
|
|
self.engine.process(diag)
|
|
|
|
class StitchingInferencer(Inferencer):
|
|
def __init__(self, engine, value_map, quote):
|
|
super().__init__(engine)
|
|
self.value_map = value_map
|
|
self.quote = quote
|
|
self.attr_type_cache = {}
|
|
|
|
def _compute_attr_type(self, object_value, object_type, object_loc, attr_name, loc):
|
|
if not hasattr(object_value, attr_name):
|
|
if attr_name.startswith('_'):
|
|
names = set(filter(lambda name: not name.startswith('_'),
|
|
dir(object_value)))
|
|
else:
|
|
names = set(dir(object_value))
|
|
suggestion = suggest_identifier(attr_name, names)
|
|
|
|
note = diagnostic.Diagnostic("note",
|
|
"attribute accessed here", {},
|
|
loc)
|
|
if suggestion is not None:
|
|
diag = diagnostic.Diagnostic("error",
|
|
"host object does not have an attribute '{attr}'; "
|
|
"did you mean '{suggestion}'?",
|
|
{"attr": attr_name, "suggestion": suggestion},
|
|
object_loc, notes=[note])
|
|
else:
|
|
diag = diagnostic.Diagnostic("error",
|
|
"host object does not have an attribute '{attr}'",
|
|
{"attr": attr_name},
|
|
object_loc, notes=[note])
|
|
self.engine.process(diag)
|
|
return
|
|
|
|
# Figure out what ARTIQ type does the value of the attribute have.
|
|
# We do this by quoting it, as if to serialize. This has some
|
|
# overhead (i.e. synthesizing a source buffer), but has the advantage
|
|
# of having the host-to-ARTIQ mapping code in only one place and
|
|
# also immediately getting proper diagnostics on type errors.
|
|
attr_value = getattr(object_value, attr_name)
|
|
if (inspect.ismethod(attr_value) and
|
|
types.is_instance(object_type) and
|
|
# Check that the method is indeed defined on the class,
|
|
# and not just this instance. The check is written in
|
|
# the inverted form and not as hasattr(type(attr_value))
|
|
# since the method may as well be defined on a superclass.
|
|
attr_name not in object_value.__dict__):
|
|
# In cases like:
|
|
# class c:
|
|
# @kernel
|
|
# def f(self): pass
|
|
# we want f to be defined on the class, not on the instance.
|
|
attributes = object_type.constructor.attributes
|
|
attr_value = SpecializedFunction(object_type, attr_value.__func__)
|
|
else:
|
|
attributes = object_type.attributes
|
|
|
|
attr_value_type = None
|
|
|
|
if isinstance(attr_value, list):
|
|
# Fast path for lists of scalars.
|
|
IS_FLOAT = 1
|
|
IS_INT32 = 2
|
|
IS_INT64 = 4
|
|
|
|
state = 0
|
|
for elt in attr_value:
|
|
if elt.__class__ == float:
|
|
state |= IS_FLOAT
|
|
elif elt.__class__ == int:
|
|
if -2**31 < elt < 2**31-1:
|
|
state |= IS_INT32
|
|
elif -2**63 < elt < 2**63-1:
|
|
state |= IS_INT64
|
|
else:
|
|
state = -1
|
|
break
|
|
else:
|
|
state = -1
|
|
|
|
if state == IS_FLOAT:
|
|
attr_value_type = builtins.TList(builtins.TFloat())
|
|
elif state == IS_INT32:
|
|
attr_value_type = builtins.TList(builtins.TInt32())
|
|
elif state == IS_INT64:
|
|
attr_value_type = builtins.TList(builtins.TInt64())
|
|
|
|
if attr_value_type is None:
|
|
note = diagnostic.Diagnostic("note",
|
|
"while inferring a type for an attribute '{attr}' of a host object",
|
|
{"attr": attr_name},
|
|
loc)
|
|
|
|
with self.engine.context(note):
|
|
# Slow path. We don't know what exactly is the attribute value,
|
|
# so we quote it only for the error message that may possibly result.
|
|
ast = self.quote(attr_value, object_loc.expanded_from)
|
|
Inferencer(engine=self.engine).visit(ast)
|
|
IntMonomorphizer(engine=self.engine).visit(ast)
|
|
attr_value_type = ast.type
|
|
|
|
return attributes, attr_value_type
|
|
|
|
def _unify_attribute(self, result_type, value_node, attr_name, attr_loc, loc):
|
|
# The inferencer can only observe types, not values; however,
|
|
# when we work with host objects, we have to get the values
|
|
# somewhere, since host interpreter does not have types.
|
|
# Since we have categorized every host object we quoted according to
|
|
# its type, we now interrogate every host object we have to ensure
|
|
# that we can successfully serialize the value of the attribute we
|
|
# are now adding at the code generation stage.
|
|
object_type = value_node.type.find()
|
|
for object_value, object_loc in self.value_map[object_type]:
|
|
attr_type_key = (id(object_value), attr_name)
|
|
try:
|
|
attributes, attr_value_type = self.attr_type_cache[attr_type_key]
|
|
except KeyError:
|
|
attributes, attr_value_type = \
|
|
self._compute_attr_type(object_value, object_type, object_loc, attr_name, loc)
|
|
self.attr_type_cache[attr_type_key] = attributes, attr_value_type
|
|
|
|
if attr_name not in attributes:
|
|
# We just figured out what the type should be. Add it.
|
|
attributes[attr_name] = attr_value_type
|
|
else:
|
|
# Does this conflict with an earlier guess?
|
|
try:
|
|
attributes[attr_name].unify(attr_value_type)
|
|
except types.UnificationError as e:
|
|
printer = types.TypePrinter()
|
|
diag = diagnostic.Diagnostic("error",
|
|
"host object has an attribute '{attr}' of type {typea}, which is"
|
|
" different from previously inferred type {typeb} for the same attribute",
|
|
{"typea": printer.name(attr_value_type),
|
|
"typeb": printer.name(attributes[attr_name]),
|
|
"attr": attr_name},
|
|
object_loc)
|
|
self.engine.process(diag)
|
|
|
|
super()._unify_attribute(result_type, value_node, attr_name, attr_loc, loc)
|
|
|
|
def visit_QuoteT(self, node):
|
|
if inspect.ismethod(node.value):
|
|
if types.is_rpc(types.get_method_function(node.type)):
|
|
return
|
|
self._unify_method_self(method_type=node.type,
|
|
attr_name=node.value.__func__.__name__,
|
|
attr_loc=None,
|
|
loc=node.loc,
|
|
self_loc=node.self_loc)
|
|
|
|
class TypedtreeHasher(algorithm.Visitor):
|
|
def generic_visit(self, node):
|
|
def freeze(obj):
|
|
if isinstance(obj, ast.AST):
|
|
return self.visit(obj)
|
|
elif isinstance(obj, list):
|
|
return hash(tuple(freeze(elem) for elem in obj))
|
|
elif isinstance(obj, types.Type):
|
|
return hash(obj.find())
|
|
else:
|
|
# We don't care; only types change during inference.
|
|
pass
|
|
|
|
fields = node._fields
|
|
if hasattr(node, '_types'):
|
|
fields = fields + node._types
|
|
return hash(tuple(freeze(getattr(node, field_name)) for field_name in fields))
|
|
|
|
class Stitcher:
|
|
def __init__(self, core, dmgr, engine=None, print_as_rpc=True):
|
|
self.core = core
|
|
self.dmgr = dmgr
|
|
if engine is None:
|
|
self.engine = diagnostic.Engine(all_errors_are_fatal=True)
|
|
else:
|
|
self.engine = engine
|
|
|
|
self.name = ""
|
|
self.typedtree = []
|
|
self.inject_at = 0
|
|
self.globals = {}
|
|
|
|
# We don't want some things from the prelude as they are provided in
|
|
# the host Python namespace and gain special meaning when quoted.
|
|
self.prelude = prelude.globals()
|
|
if print_as_rpc:
|
|
self.prelude.pop("print")
|
|
self.prelude.pop("array")
|
|
|
|
self.functions = {}
|
|
|
|
self.embedding_map = EmbeddingMap()
|
|
self.value_map = defaultdict(lambda: [])
|
|
|
|
def stitch_call(self, function, args, kwargs, callback=None):
|
|
# We synthesize source code for the initial call so that
|
|
# diagnostics would have something meaningful to display to the user.
|
|
synthesizer = self._synthesizer(self._function_loc(function.artiq_embedded.function))
|
|
call_node = synthesizer.call(function, args, kwargs, callback)
|
|
synthesizer.finalize()
|
|
self.typedtree.append(call_node)
|
|
|
|
def finalize(self):
|
|
inferencer = StitchingInferencer(engine=self.engine,
|
|
value_map=self.value_map,
|
|
quote=self._quote)
|
|
typedtree_hasher = TypedtreeHasher()
|
|
|
|
# Iterate inference to fixed point.
|
|
old_typedtree_hash = None
|
|
old_attr_count = None
|
|
while True:
|
|
inferencer.visit(self.typedtree)
|
|
typedtree_hash = typedtree_hasher.visit(self.typedtree)
|
|
attr_count = self.embedding_map.attribute_count()
|
|
|
|
if old_typedtree_hash == typedtree_hash and old_attr_count == attr_count:
|
|
break
|
|
old_typedtree_hash = typedtree_hash
|
|
old_attr_count = attr_count
|
|
|
|
# After we've discovered every referenced attribute, check if any kernel_invariant
|
|
# specifications refers to ones we didn't encounter.
|
|
for host_type in self.embedding_map.type_map:
|
|
instance_type, constructor_type = self.embedding_map.type_map[host_type]
|
|
if not hasattr(instance_type, "constant_attributes"):
|
|
# Exceptions lack user-definable attributes.
|
|
continue
|
|
|
|
for attribute in instance_type.constant_attributes:
|
|
if attribute in instance_type.attributes:
|
|
# Fast path; if the ARTIQ Python type has the attribute, then every observed
|
|
# value is guaranteed to have it too.
|
|
continue
|
|
|
|
for value, loc in self.value_map[instance_type]:
|
|
if hasattr(value, attribute):
|
|
continue
|
|
|
|
diag = diagnostic.Diagnostic("warning",
|
|
"object {value} of type {typ} declares attribute '{attr}' as "
|
|
"kernel invariant, but the instance referenced here does not "
|
|
"have this attribute",
|
|
{"value": repr(value),
|
|
"typ": types.TypePrinter().name(instance_type, max_depth=0),
|
|
"attr": attribute},
|
|
loc)
|
|
self.engine.process(diag)
|
|
|
|
# After we have found all functions, synthesize a module to hold them.
|
|
source_buffer = source.Buffer("", "<synthesized>")
|
|
self.typedtree = asttyped.ModuleT(
|
|
typing_env=self.globals, globals_in_scope=set(),
|
|
body=self.typedtree, loc=source.Range(source_buffer, 0, 0))
|
|
|
|
def _inject(self, node):
|
|
self.typedtree.insert(self.inject_at, node)
|
|
self.inject_at += 1
|
|
|
|
def _synthesizer(self, expanded_from=None):
|
|
return ASTSynthesizer(expanded_from=expanded_from,
|
|
embedding_map=self.embedding_map,
|
|
value_map=self.value_map,
|
|
quote_function=self._quote_function)
|
|
|
|
def _function_loc(self, function):
|
|
filename = function.__code__.co_filename
|
|
line = function.__code__.co_firstlineno
|
|
name = function.__code__.co_name
|
|
|
|
source_line = linecache.getline(filename, line).lstrip()
|
|
while source_line.startswith("@") or source_line == "":
|
|
line += 1
|
|
source_line = linecache.getline(filename, line).lstrip()
|
|
|
|
if "<lambda>" in function.__qualname__:
|
|
column = 0 # can't get column of lambda
|
|
else:
|
|
column = re.search("def", source_line).start(0)
|
|
source_buffer = source.Buffer(source_line, filename, line)
|
|
return source.Range(source_buffer, column, column)
|
|
|
|
def _call_site_note(self, call_loc, fn_kind):
|
|
if call_loc:
|
|
if fn_kind == 'syscall':
|
|
return [diagnostic.Diagnostic("note",
|
|
"in system call here", {},
|
|
call_loc)]
|
|
elif fn_kind == 'rpc':
|
|
return [diagnostic.Diagnostic("note",
|
|
"in function called remotely here", {},
|
|
call_loc)]
|
|
elif fn_kind == 'kernel':
|
|
return [diagnostic.Diagnostic("note",
|
|
"in kernel function here", {},
|
|
call_loc)]
|
|
else:
|
|
assert False
|
|
else:
|
|
return []
|
|
|
|
def _type_of_param(self, function, loc, param, fn_kind):
|
|
if param.annotation is not inspect.Parameter.empty:
|
|
# Type specified explicitly.
|
|
return self._extract_annot(function, param.annotation,
|
|
"argument '{}'".format(param.name), loc,
|
|
fn_kind)
|
|
elif fn_kind == 'syscall':
|
|
# Syscalls must be entirely annotated.
|
|
diag = diagnostic.Diagnostic("error",
|
|
"system call argument '{argument}' must have a type annotation",
|
|
{"argument": param.name},
|
|
self._function_loc(function),
|
|
notes=self._call_site_note(loc, fn_kind))
|
|
self.engine.process(diag)
|
|
elif fn_kind == 'rpc' and param.default is not inspect.Parameter.empty:
|
|
notes = []
|
|
notes.append(diagnostic.Diagnostic("note",
|
|
"expanded from here while trying to infer a type for an"
|
|
" unannotated optional argument '{argument}' from its default value",
|
|
{"argument": param.name},
|
|
self._function_loc(function)))
|
|
if loc is not None:
|
|
notes.append(self._call_site_note(loc, fn_kind))
|
|
|
|
with self.engine.context(*notes):
|
|
# Try and infer the type from the default value.
|
|
# This is tricky, because the default value might not have
|
|
# a well-defined type in APython.
|
|
# In this case, we bail out, but mention why we do it.
|
|
ast = self._quote(param.default, None)
|
|
Inferencer(engine=self.engine).visit(ast)
|
|
IntMonomorphizer(engine=self.engine).visit(ast)
|
|
return ast.type
|
|
else:
|
|
# Let the rest of the program decide.
|
|
return types.TVar()
|
|
|
|
def _quote_embedded_function(self, function, flags):
|
|
if isinstance(function, SpecializedFunction):
|
|
host_function = function.host_function
|
|
else:
|
|
host_function = function
|
|
|
|
if not hasattr(host_function, "artiq_embedded"):
|
|
raise ValueError("{} is not an embedded function".format(repr(host_function)))
|
|
|
|
# Extract function source.
|
|
embedded_function = host_function.artiq_embedded.function
|
|
source_code = inspect.getsource(embedded_function)
|
|
filename = embedded_function.__code__.co_filename
|
|
module_name = embedded_function.__globals__['__name__']
|
|
first_line = embedded_function.__code__.co_firstlineno
|
|
|
|
# Extract function annotation.
|
|
signature = inspect.signature(embedded_function)
|
|
loc = self._function_loc(embedded_function)
|
|
|
|
arg_types = OrderedDict()
|
|
optarg_types = OrderedDict()
|
|
for param in signature.parameters.values():
|
|
if param.kind == inspect.Parameter.VAR_POSITIONAL or \
|
|
param.kind == inspect.Parameter.VAR_KEYWORD:
|
|
diag = diagnostic.Diagnostic("error",
|
|
"variadic arguments are not supported; '{argument}' is variadic",
|
|
{"argument": param.name},
|
|
self._function_loc(function),
|
|
notes=self._call_site_note(loc, fn_kind='kernel'))
|
|
self.engine.process(diag)
|
|
|
|
arg_type = self._type_of_param(function, loc, param, fn_kind='kernel')
|
|
if param.default is inspect.Parameter.empty:
|
|
arg_types[param.name] = arg_type
|
|
else:
|
|
optarg_types[param.name] = arg_type
|
|
|
|
if signature.return_annotation is not inspect.Signature.empty:
|
|
ret_type = self._extract_annot(function, signature.return_annotation,
|
|
"return type", loc, fn_kind='kernel')
|
|
else:
|
|
ret_type = types.TVar()
|
|
|
|
# Extract function environment.
|
|
host_environment = dict()
|
|
host_environment.update(embedded_function.__globals__)
|
|
cells = embedded_function.__closure__
|
|
cell_names = embedded_function.__code__.co_freevars
|
|
host_environment.update({var: cells[index] for index, var in enumerate(cell_names)})
|
|
|
|
# Find out how indented we are.
|
|
initial_whitespace = re.search(r"^\s*", source_code).group(0)
|
|
initial_indent = len(initial_whitespace.expandtabs())
|
|
|
|
# Parse.
|
|
source_buffer = source.Buffer(source_code, filename, first_line)
|
|
lexer = source_lexer.Lexer(source_buffer, version=sys.version_info[0:2],
|
|
diagnostic_engine=self.engine)
|
|
lexer.indent = [(initial_indent,
|
|
source.Range(source_buffer, 0, len(initial_whitespace)),
|
|
initial_whitespace)]
|
|
parser = source_parser.Parser(lexer, version=sys.version_info[0:2],
|
|
diagnostic_engine=self.engine)
|
|
function_node = parser.file_input().body[0]
|
|
|
|
# Mangle the name, since we put everything into a single module.
|
|
full_function_name = "{}.{}".format(module_name, host_function.__qualname__)
|
|
if isinstance(function, SpecializedFunction):
|
|
instance_type = function.instance_type
|
|
function_node.name = "_Z{}{}I{}{}Ezz".format(len(full_function_name), full_function_name,
|
|
len(instance_type.name), instance_type.name)
|
|
else:
|
|
function_node.name = "_Z{}{}zz".format(len(full_function_name), full_function_name)
|
|
|
|
# Record the function in the function map so that LLVM IR generator
|
|
# can handle quoting it.
|
|
self.embedding_map.store_function(function, function_node.name)
|
|
|
|
# Fill in the function type before typing it to handle recursive
|
|
# invocations.
|
|
self.functions[function] = types.TFunction(arg_types, optarg_types, ret_type)
|
|
|
|
# Rewrite into typed form.
|
|
asttyped_rewriter = StitchingASTTypedRewriter(
|
|
engine=self.engine, prelude=self.prelude,
|
|
globals=self.globals, host_environment=host_environment,
|
|
quote=self._quote)
|
|
function_node = asttyped_rewriter.visit_quoted_function(function_node, embedded_function)
|
|
function_node.flags = flags
|
|
|
|
# Add it into our typedtree so that it gets inferenced and codegen'd.
|
|
self._inject(function_node)
|
|
|
|
# Tie the typing knot.
|
|
self.functions[function].unify(function_node.signature_type)
|
|
|
|
return function_node
|
|
|
|
def _extract_annot(self, function, annot, kind, call_loc, fn_kind):
|
|
if not isinstance(annot, types.Type):
|
|
diag = diagnostic.Diagnostic("error",
|
|
"type annotation for {kind}, '{annot}', is not an ARTIQ type",
|
|
{"kind": kind, "annot": repr(annot)},
|
|
self._function_loc(function),
|
|
notes=self._call_site_note(call_loc, fn_kind))
|
|
self.engine.process(diag)
|
|
|
|
return types.TVar()
|
|
else:
|
|
return annot
|
|
|
|
def _quote_syscall(self, function, loc):
|
|
signature = inspect.signature(function)
|
|
|
|
arg_types = OrderedDict()
|
|
optarg_types = OrderedDict()
|
|
for param in signature.parameters.values():
|
|
if param.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD:
|
|
diag = diagnostic.Diagnostic("error",
|
|
"system calls must only use positional arguments; '{argument}' isn't",
|
|
{"argument": param.name},
|
|
self._function_loc(function),
|
|
notes=self._call_site_note(loc, fn_kind='syscall'))
|
|
self.engine.process(diag)
|
|
|
|
if param.default is inspect.Parameter.empty:
|
|
arg_types[param.name] = self._type_of_param(function, loc, param,
|
|
fn_kind='syscall')
|
|
else:
|
|
diag = diagnostic.Diagnostic("error",
|
|
"system call argument '{argument}' must not have a default value",
|
|
{"argument": param.name},
|
|
self._function_loc(function),
|
|
notes=self._call_site_note(loc, fn_kind='syscall'))
|
|
self.engine.process(diag)
|
|
|
|
if signature.return_annotation is not inspect.Signature.empty:
|
|
ret_type = self._extract_annot(function, signature.return_annotation,
|
|
"return type", loc, fn_kind='syscall')
|
|
else:
|
|
diag = diagnostic.Diagnostic("error",
|
|
"system call must have a return type annotation", {},
|
|
self._function_loc(function),
|
|
notes=self._call_site_note(loc, fn_kind='syscall'))
|
|
self.engine.process(diag)
|
|
ret_type = types.TVar()
|
|
|
|
function_type = types.TCFunction(arg_types, ret_type,
|
|
name=function.artiq_embedded.syscall,
|
|
flags=function.artiq_embedded.flags)
|
|
self.functions[function] = function_type
|
|
return function_type
|
|
|
|
def _quote_rpc(self, function, loc):
|
|
if isinstance(function, SpecializedFunction):
|
|
host_function = function.host_function
|
|
else:
|
|
host_function = function
|
|
ret_type = builtins.TNone()
|
|
|
|
if isinstance(host_function, pytypes.BuiltinFunctionType):
|
|
pass
|
|
elif (isinstance(host_function, pytypes.FunctionType) or \
|
|
isinstance(host_function, pytypes.MethodType)):
|
|
if isinstance(host_function, pytypes.FunctionType):
|
|
signature = inspect.signature(host_function)
|
|
else:
|
|
# inspect bug?
|
|
signature = inspect.signature(host_function.__func__)
|
|
if signature.return_annotation is not inspect.Signature.empty:
|
|
ret_type = self._extract_annot(host_function, signature.return_annotation,
|
|
"return type", loc, fn_kind='rpc')
|
|
else:
|
|
assert False
|
|
|
|
is_async = False
|
|
if hasattr(host_function, "artiq_embedded") and \
|
|
"async" in host_function.artiq_embedded.flags:
|
|
is_async = True
|
|
|
|
if not builtins.is_none(ret_type) and is_async:
|
|
note = diagnostic.Diagnostic("note",
|
|
"function called here", {},
|
|
loc)
|
|
diag = diagnostic.Diagnostic("fatal",
|
|
"functions that return a value cannot be defined as async RPCs", {},
|
|
self._function_loc(host_function.artiq_embedded.function),
|
|
notes=[note])
|
|
self.engine.process(diag)
|
|
|
|
function_type = types.TRPC(ret_type,
|
|
service=self.embedding_map.store_object(host_function),
|
|
async=is_async)
|
|
self.functions[function] = function_type
|
|
return function_type
|
|
|
|
def _quote_function(self, function, loc):
|
|
if isinstance(function, SpecializedFunction):
|
|
host_function = function.host_function
|
|
else:
|
|
host_function = function
|
|
|
|
if function in self.functions:
|
|
pass
|
|
elif not hasattr(host_function, "artiq_embedded") or \
|
|
(host_function.artiq_embedded.core_name is None and
|
|
host_function.artiq_embedded.portable is False and
|
|
host_function.artiq_embedded.syscall is None and
|
|
host_function.artiq_embedded.forbidden is False):
|
|
self._quote_rpc(function, loc)
|
|
elif host_function.artiq_embedded.function is not None:
|
|
if host_function.__name__ == "<lambda>":
|
|
note = diagnostic.Diagnostic("note",
|
|
"lambda created here", {},
|
|
self._function_loc(host_function.artiq_embedded.function))
|
|
diag = diagnostic.Diagnostic("fatal",
|
|
"lambdas cannot be used as kernel functions", {},
|
|
loc,
|
|
notes=[note])
|
|
self.engine.process(diag)
|
|
|
|
core_name = host_function.artiq_embedded.core_name
|
|
if core_name is not None and self.dmgr.get(core_name) != self.core:
|
|
note = diagnostic.Diagnostic("note",
|
|
"called from this function", {},
|
|
loc)
|
|
diag = diagnostic.Diagnostic("fatal",
|
|
"this function runs on a different core device '{name}'",
|
|
{"name": host_function.artiq_embedded.core_name},
|
|
self._function_loc(host_function.artiq_embedded.function),
|
|
notes=[note])
|
|
self.engine.process(diag)
|
|
|
|
self._quote_embedded_function(function,
|
|
flags=host_function.artiq_embedded.flags)
|
|
elif host_function.artiq_embedded.syscall is not None:
|
|
# Insert a storage-less global whose type instructs the compiler
|
|
# to perform a system call instead of a regular call.
|
|
self._quote_syscall(function, loc)
|
|
elif host_function.artiq_embedded.forbidden is not None:
|
|
diag = diagnostic.Diagnostic("fatal",
|
|
"this function cannot be called as an RPC", {},
|
|
self._function_loc(host_function),
|
|
notes=self._call_site_note(loc, fn_kind='rpc'))
|
|
self.engine.process(diag)
|
|
else:
|
|
assert False
|
|
|
|
return self.functions[function]
|
|
|
|
def _quote(self, value, loc):
|
|
synthesizer = self._synthesizer(loc)
|
|
node = synthesizer.quote(value)
|
|
synthesizer.finalize()
|
|
if len(synthesizer.diagnostics) > 0:
|
|
for warning in synthesizer.diagnostics:
|
|
self.engine.process(warning)
|
|
return node
|