2
0
mirror of https://github.com/m-labs/artiq.git synced 2024-12-05 09:46:36 +08:00
artiq/artiq/coredevice/core.py

207 lines
6.9 KiB
Python

import os, sys
import numpy
from pythonparser import diagnostic
from artiq import __artiq_dir__ as artiq_dir
from artiq.language.core import *
from artiq.language.types import *
from artiq.language.units import *
from artiq.compiler.module import Module
from artiq.compiler.embedding import Stitcher
from artiq.compiler.targets import OR1KTarget, CortexA9Target
from artiq.coredevice.comm_kernel import CommKernel, CommKernelDummy
# Import for side effects (creating the exception classes).
from artiq.coredevice import exceptions
def _render_diagnostic(diagnostic, colored):
def shorten_path(path):
return path.replace(artiq_dir, "<artiq>")
lines = [shorten_path(path) for path in diagnostic.render(colored=colored)]
return "\n".join(lines)
colors_supported = os.name == "posix"
class _DiagnosticEngine(diagnostic.Engine):
def render_diagnostic(self, diagnostic):
sys.stderr.write(_render_diagnostic(diagnostic, colored=colors_supported) + "\n")
class CompileError(Exception):
def __init__(self, diagnostic):
self.diagnostic = diagnostic
def __str__(self):
# Prepend a newline so that the message shows up on after
# exception class name printed by Python.
return "\n" + _render_diagnostic(self.diagnostic, colored=colors_supported)
@syscall
def rtio_init() -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def rtio_get_destination_status(linkno: TInt32) -> TBool:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def rtio_get_counter() -> TInt64:
raise NotImplementedError("syscall not simulated")
class Core:
"""Core device driver.
:param host: hostname or IP address of the core device.
:param ref_period: period of the reference clock for the RTIO subsystem.
On platforms that use clock multiplication and SERDES-based PHYs,
this is the period after multiplication. For example, with a RTIO core
clocked at 125MHz and a SERDES multiplication factor of 8, the
reference period is 1ns.
The time machine unit is equal to this period.
:param ref_multiplier: ratio between the RTIO fine timestamp frequency
and the RTIO coarse timestamp frequency (e.g. SERDES multiplication
factor).
"""
kernel_invariants = {
"core", "ref_period", "coarse_ref_period", "ref_multiplier",
}
def __init__(self, dmgr, host, ref_period, ref_multiplier=8, target="or1k"):
self.ref_period = ref_period
self.ref_multiplier = ref_multiplier
if target == "or1k":
self.target_cls = OR1KTarget
elif target == "cortexa9":
self.target_cls = CortexA9Target
else:
raise ValueError("Unsupported target")
self.coarse_ref_period = ref_period*ref_multiplier
if host is None:
self.comm = CommKernelDummy()
else:
self.comm = CommKernel(host)
self.first_run = True
self.dmgr = dmgr
self.core = self
self.comm.core = self
def close(self):
self.comm.close()
def compile(self, function, args, kwargs, set_result=None,
attribute_writeback=True, print_as_rpc=True):
try:
engine = _DiagnosticEngine(all_errors_are_fatal=True)
stitcher = Stitcher(engine=engine, core=self, dmgr=self.dmgr,
print_as_rpc=print_as_rpc)
stitcher.stitch_call(function, args, kwargs, set_result)
stitcher.finalize()
module = Module(stitcher,
ref_period=self.ref_period,
attribute_writeback=attribute_writeback)
target = self.target_cls()
library = target.compile_and_link([module])
stripped_library = target.strip(library)
return stitcher.embedding_map, stripped_library, \
lambda addresses: target.symbolize(library, addresses), \
lambda symbols: target.demangle(symbols)
except diagnostic.Error as error:
raise CompileError(error.diagnostic) from error
def run(self, function, args, kwargs):
result = None
@rpc(flags={"async"})
def set_result(new_result):
nonlocal result
result = new_result
embedding_map, kernel_library, symbolizer, demangler = \
self.compile(function, args, kwargs, set_result)
if self.first_run:
self.comm.check_system_info()
self.first_run = False
self.comm.load(kernel_library)
self.comm.run()
self.comm.serve(embedding_map, symbolizer, demangler)
return result
@portable
def seconds_to_mu(self, seconds):
"""Convert seconds to the corresponding number of machine units
(RTIO cycles).
:param seconds: time (in seconds) to convert.
"""
return numpy.int64(seconds//self.ref_period)
@portable
def mu_to_seconds(self, mu):
"""Convert machine units (RTIO cycles) to seconds.
:param mu: cycle count to convert.
"""
return mu*self.ref_period
@kernel
def get_rtio_counter_mu(self):
"""Retrieve the current value of the hardware RTIO timeline counter.
As the timing of kernel code executed on the CPU is inherently
non-deterministic, the return value is by necessity only a lower bound
for the actual value of the hardware register at the instant when
execution resumes in the caller.
For a more detailed description of these concepts, see :doc:`/rtio`.
"""
return rtio_get_counter()
@kernel
def wait_until_mu(self, cursor_mu):
"""Block execution until the hardware RTIO counter reaches the given
value (see :meth:`get_rtio_counter_mu`).
If the hardware counter has already passed the given time, the function
returns immediately.
"""
while self.get_rtio_counter_mu() < cursor_mu:
pass
@kernel
def get_rtio_destination_status(self, destination):
"""Returns whether the specified RTIO destination is up.
This is particularly useful in startup kernels to delay
startup until certain DRTIO destinations are up."""
return rtio_get_destination_status(destination)
@kernel
def reset(self):
"""Clear RTIO FIFOs, release RTIO PHY reset, and set the time cursor
at the current value of the hardware RTIO counter plus a margin of
125000 machine units."""
rtio_init()
at_mu(rtio_get_counter() + 125000)
@kernel
def break_realtime(self):
"""Set the time cursor after the current value of the hardware RTIO
counter plus a margin of 125000 machine units.
If the time cursor is already after that position, this function
does nothing."""
min_now = rtio_get_counter() + 125000
if now_mu() < min_now:
at_mu(min_now)