artiq/artiq/gateware/spi.py

372 lines
14 KiB
Python

from itertools import product
from migen import *
from misoc.interconnect import wishbone
from misoc.cores.spi import SPIMachine
class SPIMaster(Module):
"""SPI Master.
Notes:
* M = 32 is the data width (width of the data register,
maximum write bits, maximum read bits)
* Every transfer consists of a write_length 0-M bit write followed
by a read_length 0-M bit read.
* cs_n is asserted at the beginning and deasserted at the end of the
transfer if there is no other transfer pending.
* cs_n handling is agnostic to whether it is one-hot or decoded
somewhere downstream. If it is decoded, "cs_n all deasserted"
should be handled accordingly (no slave selected).
If it is one-hot, asserting multiple slaves should only be attempted
if miso is either not connected between slaves, or open collector,
or correctly multiplexed externally.
* If config.cs_polarity == 0 (cs active low, the default),
"cs_n all deasserted" means "all cs_n bits high".
* cs is not mandatory in pads. Framing and chip selection can also
be handled independently through other means.
* If there is a miso wire in pads, the input and output can be done
with two signals (a.k.a. 4-wire SPI), else mosi must be used for
both output and input (a.k.a. 3-wire SPI) and config.half_duplex
must to be set when reading data is desired.
* For 4-wire SPI only the sum of read_length and write_length matters.
The behavior is the same no matter how the total transfer length is
divided between the two. For 3-wire SPI, the direction of mosi/miso
is switched from output to input after write_len cycles, at the
"shift_out" clk edge corresponding to bit write_length + 1 of the
transfer.
* The first bit output on mosi is always the MSB/LSB (depending on
config.lsb_first) of the data register, independent of
xfer.write_len. The last bit input from miso always ends up in
the LSB/MSB (respectively) of the data register, independent of
read_len.
* Data output on mosi in 4-wire SPI during the read cycles is what
is found in the data register at the time.
Data in the data register outside the least/most (depending
on config.lsb_first) significant read_length bits is what is
seen on miso during the write cycles.
* The SPI data register is double-buffered: Once a transfer has
started, new write data can be written, queuing a new transfer.
Transfers submitted this way are chained and executed without
deasserting cs. Once a transfer completes, the previous transfer's
read data is available in the data register.
* Writes to the config register take effect immediately. Writes to xfer
and data are synchronized to the start of a transfer.
* A wishbone data register write is ack-ed when the transfer has
been written to the intermediate buffer. It will be started when
there are no other transactions being executed, either starting
a new SPI transfer of chained to an in-flight transfer.
Writes take two cycles unless the write is to the data register
and another chained transfer is pending and the transfer being
executed is not complete. Reads always finish in two cycles.
Transaction Sequence:
* If desired, write the config register to set up the core.
* If desired, write the xfer register to change lengths and cs_n.
* Write the data register (also for zero-length writes),
writing triggers the transfer and when the transfer is accepted to
the inermediate buffer, the write is ack-ed.
* If desired, read the data register corresponding to the last
completed transfer.
* If desired, change xfer register for the next transfer.
* If desired, write data queuing the next (possibly chained) transfer.
Register address and bit map:
config (address 2):
1 offline: all pins high-z (reset=1)
1 active: cs/transfer active (read-only)
1 pending: transfer pending in intermediate buffer (read-only)
1 cs_polarity: active level of chip select (reset=0)
1 clk_polarity: idle level of clk (reset=0)
1 clk_phase: first edge after cs assertion to sample data on (reset=0)
(clk_polarity, clk_phase) == (CPOL, CPHA) in Freescale language.
(0, 0): idle low, output on falling, input on rising
(0, 1): idle low, output on rising, input on falling
(1, 0): idle high, output on rising, input on falling
(1, 1): idle high, output on falling, input on rising
There is never a clk edge during a cs edge.
1 lsb_first: LSB is the first bit on the wire (reset=0)
1 half_duplex: 3-wire SPI, in/out on mosi (reset=0)
8 undefined
8 div_write: counter load value to divide this module's clock
to generate the SPI write clk (reset=0)
f_clk/f_spi_write == div_write + 2
8 div_read: ditto for the read clock
xfer (address 1):
16 cs: active high bit mask of chip selects to assert (reset=0)
6 write_len: 0-M bits (reset=0)
2 undefined
6 read_len: 0-M bits (reset=0)
2 undefined
data (address 0):
M write/read data (reset=0)
"""
def __init__(self, pads, pads_n=None, bus=None):
if bus is None:
bus = wishbone.Interface(data_width=32)
self.bus = bus
###
# Wishbone
config = Record([
("offline", 1),
("active", 1),
("pending", 1),
("cs_polarity", 1),
("clk_polarity", 1),
("clk_phase", 1),
("lsb_first", 1),
("half_duplex", 1),
("padding", 8),
("div_write", 8),
("div_read", 8),
])
config.offline.reset = 1
assert len(config) <= len(bus.dat_w)
xfer = Record([
("cs", 16),
("write_length", 6),
("padding0", 2),
("read_length", 6),
("padding1", 2),
])
assert len(xfer) <= len(bus.dat_w)
self.submodules.spi = spi = SPIMachine(
data_width=len(bus.dat_w) + 1,
clock_width=len(config.div_read),
bits_width=len(xfer.read_length))
pending = Signal()
cs = Signal.like(xfer.cs)
data_read = Signal.like(spi.reg.data)
data_write = Signal.like(spi.reg.data)
self.comb += [
spi.start.eq(pending & (~spi.cs | spi.done)),
spi.clk_phase.eq(config.clk_phase),
spi.reg.lsb.eq(config.lsb_first),
spi.div_write.eq(config.div_write),
spi.div_read.eq(config.div_read),
]
self.sync += [
If(spi.done,
data_read.eq(
Mux(spi.reg.lsb, spi.reg.data[1:], spi.reg.data[:-1])),
),
If(spi.start,
cs.eq(xfer.cs),
spi.bits.n_write.eq(xfer.write_length),
spi.bits.n_read.eq(xfer.read_length),
If(spi.reg.lsb,
spi.reg.data[:-1].eq(data_write),
).Else(
spi.reg.data[1:].eq(data_write),
),
pending.eq(0),
),
# wb.ack a transaction if any of the following:
# a) reading,
# b) writing to non-data register
# c) writing to data register and no pending transfer
# d) writing to data register and pending and swapping buffers
bus.ack.eq(bus.cyc & bus.stb &
(~bus.we | (bus.adr != 0) | ~pending | spi.done)),
If(bus.cyc & bus.stb,
bus.dat_r.eq(
Array([data_read, xfer.raw_bits(), config.raw_bits()
])[bus.adr]),
),
If(bus.ack,
bus.ack.eq(0),
If(bus.we,
Array([data_write, xfer.raw_bits(), config.raw_bits()
])[bus.adr].eq(bus.dat_w),
If(bus.adr == 0, # data register
pending.eq(1),
),
),
),
config.active.eq(spi.cs),
config.pending.eq(pending),
]
# I/O
mosi_oe = Signal()
clk = Signal()
self.comb += [
mosi_oe.eq(
~config.offline & spi.cs &
(spi.oe | ~config.half_duplex)),
clk.eq((spi.cg.clk & spi.cs) ^ config.clk_polarity)
]
if pads_n is None:
if hasattr(pads, "cs_n"):
cs_n_t = TSTriple(len(pads.cs_n))
self.specials += cs_n_t.get_tristate(pads.cs_n)
self.comb += [
cs_n_t.oe.eq(~config.offline),
cs_n_t.o.eq((cs & Replicate(spi.cs, len(cs))) ^
Replicate(~config.cs_polarity, len(cs))),
]
clk_t = TSTriple()
self.specials += clk_t.get_tristate(pads.clk)
self.comb += [
clk_t.oe.eq(~config.offline),
clk_t.o.eq(clk),
]
mosi_t = TSTriple()
self.specials += mosi_t.get_tristate(pads.mosi)
self.comb += [
mosi_t.oe.eq(mosi_oe),
mosi_t.o.eq(spi.reg.o),
spi.reg.i.eq(Mux(config.half_duplex, mosi_t.i,
getattr(pads, "miso", mosi_t.i))),
]
else:
if hasattr(pads, "cs_n"):
for i in range(len(pads.cs_n)):
self.specials += Instance("IOBUFDS",
i_I=(cs[i] & spi.cs) ^ ~config.cs_polarity,
i_T=config.offline,
io_IO=pads.cs_n[i], io_IOB=pads_n.cs_n[i])
self.specials += Instance("IOBUFDS",
i_I=clk, i_T=config.offline,
io_IO=pads.clk, io_IOB=pads_n.clk)
mosi = Signal()
self.specials += Instance("IOBUFDS",
o_O=mosi, i_I=spi.reg.o, i_T=~mosi_oe,
io_IO=pads.mosi, io_IOB=pads_n.mosi)
if hasattr(pads, "miso"):
miso = Signal()
self.specials += Instance("IBUFDS",
o_O=miso, i_I=pads.miso, i_IB=pads_n.miso)
else:
miso = mosi
self.comb += spi.reg.i.eq(Mux(config.half_duplex, mosi, miso))
SPI_DATA_ADDR, SPI_XFER_ADDR, SPI_CONFIG_ADDR = range(3)
(
SPI_OFFLINE,
SPI_ACTIVE,
SPI_PENDING,
SPI_CS_POLARITY,
SPI_CLK_POLARITY,
SPI_CLK_PHASE,
SPI_LSB_FIRST,
SPI_HALF_DUPLEX,
) = (1 << i for i in range(8))
def SPI_DIV_WRITE(i):
return i << 16
def SPI_DIV_READ(i):
return i << 24
def SPI_CS(i):
return i << 0
def SPI_WRITE_LENGTH(i):
return i << 16
def SPI_READ_LENGTH(i):
return i << 24
def _test_xfer(bus, cs, wlen, rlen, wdata):
yield from bus.write(SPI_XFER_ADDR, SPI_CS(cs) |
SPI_WRITE_LENGTH(wlen) | SPI_READ_LENGTH(rlen))
yield from bus.write(SPI_DATA_ADDR, wdata)
yield
def _test_read(bus, sync=SPI_ACTIVE | SPI_PENDING):
while (yield from bus.read(SPI_CONFIG_ADDR)) & sync:
pass
return (yield from bus.read(SPI_DATA_ADDR))
def _test_gen(bus):
yield from bus.write(SPI_CONFIG_ADDR,
0*SPI_CLK_PHASE | 0*SPI_LSB_FIRST |
1*SPI_HALF_DUPLEX |
SPI_DIV_WRITE(3) | SPI_DIV_READ(5))
yield from _test_xfer(bus, 0b01, 4, 0, 0x90000000)
print(hex((yield from _test_read(bus))))
yield from _test_xfer(bus, 0b10, 0, 4, 0x90000000)
print(hex((yield from _test_read(bus))))
yield from _test_xfer(bus, 0b11, 4, 4, 0x81000000)
print(hex((yield from _test_read(bus))))
yield from _test_xfer(bus, 0b01, 8, 32, 0x87654321)
yield from _test_xfer(bus, 0b01, 0, 32, 0x12345678)
print(hex((yield from _test_read(bus, SPI_PENDING))))
print(hex((yield from _test_read(bus, SPI_ACTIVE))))
return
for cpol, cpha, lsb, clk in product(
(0, 1), (0, 1), (0, 1), (0, 1)):
yield from bus.write(SPI_CONFIG_ADDR,
cpol*SPI_CLK_POLARITY | cpha*SPI_CLK_PHASE |
lsb*SPI_LSB_FIRST | SPI_DIV_WRITE(clk) |
SPI_DIV_READ(clk))
for wlen, rlen, wdata in product((0, 8, 32), (0, 8, 32),
(0, 0xffffffff, 0xdeadbeef)):
rdata = (yield from _test_xfer(bus, 0b1, wlen, rlen, wdata, True))
len = (wlen + rlen) % 32
mask = (1 << len) - 1
if lsb:
shift = (wlen + rlen) % 32
else:
shift = 0
a = (wdata >> wshift) & wmask
b = (rdata >> rshift) & rmask
if a != b:
print("ERROR", end=" ")
print(cpol, cpha, lsb, clk, wlen, rlen,
hex(wdata), hex(rdata), hex(a), hex(b))
class _TestPads:
def __init__(self):
self.cs_n = Signal(2)
self.clk = Signal()
self.mosi = Signal()
self.miso = Signal()
class _TestTristate(Module):
def __init__(self, t):
oe = Signal()
self.comb += [
t.target.eq(t.o),
oe.eq(t.oe),
t.i.eq(t.o),
]
if __name__ == "__main__":
from migen.fhdl.specials import Tristate
pads = _TestPads()
dut = SPIMaster(pads)
dut.comb += pads.miso.eq(pads.mosi)
# from migen.fhdl.verilog import convert
# print(convert(dut))
Tristate.lower = _TestTristate
run_simulation(dut, _test_gen(dut.bus), vcd_name="spi_master.vcd")